xref: /aosp_15_r20/external/ComputeLibrary/src/core/CL/cl_kernels/common/roi_align_layer_quantized.cl (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1/*
2 * Copyright (c) 2019-2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "helpers_asymm.h"
25
26// This specifies the value to shift the result of roi_dims / pooled_dims before ceiling.
27// It is close to the epsilon machine (for a floating point system, x and x+EPS are the same number).
28#define EPS_GRID 0.00001f
29
30#if defined(DATA_TYPE) && defined(POOLED_DIM_X) && defined(POOLED_DIM_Y) && defined(MAX_DIM_X) && defined(MAX_DIM_Y) && defined(MAX_DIM_Z) && defined(SPATIAL_SCALE) && defined(OFFSET_IN) && defined(OFFSET_OUT) && defined(SCALE_IN) && defined(SCALE_OUT) && defined(OFFSET_ROIS) && defined(SCALE_ROIS) // Check for compile time constants
31
32/** Performs a roi align on a single output pixel.
33 *
34 * @param[in] input          Pointer to input Tensor3D struct.
35 * @param[in] region_start_x Start x index projected onto the input tensor.
36 * @param[in] region_end_x   End x index projected onto the input tensor.
37 * @param[in] region_start_y Start y index projected onto the input tensor.
38 * @param[in] region_end_y   End y index projected onto the input tensor.
39 * @param[in] pz             z index of the input tensor.
40 *
41 * @return An average pooled value from the region specified in the input tensor.
42 */
43inline DATA_TYPE roi_align_1x1(const Tensor3D *input, float region_start_x,
44                               float bin_size_x,
45                               float grid_size_x,
46                               float region_end_x,
47                               float region_start_y,
48                               float bin_size_y,
49                               float grid_size_y,
50                               float region_end_y,
51                               int   pz)
52{
53    // Iterate through the pooling region
54    float sum = 0;
55    for(int iy = 0; iy < grid_size_y; ++iy)
56    {
57        for(int ix = 0; ix < grid_size_x; ++ix)
58        {
59            // Align the window in the middle of every bin
60            const float y = region_start_y + (iy + 0.5f) * bin_size_y / (float)grid_size_y;
61            const float x = region_start_x + (ix + 0.5f) * bin_size_x / (float)grid_size_x;
62
63            // Interpolation in the unit square
64            const int y_low  = (int)y;
65            const int x_low  = (int)x;
66            const int y_high = y_low + 1;
67            const int x_high = x_low + 1;
68
69            const float ly = y - y_low;
70            const float lx = x - x_low;
71            const float hy = 1.f - ly;
72            const float hx = 1.f - lx;
73
74            const float w1 = hy * hx;
75            const float w2 = hy * lx;
76            const float w3 = ly * hx;
77            const float w4 = ly * lx;
78#if defined(NHWC)
79            const DATA_TYPE data1 = *(__global DATA_TYPE *)tensor3D_offset(input, pz, x_low, y_low);
80            const DATA_TYPE data2 = *(__global DATA_TYPE *)tensor3D_offset(input, pz, x_high, y_low);
81            const DATA_TYPE data3 = *(__global DATA_TYPE *)tensor3D_offset(input, pz, x_low, y_high);
82            const DATA_TYPE data4 = *(__global DATA_TYPE *)tensor3D_offset(input, pz, x_high, y_high);
83#else  // !defined(NHWC)
84            const DATA_TYPE data1                 = *(__global DATA_TYPE *)tensor3D_offset(input, x_low, y_low, pz);
85            const DATA_TYPE data2                 = *(__global DATA_TYPE *)tensor3D_offset(input, x_high, y_low, pz);
86            const DATA_TYPE data3                 = *(__global DATA_TYPE *)tensor3D_offset(input, x_low, y_high, pz);
87            const DATA_TYPE data4                 = *(__global DATA_TYPE *)tensor3D_offset(input, x_high, y_high, pz);
88#endif // defined(NHWC)
89
90            const float data1_f32 = DEQUANTIZE(data1, OFFSET_IN, SCALE_IN, DATA_TYPE, 1);
91            const float data2_f32 = DEQUANTIZE(data2, OFFSET_IN, SCALE_IN, DATA_TYPE, 1);
92            const float data3_f32 = DEQUANTIZE(data3, OFFSET_IN, SCALE_IN, DATA_TYPE, 1);
93            const float data4_f32 = DEQUANTIZE(data4, OFFSET_IN, SCALE_IN, DATA_TYPE, 1);
94            sum += w1 * data1_f32 + w2 * data2_f32 + w3 * data3_f32 + w4 * data4_f32;
95        }
96    }
97
98    const float res_f32 = sum / (grid_size_x * grid_size_y);
99    return QUANTIZE(res_f32, OFFSET_OUT, SCALE_OUT, DATA_TYPE, 1);
100}
101
102/** Performs a roi align function.
103 *
104 * @note Datatype must be passed using -DDATA_TYPE e.g. -DDATA_TYPE=uchar
105 * @note Datasize must be passed using -DDATA_SIZE e.g. -DDATA_SIZE=32;
106 * @note Input dimensions must be passed using -DMAX_DIM_X, -DMAX_DIM_Y and -DMAX_DIM_Z;
107 * @note Pooled region dimensions must be passed using -DPOOLED_DIM_X and -DPOOLED_DIM_Y;
108 * @note Spatial scale must be passed using -DSPATIAL_SCALE;
109 * @note Sampling ratio (i.e., the number of samples in each bin) may be passed using -DSAMPLING_RATIO. If not defined each roi
110 *       will have a default sampling ratio of roi_dims/pooling_dims
111 *
112 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: QASYMM8
113 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
114 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
115 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
116 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
117 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
118 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
119 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the pooled region of the source tensor as specifed by ROI
120 * @param[in]  rois_ptr                             Pointer to the ROIs tensor. Layout: { batch_index, x1, y1, x2, y2 }.
121 *                                                  Supported data types: QASYMM16 with 0.125f scale and 0 offset
122 * @param[in]  rois_stride_x                        Stride of the ROIs tensor in X dimension (in bytes)
123 * @param[in]  rois_step_x                          Step of the ROIs tensor in X dimension (in bytes)
124 * @param[in]  rois_stride_y                        Stride of the ROIs tensor in Y dimension (in bytes)
125 * @param[in]  rois_step_y                          Step of the ROIs tensor in Y dimension (in bytes)
126 * @param[in]  rois_offset_first_element_in_bytes   The offset of the first element in the ROIs tensor
127 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: Supported data types: same as @p input_ptr
128 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
129 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
130 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
131 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
132 * @param[in]  output_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
133 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
134 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
135 * @param[in]  input_stride_w                       Stride of the source tensor in W dimension (in bytes)
136 * @param[in]  output_stride_w                      Stride of the destination tensor in W dimension (in bytes)
137 */
138__kernel void roi_align_layer_quantized(
139    TENSOR3D_DECLARATION(input),
140    IMAGE_DECLARATION(rois),
141    TENSOR3D_DECLARATION(output),
142    unsigned int input_stride_w, unsigned int output_stride_w)
143{
144    // Get pixels pointer
145    Tensor3D input  = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(input);
146    Image    rois   = CONVERT_TO_IMAGE_STRUCT_NO_STEP(rois);
147    Tensor3D output = CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(output);
148
149#if defined(NHWC)
150    const int px = get_global_id(1);
151    const int py = get_global_id(2);
152    const int pw = get_global_id(0);
153#else  // !defined(NHWC)
154    const int                                  px = get_global_id(0);
155    const int                                  py = get_global_id(1);
156    const int                                  pw = get_global_id(2);
157#endif // defined(NHWC)
158
159    // Load roi parameters
160    // roi is laid out as follows { batch_index, x1, y1, x2, y2 }
161    const ushort roi_batch = *((__global ushort *)offset(&rois, 0, pw));
162    float4 roi             = DEQUANTIZE(vload4(0, (__global ushort *)offset(&rois, 1, pw)), OFFSET_ROIS, SCALE_ROIS, ushort, 4);
163    float2 roi_anchor      = roi.s01 * convert_float(SPATIAL_SCALE);
164    float2 roi_dims        = fmax((roi.s23 - roi.s01) * convert_float(SPATIAL_SCALE), 1.f);
165
166    // Calculate pooled region start and end
167    float2 spatial_indx     = (float2)(px, py);
168    float2 pooled_dims      = (float2)(POOLED_DIM_X, POOLED_DIM_Y);
169    float2 max_spatial_dims = (float2)(MAX_DIM_X, MAX_DIM_Y);
170
171    float2 bin_size     = (float2)((roi_dims.s0 / (float)POOLED_DIM_X), (roi_dims.s1 / (float)POOLED_DIM_Y));
172    float2 region_start = spatial_indx * bin_size + roi_anchor;
173    float2 region_end   = (spatial_indx + 1) * bin_size + roi_anchor;
174
175    region_start = clamp(region_start, 0, max_spatial_dims);
176    region_end   = clamp(region_end, 0, max_spatial_dims);
177
178#if defined(SAMPLING_RATIO)
179    float2 roi_bin_grid = SAMPLING_RATIO;
180#else  // !defined(SAMPLING_RATIO)
181    // Note that we subtract EPS_GRID before ceiling. This is to avoid situations where 1.000001 gets ceiled to 2.
182    float2       roi_bin_grid           = ceil(bin_size - EPS_GRID);
183#endif // defined(SAMPLING_RATIO)
184
185    // Move input and output pointer across the fourth dimension
186    input.ptr += roi_batch * input_stride_w;
187    output.ptr += pw * output_stride_w;
188    for(int pz = 0; pz < MAX_DIM_Z; ++pz)
189    {
190#if defined(NHWC)
191        __global DATA_TYPE *_output_ptr = (__global DATA_TYPE *)tensor3D_offset(&output, pz, px, py);
192#else  // !defined(NHWC)
193        __global DATA_TYPE *_output_ptr = (__global DATA_TYPE *)tensor3D_offset(&output, px, py, pz);
194#endif // defined(NHWC)
195        *_output_ptr = (__global DATA_TYPE)roi_align_1x1(&input,
196                                                         region_start.x,
197                                                         bin_size.x,
198                                                         roi_bin_grid.x,
199                                                         region_end.x,
200                                                         region_start.y,
201                                                         bin_size.y,
202                                                         roi_bin_grid.y,
203                                                         region_end.y, pz);
204    }
205}
206#endif // Check for compile time constants
207