xref: /aosp_15_r20/external/ComputeLibrary/src/core/CL/cl_kernels/common/l2_normalize.cl (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1/*
2 * Copyright (c) 2016-2021 Arm Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "helpers.h"
25
26#if defined(VEC_SIZE_X) && defined(VEC_SIZE_LEFTOVER_X)
27/** This kernel performs l2 normalization on x-axis
28 *
29 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
30 * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE_X=size. e.g. -DVEC_SIZE_X=16
31 * @note The leftover size in the X dimension shoud be given as preprocessor argument using -DVEC_SIZE_LEFTOVER_X is; x_dimension % VEC_SIZE_X. e.g. -DVEC_SIZE_LEFTOVER_X=1
32 *
33 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F16/F32
34 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
35 * @param[in]  input_step_x                         input_stride_x * number of elements along X processed per workitem(in bytes)
36 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
37 * @param[in]  input_step_y                         input_stride_y * number of elements along X processed per workitem(in bytes)
38 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
39 * @param[in]  sum_ptr                              Pointer to the source tensor. Supported data types: F16/F32
40 * @param[in]  sum_stride_x                         Stride of the source tensor in X dimension (in bytes)
41 * @param[in]  sum_step_x                           sum_stride_x * number of elements along X processed per workitem(in bytes)
42 * @param[in]  sum_stride_y                         Stride of the source tensor in Y dimension (in bytes)
43 * @param[in]  sum_step_y                           sum_stride_y * number of elements along Y processed per workitem(in bytes)
44 * @param[in]  sum_offset_first_element_in_bytes    The offset of the first element in the source tensor
45 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
46 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
47 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
48 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
49 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
50 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
51 * @param[in]  epsilon                              Epsilon value
52 */
53__kernel void l2_normalize_x(
54    IMAGE_DECLARATION(input),
55    IMAGE_DECLARATION(sum),
56    IMAGE_DECLARATION(output),
57    DATA_TYPE epsilon)
58{
59    // Offset computation
60    const uint x_offs = max((int)(get_global_id(0) * VEC_SIZE_X - (VEC_SIZE_X - VEC_SIZE_LEFTOVER_X) % VEC_SIZE_X), 0);
61
62    // Address computation
63    __global uchar *input_addr  = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y;
64    __global uchar *sum_addr    = sum_ptr + sum_offset_first_element_in_bytes + get_global_id(1) * sum_stride_y;
65    __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * output_stride_y;
66
67    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
68    in = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)input_addr);
69
70    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
71    normalize_value = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X))rsqrt(fmax(*((__global DATA_TYPE *)sum_addr), epsilon));
72
73    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
74    data0 = in * normalize_value;
75
76    STORE_VECTOR_SELECT(data, DATA_TYPE, output_addr, VEC_SIZE_X, VEC_SIZE_LEFTOVER_X, VEC_SIZE_LEFTOVER_X != 0 && get_global_id(0) == 0);
77}
78
79/** This kernel performs l2 normalization on y-axis.
80 *
81 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
82 * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE_X=size. e.g. -DVEC_SIZE_X=16
83 * @note The leftover size in the X dimension shoud be given as preprocessor argument using -DVEC_SIZE_LEFTOVER_X is; x_dimension % VEC_SIZE_X. e.g. -DVEC_SIZE_LEFTOVER_X=1
84 *
85 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F16/F32
86 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
87 * @param[in]  input_step_x                         input_stride_x * number of elements along Y processed per workitem(in bytes)
88 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
89 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
90 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
91 * @param[in]  sum_ptr                              Pointer to the source tensor. Supported data types: F16/F32
92 * @param[in]  sum_stride_x                         Stride of the source tensor in X dimension (in bytes)
93 * @param[in]  sum_step_x                           sum_stride_x * number of elements along X processed per workitem(in bytes)
94 * @param[in]  sum_stride_y                         Stride of the source tensor in Y dimension (in bytes)
95 * @param[in]  sum_step_y                           sum_stride_y * number of elements along Y processed per workitem(in bytes)
96 * @param[in]  sum_offset_first_element_in_bytes    The offset of the first element in the source tensor
97 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
98 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
99 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
100 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
101 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
102 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
103 * @param[in]  epsilon                              Epsilon value
104 */
105__kernel void l2_normalize_y(
106    IMAGE_DECLARATION(input),
107    IMAGE_DECLARATION(sum),
108    IMAGE_DECLARATION(output),
109    DATA_TYPE epsilon)
110{
111    // Offset computation
112    const uint x_offs = max((int)(get_global_id(0) * VEC_SIZE_X - (VEC_SIZE_X - VEC_SIZE_LEFTOVER_X) % VEC_SIZE_X), 0);
113
114    // Address computation
115    __global uchar *input_addr  = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y;
116    __global uchar *sum_addr    = sum_ptr + sum_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE);
117    __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * output_stride_y;
118
119    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
120    in = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)input_addr);
121    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
122    sums = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)sum_addr);
123
124    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
125    normalize_value = (VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X))rsqrt(fmax(sums, epsilon));
126
127    const VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
128    data0 = in * normalize_value;
129
130    STORE_VECTOR_SELECT(data, DATA_TYPE, output_addr, VEC_SIZE_X, VEC_SIZE_LEFTOVER_X, VEC_SIZE_LEFTOVER_X != 0 && get_global_id(0) == 0);
131}
132
133/** This kernel performs l2 normalization on z-axis.
134 *
135 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float
136 * @note Vector size should be given as a preprocessor argument using -DVEC_SIZE_X=size. e.g. -DVEC_SIZE_X=16
137 * @note The leftover size in the X dimension shoud be given as preprocessor argument using -DVEC_SIZE_LEFTOVER_X is; x_dimension % VEC_SIZE_X. e.g. -DVEC_SIZE_LEFTOVER_X=1
138 *
139 * @param[in]  input_ptr                            Pointer to the source tensor. Supported data types: F16/F32
140 * @param[in]  input_stride_x                       Stride of the source tensor in X dimension (in bytes)
141 * @param[in]  input_step_x                         input_stride_x * number of elements along Y processed per workitem(in bytes)
142 * @param[in]  input_stride_y                       Stride of the source tensor in Y dimension (in bytes)
143 * @param[in]  input_step_y                         input_stride_y * number of elements along Y processed per workitem(in bytes)
144 * @param[in]  input_stride_z                       Stride of the source tensor in Z dimension (in bytes)
145 * @param[in]  input_step_z                         input_stride_z * number of elements along Z processed per workitem(in bytes)
146 * @param[in]  input_offset_first_element_in_bytes  The offset of the first element in the source tensor
147 * @param[in]  sum_ptr                              Pointer to the source tensor. Supported data types: F16/F32
148 * @param[in]  sum_stride_x                         Stride of the source tensor in X dimension (in bytes)
149 * @param[in]  sum_step_x                           sum_stride_x * number of elements along X processed per workitem(in bytes)
150 * @param[in]  sum_stride_y                         Stride of the source tensor in Y dimension (in bytes)
151 * @param[in]  sum_step_y                           sum_stride_y * number of elements along Y processed per workitem(in bytes)
152 * @param[in]  sum_stride_z                         Stride of the source tensor in Z dimension (in bytes)
153 * @param[in]  sum_step_z                           sum_stride_z * number of elements along Z processed per workitem(in bytes)
154 * @param[in]  sum_offset_first_element_in_bytes    The offset of the first element in the source tensor
155 * @param[out] output_ptr                           Pointer to the destination tensor. Supported data types: same as @p input_ptr
156 * @param[in]  output_stride_x                      Stride of the destination tensor in X dimension (in bytes)
157 * @param[in]  output_step_x                        output_stride_x * number of elements along X processed per workitem(in bytes)
158 * @param[in]  output_stride_y                      Stride of the destination tensor in Y dimension (in bytes)
159 * @param[in]  output_step_y                        output_stride_y * number of elements along Y processed per workitem(in bytes)
160 * @param[in]  output_stride_z                      Stride of the destination tensor in Z dimension (in bytes)
161 * @param[in]  output_step_z                        output_stride_z * number of elements along Z processed per workitem(in bytes)
162 * @param[in]  output_offset_first_element_in_bytes The offset of the first element in the destination tensor
163 * @param[in]  epsilon                              Epsilon value
164 */
165__kernel void l2_normalize_z(
166    TENSOR3D_DECLARATION(input),
167    TENSOR3D_DECLARATION(sum),
168    TENSOR3D_DECLARATION(output),
169    DATA_TYPE epsilon)
170{
171    // Offset computation
172    const uint x_offs = max((int)(get_global_id(0) * VEC_SIZE_X - (VEC_SIZE_X - VEC_SIZE_LEFTOVER_X) % VEC_SIZE_X), 0);
173
174    // Address computation
175    __global uchar *input_addr  = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y + get_global_id(2) * input_stride_z;
176    __global uchar *sum_addr    = sum_ptr + sum_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * sum_stride_y;
177    __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * output_stride_y + get_global_id(2) * output_stride_z;
178
179    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
180    in = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)input_addr);
181    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
182    sums = VLOAD(VEC_SIZE_X)(0, (__global DATA_TYPE *)sum_addr);
183
184    VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X)
185    data0 = in * ((VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE_X))(rsqrt(fmax(sums, epsilon))));
186
187    STORE_VECTOR_SELECT(data, DATA_TYPE, output_addr, VEC_SIZE_X, VEC_SIZE_LEFTOVER_X, VEC_SIZE_LEFTOVER_X != 0 && get_global_id(0) == 0);
188}
189#endif // defined(VEC_SIZE_X) && defined(VEC_SIZE_LEFTOVER_X)