1/* 2 * Copyright (c) 2019-2021 Arm Limited. 3 * 4 * SPDX-License-Identifier: MIT 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to 8 * deal in the Software without restriction, including without limitation the 9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 10 * sell copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in all 14 * copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24#include "helpers.h" 25 26#if defined(VEC_SIZE) && defined(DATA_TYPE) && defined(DATA_TYPE_OUTPUT) 27 28#define VEC_TYPE_IN VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 29#define VEC_TYPE_OUT VEC_DATA_TYPE(DATA_TYPE_OUTPUT, VEC_SIZE) 30#define VEC_SELECT_IN SELECT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 31#define VEC_SIGNED_INT_IN SIGNED_INT_VEC_DATA_TYPE(DATA_TYPE, VEC_SIZE) 32 33#if defined(FLOAT_DATA_TYPE) 34#define ISGREATER(x, y) (VEC_SELECT_IN) isgreater(x, y) 35#define ISLESS(x, y) (VEC_SELECT_IN) isless(x, y) 36#else // !FLOAT_DATA_TYPE 37#if defined(WIDTH) 38#define ISGREATER(x, y) (x > y) ? 1 : 0 39#define ISLESS(x, y) (x < y) ? 1 : 0 40#else // !defined(WIDTH) 41#define ISGREATER(x, y) select((VEC_SIGNED_INT_IN)0, (VEC_SIGNED_INT_IN)-1, (VEC_SIGNED_INT_IN)(x > y)) 42#define ISLESS(x, y) select((VEC_SIGNED_INT_IN)0, (VEC_SIGNED_INT_IN)-1, (VEC_SIGNED_INT_IN)(x < y)) 43#endif // defined(WIDTH) 44#endif // defined(FLOAT_DATA_TYPE) 45 46#if defined(ARG_MAX) 47#define CONDITION_TO_USE(x, y) ISGREATER(x, y) 48#elif defined(ARG_MIN) 49#define CONDITION_TO_USE(x, y) ISLESS(x, y) 50#else // !(defined(ARG_MAX) || defined(ARG_MIN)) 51#error "Unsupported reduction operation!" 52#endif // defined(ARG_MAX) 53 54#if defined(WIDTH) 55#if defined(ARG_MIN) 56#if defined(PREV_OUTPUT) 57/** Find index minimum value of a vector 58 * 59 * @param[in] input Pointer to the first value. 60 * 61 * @return index of the vector. 62 */ 63inline DATA_TYPE_OUTPUT arg_idx_min_prev_out(__global const DATA_TYPE *input, __global const DATA_TYPE_OUTPUT *prev_res, const int x_idx) 64{ 65 int end_elem = (x_idx + 1) * 16; 66 if(end_elem > WIDTH) 67 { 68 end_elem = WIDTH - x_idx * 16; 69 } 70 DATA_TYPE_OUTPUT res = prev_res[0]; 71 for(int x_v = 1; x_v < end_elem; ++x_v) 72 { 73 res = select(res, prev_res[x_v], *(input + prev_res[x_v]) < * (input + res)); 74 } 75 return res; 76} 77#else // !defined(PREV_OUTPUT) 78/** Find index minimum value of a vector 79 * 80 * @param[in] input Pointer to the first value. 81 * 82 * @return index of the vector. 83 */ 84inline DATA_TYPE_OUTPUT arg_idx_min(__global const DATA_TYPE *input, const int x_idx) 85{ 86#if WIDTH < 16 87 DATA_TYPE_OUTPUT res = 0; 88 for(DATA_TYPE_OUTPUT x_v = res + 1; x_v < WIDTH; ++x_v) 89 { 90 res = select(res, x_v, *(input + x_v) < * (input + res)); 91 } 92 return res; 93#else // WIDTH >= 16 94 int x_elem = x_idx * 16; 95 const int x_goback = select(0, 16 - WIDTH % 16, x_elem + 16 > WIDTH); 96 x_elem -= x_goback; 97 98 VEC_DATA_TYPE(DATA_TYPE, 16) 99 in = vload16(0, input - x_goback); 100 VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 16) 101 res = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; 102 103 SIGNED_INT_VEC_DATA_TYPE(DATA_TYPE, 8) 104 idx_sel = (in.s01234567 <= in.s89abcdef); 105 in.s01234567 = select(in.s89abcdef, in.s01234567, idx_sel); 106 res.s01234567 = select(res.s89abcdef, res.s01234567, CONVERT(idx_sel, int8)); 107 108 idx_sel.s0123 = (in.s0123 < in.s4567) || (in.s0123 == in.s4567 && CONVERT((res.s0123 < res.s4567), SIGNED_INT_VEC_DATA_TYPE(DATA_TYPE, 4))); 109 in.s0123 = select(in.s4567, in.s0123, idx_sel.s0123); 110 res.s0123 = select(res.s4567, res.s0123, CONVERT(idx_sel.s0123, int4)); 111 112 idx_sel.s01 = (in.s01 < in.s23) || (in.s01 == in.s23 && CONVERT((res.s01 < res.s23), SIGNED_INT_VEC_DATA_TYPE(DATA_TYPE, 2))); 113 in.s01 = select(in.s23, in.s01, idx_sel.s01); 114 res.s01 = select(res.s23, res.s01, CONVERT(idx_sel.s01, int2)); 115 116 idx_sel.s0 = (in.s0 < in.s1) || (in.s0 == in.s1 && CONVERT((res.s0 < res.s1), SIGNED_INT_DATA_TYPE(DATA_TYPE))); 117 res.s0 = select(res.s1, res.s0, CONVERT(idx_sel.s0, int)); 118 119 return res.s0 + x_elem; 120#endif // WIDTH < 16 121} 122#endif // defined(PREV_OUTPUT) 123#endif // defined(ARG_MIN) 124#if defined(ARG_MAX) 125#if defined(PREV_OUTPUT) 126/** Find index maximum value of a vector 127 * 128 * @param[in] input Pointer to the first value. 129 * 130 * @return index of the vector. 131 */ 132inline DATA_TYPE_OUTPUT arg_idx_max_prev_out(__global const DATA_TYPE *input, __global const DATA_TYPE_OUTPUT *prev_res, const int x_idx) 133{ 134 int end_elem = (x_idx + 1) * 16; 135 if(end_elem > WIDTH) 136 { 137 end_elem = WIDTH - x_idx * 16; 138 } 139 DATA_TYPE_OUTPUT res = prev_res[0]; 140 for(int x_v = 1; x_v < end_elem; ++x_v) 141 { 142 res = select(res, prev_res[x_v], *(input + prev_res[x_v]) > *(input + res)); 143 } 144 return res; 145} 146#else // !defined(PREV_OUTPUT) 147/** Find index maximum value of a vector 148 * 149 * @param[in] input Pointer to the first value. 150 * 151 * @return index of the vector. 152 */ 153inline DATA_TYPE_OUTPUT arg_idx_max(__global const DATA_TYPE *input, const int x_idx) 154{ 155#if WIDTH < 16 156 DATA_TYPE_OUTPUT res = 0; 157 for(DATA_TYPE_OUTPUT x_v = res + 1; x_v < WIDTH; ++x_v) 158 { 159 res = select(res, x_v, *(input + x_v) > *(input + res)); 160 } 161 return res; 162#else // WIDTH >= 16 163 int x_elem = x_idx * 16; 164 const int x_goback = select(0, 16 - WIDTH % 16, x_elem + 16 > WIDTH); 165 x_elem -= x_goback; 166 167 VEC_DATA_TYPE(DATA_TYPE, 16) 168 in = vload16(0, input - x_goback); 169 VEC_DATA_TYPE(DATA_TYPE_OUTPUT, 16) 170 res = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 }; 171 172 SIGNED_INT_VEC_DATA_TYPE(DATA_TYPE, 8) 173 idx_sel = (in.s01234567 >= in.s89abcdef); 174 in.s01234567 = select(in.s89abcdef, in.s01234567, idx_sel); 175 res.s01234567 = select(res.s89abcdef, res.s01234567, CONVERT(idx_sel, int8)); 176 177 idx_sel.s0123 = (in.s0123 > in.s4567) || (in.s0123 == in.s4567 && CONVERT((res.s0123 < res.s4567), SIGNED_INT_VEC_DATA_TYPE(DATA_TYPE, 4))); 178 in.s0123 = select(in.s4567, in.s0123, idx_sel.s0123); 179 res.s0123 = select(res.s4567, res.s0123, CONVERT(idx_sel.s0123, int4)); 180 181 idx_sel.s01 = (in.s01 > in.s23) || (in.s01 == in.s23 && CONVERT((res.s01 < res.s23), SIGNED_INT_VEC_DATA_TYPE(DATA_TYPE, 2))); 182 in.s01 = select(in.s23, in.s01, idx_sel.s01); 183 res.s01 = select(res.s23, res.s01, CONVERT(idx_sel.s01, int2)); 184 185 idx_sel.s0 = (in.s0 > in.s1) || (in.s0 == in.s1 && CONVERT((res.s0 < res.s1), SIGNED_INT_DATA_TYPE(DATA_TYPE))); 186 res.s0 = select(res.s1, res.s0, CONVERT(idx_sel.s0, int)); 187 188 return res.s0 + x_elem; 189#endif // WIDTH < 16 190} 191#endif // defined(PREV_OUTPUT) 192#endif // defined(ARG_MAX) 193 194/** This kernel performs parallel reduction given an operation on x-axis. 195 * 196 * @note In case the results of previous stages are passed the flag PREV_OUTPUT has to be passed using -DPREV_OUTPUT 197 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float 198 * @note The data type of the output must be passed at compile time using -DDATA_TYPE_OUTPUT: e.g. -DDATA_TYPE_OUTPUT=uint 199 * @note The arg_max flag must be passed at compile time using -DARG_MAX if we want to compute the ArgMax 200 * @note The arg_min flag must be passed at compile time using -DARG_MIN if we want to compute the ArgMin 201 * 202 * @param[in] src_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32 203 * @param[in] src_stride_x Stride of the source tensor in X dimension (in bytes) 204 * @param[in] src_step_x src_stride_x * number of elements along X processed per workitem(in bytes) 205 * @param[in] src_stride_y Stride of the source tensor in Y dimension (in bytes) 206 * @param[in] src_step_y src_stride_y * number of elements along Y processed per workitem(in bytes) 207 * @param[in] src_offset_first_element_in_bytes The offset of the first element in the source tensor 208 * @param[in] prev_res_ptr (Optional) Pointer to previous results tensor. Supported data types: U32/S32 209 * @param[in] prev_res_stride_x (Optional) Stride of the output tensor in X dimension (in bytes) 210 * @param[in] prev_res_step_x (Optional) prev_res_stride_x * number of elements along X processed per workitem(in bytes) 211 * @param[in] prev_res_stride_y (Optional) Stride of the output tensor in Y dimension (in bytes) 212 * @param[in] prev_res_step_y (Optional) prev_res_stride_y * number of elements along Y processed per workitem(in bytes) 213 * @param[in] prev_res_offset_first_element_in_bytes (Optional) The offset of the first element in the previous results tensor 214 * @param[in] partial_res_ptr The local buffer to hold partial result values. Supported data types: U32/S32 215 * @param[in] partial_res_stride_x Stride of the output tensor in X dimension (in bytes) 216 * @param[in] partial_res_step_x partial_res_stride_x * number of elements along X processed per workitem(in bytes) 217 * @param[in] partial_res_stride_y Stride of the output tensor in Y dimension (in bytes) 218 * @param[in] partial_res_step_y partial_res_stride_y * number of elements along Y processed per workitem(in bytes) 219 * @param[in] partial_res_offset_first_element_in_bytes The offset of the first element in the source tensor 220 * @param[in] local_results Local buffer for storing the partial result 221 */ 222__kernel void arg_min_max_x( 223 IMAGE_DECLARATION(src), 224#if defined(PREV_OUTPUT) 225 IMAGE_DECLARATION(prev_res), 226#endif // defined(PREV_OUTPUT) 227 IMAGE_DECLARATION(partial_res), 228 __local DATA_TYPE_OUTPUT *local_results) 229{ 230#if defined(PREV_OUTPUT) 231 Image src = CONVERT_TO_IMAGE_STRUCT_NO_STEP(src); 232 Image prev_res = CONVERT_TO_IMAGE_STRUCT(prev_res); 233#else // !defined(PREV_OUTPUT) 234 Image src = CONVERT_TO_IMAGE_STRUCT(src); 235#endif // defined(PREV_OUTPUT) 236 Image partial_res = CONVERT_TO_IMAGE_STRUCT(partial_res); 237 238 unsigned int lsize = get_local_size(0); 239 unsigned int lid = get_local_id(0); 240 241 const uint x_idx = get_global_id(0); 242 const uint y_idx = get_global_id(1); 243 const __global DATA_TYPE *src_in_row = (const __global DATA_TYPE *)(src_ptr + src_offset_first_element_in_bytes + y_idx * src_step_y); 244 245 for(unsigned int y = 0; y < get_local_size(1); ++y) 246 { 247#if defined(ARG_MAX) 248#if defined(PREV_OUTPUT) 249 local_results[lid] = arg_idx_max_prev_out(src_in_row, (__global DATA_TYPE_OUTPUT *)offset(&prev_res, 0, y), x_idx); 250#else // !defined(PREV_OUTPUT) 251 local_results[lid] = arg_idx_max((__global DATA_TYPE *)offset(&src, 0, y), x_idx); 252#endif // defined(PREV_OUTPUT) 253#else // defined(ARG_MIN) 254#if defined(PREV_OUTPUT) 255 local_results[lid] = arg_idx_min_prev_out(src_in_row, (__global DATA_TYPE_OUTPUT *)offset(&prev_res, 0, y), x_idx); 256#else // !defined(PREV_OUTPUT) 257 local_results[lid] = arg_idx_min((__global DATA_TYPE *)offset(&src, 0, y), x_idx); 258#endif // defined(PREV_OUTPUT) 259#endif // defined(ARG_MAX) || defined(ARG_MIN) 260 261 barrier(CLK_LOCAL_MEM_FENCE); 262 263 // Looking for the next highest power of 2 (maximum value of lsize is 8) 264 unsigned int middle = lsize - 1; 265 middle |= middle >> 1; 266 middle |= middle >> 2; 267 middle += 1; 268 // Perform parallel reduction 269 for(unsigned int i = middle; i > 0; i >>= 1) 270 { 271 if(lid < i && lid + i < lsize) 272 { 273 DATA_TYPE tmp0 = *(src_in_row + local_results[lid]); 274 DATA_TYPE tmp1 = *(src_in_row + local_results[lid + i]); 275#if defined(ARG_MAX) 276 local_results[lid] = select( 277 local_results[lid], 278 local_results[lid + i], 279 ((tmp0 == tmp1) && (local_results[lid + i] < local_results[lid])) || (tmp0 < tmp1)); 280#else // defined(ARG_MIN) 281 local_results[lid] = select( 282 local_results[lid], 283 local_results[lid + i], 284 ((tmp0 == tmp1) && (local_results[lid + i] < local_results[lid])) || (tmp0 > tmp1)); 285#endif // defined(ARG_MAX) || defined(ARG_MIN) 286 } 287 barrier(CLK_LOCAL_MEM_FENCE); 288 } 289 290 if(lid == 0) 291 { 292 ((__global DATA_TYPE_OUTPUT *)offset(&partial_res, get_group_id(0), y))[0] = local_results[0]; 293 } 294 } 295} 296#endif // defined(WIDTH) 297 298#if defined(HEIGHT) 299/** This kernel performs reduction on y-axis. 300 * 301 * @note The input data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float 302 * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE 303 * @note The data type of the output must be passed at compile time using -DDATA_TYPE_OUTPUT: e.g. -DDATA_TYPE_OUTPUT=uint 304 * @note The height size must be passed at compile time using -DHEIGHT e.g. -DHEIGHT=128 305 * 306 * @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32 307 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) 308 * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) 309 * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) 310 * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) 311 * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor 312 * @param[in] output_ptr The local buffer to hold sumed values. Supported data types: U32/S32 313 * @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes) 314 * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) 315 * @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes) 316 * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) 317 * @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor 318 */ 319__kernel void arg_min_max_y( 320 IMAGE_DECLARATION(input), 321 IMAGE_DECLARATION(output)) 322{ 323 const int x_offs = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0); 324 325 __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y; 326 __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE_OUTPUT) + get_global_id(1) * output_stride_y; 327 328 VEC_TYPE_IN res = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr), VEC_TYPE_IN); 329 330 VEC_TYPE_OUT indx0 = 0; 331 for(DATA_TYPE_OUTPUT y = 1; y < HEIGHT; ++y) 332 { 333 VEC_TYPE_IN in = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + y * input_stride_y)), VEC_TYPE_IN); 334 335 VEC_TYPE_OUT cond_conv = CONVERT(CONDITION_TO_USE(in, res), VEC_TYPE_OUT); 336 indx0 = select(indx0, (VEC_TYPE_OUT)y, cond_conv); 337 res = select(res, in, CONDITION_TO_USE(in, res)); 338 } 339 340 // Store result 341 STORE_VECTOR_SELECT(indx, DATA_TYPE_OUTPUT, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0); 342} 343#endif // defined(HEIGHT) 344 345#if defined(DEPTH) && !defined(BATCH) 346/** This kernel performs reduction on z-axis. 347 * 348 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float 349 * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE 350 * @note The depth size must be passed at compile time using -DDEPTH e.g. -DDEPTH=128 351 * 352 * @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32 353 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) 354 * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) 355 * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) 356 * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) 357 * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) 358 * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) 359 * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor 360 * @param[in] output_ptr The local buffer to hold sumed values. Supported data types: U32/S32 361 * @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes) 362 * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) 363 * @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes) 364 * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) 365 * @param[in] output_stride_z Stride of the output tensor in Z dimension (in bytes) 366 * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) 367 * @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor 368 */ 369__kernel void arg_min_max_z( 370 TENSOR3D_DECLARATION(input), 371 TENSOR3D_DECLARATION(output)) 372{ 373 const int x_offs = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0); 374 375 __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y + get_global_id(2) * input_stride_z; 376 __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE_OUTPUT) + get_global_id(1) * output_stride_y + get_global_id(2) * output_stride_z; 377 378 VEC_TYPE_IN res = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr), VEC_TYPE_IN); 379 380 VEC_TYPE_OUT indx0 = 0; 381 for(DATA_TYPE_OUTPUT z = 1; z < DEPTH; ++z) 382 { 383 VEC_TYPE_IN in = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + z * input_stride_z)), VEC_TYPE_IN); 384 385 VEC_TYPE_OUT cond_conv = CONVERT(CONDITION_TO_USE(in, res), VEC_TYPE_OUT); 386 indx0 = select(indx0, (VEC_TYPE_OUT)z, cond_conv); 387 res = select(res, in, CONDITION_TO_USE(in, res)); 388 } 389 390 // Store result 391 STORE_VECTOR_SELECT(indx, DATA_TYPE_OUTPUT, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0); 392} 393#endif /* defined(DEPTH) && !defined(BATCH) */ 394 395#if defined(BATCH) && defined(DEPTH) 396/** This kernel performs reduction on w-axis. 397 * 398 * @note The data type must be passed at compile time using -DDATA_TYPE: e.g. -DDATA_TYPE=float 399 * @note Leftover vector size has to be passed at compile time using -DVEC_SIZE_LEFTOVER. e.g. -DVEC_SIZE_LEFTOVER=3. It is defined as the remainder between the input's first dimension and VEC_SIZE 400 * @note The batch size must be passed at compile time using -DBATCH e.g. -DBATCH=128 401 * @note The depth size must be passed at compile time using -DBATCH e.g. -DDEPTH=128 402 * 403 * @param[in] input_ptr Pointer to the source tensor. Supported data types: QASYMM8/QASYMM8_SIGNED/S32/F16/F32 404 * @param[in] input_stride_x Stride of the source tensor in X dimension (in bytes) 405 * @param[in] input_step_x input_stride_x * number of elements along X processed per workitem(in bytes) 406 * @param[in] input_stride_y Stride of the source tensor in Y dimension (in bytes) 407 * @param[in] input_step_y input_stride_y * number of elements along Y processed per workitem(in bytes) 408 * @param[in] input_stride_z Stride of the source tensor in Z dimension (in bytes) 409 * @param[in] input_step_z input_stride_z * number of elements along Z processed per workitem(in bytes) 410 * @param[in] input_stride_w Stride of the source tensor in W dimension (in bytes) 411 * @param[in] input_step_w input_stride_w * number of elements along W processed per workitem(in bytes) 412 * @param[in] input_offset_first_element_in_bytes The offset of the first element in the source tensor 413 * @param[in] output_ptr The local buffer to hold sumed values. Supported data types: U32/S32 414 * @param[in] output_stride_x Stride of the output tensor in X dimension (in bytes) 415 * @param[in] output_step_x output_stride_x * number of elements along X processed per workitem(in bytes) 416 * @param[in] output_stride_y Stride of the output tensor in Y dimension (in bytes) 417 * @param[in] output_step_y output_stride_y * number of elements along Y processed per workitem(in bytes) 418 * @param[in] output_stride_z Stride of the output tensor in Z dimension (in bytes) 419 * @param[in] output_step_z output_stride_z * number of elements along Z processed per workitem(in bytes) 420 * @param[in] output_stride_w Stride of the output tensor in W dimension (in bytes) 421 * @param[in] output_step_w output_stride_w * number of elements along W processed per workitem(in bytes) 422 * @param[in] output_offset_first_element_in_bytes The offset of the first element in the source tensor 423 */ 424__kernel void arg_min_max_w( 425 TENSOR4D_DECLARATION(input), 426 TENSOR4D_DECLARATION(output)) 427{ 428 const int x_offs = max((int)(get_global_id(0) * VEC_SIZE - (VEC_SIZE - VEC_SIZE_LEFTOVER) % VEC_SIZE), 0); 429 430 __global uchar *input_addr = input_ptr + input_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE) + get_global_id(1) * input_stride_y + (get_global_id(2) % DEPTH) * input_stride_z + 431 (get_global_id(2) / DEPTH) * input_stride_w; 432 __global uchar *output_addr = output_ptr + output_offset_first_element_in_bytes + x_offs * sizeof(DATA_TYPE_OUTPUT) + get_global_id(1) * output_stride_y + (get_global_id( 433 2) % DEPTH) * output_stride_z + (get_global_id(2) / DEPTH) * output_stride_w; 434 435 VEC_TYPE_IN res = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)input_addr), VEC_TYPE_IN); 436 437 VEC_TYPE_OUT indx0 = 0; 438 for(DATA_TYPE_OUTPUT w = 1; w < BATCH; ++w) 439 { 440 VEC_TYPE_IN in = CONVERT(VLOAD(VEC_SIZE)(0, (__global DATA_TYPE *)(input_addr + w * input_stride_w)), VEC_TYPE_IN); 441 442 VEC_TYPE_OUT cond_conv = CONVERT(CONDITION_TO_USE(in, res), VEC_TYPE_OUT); 443 indx0 = select(indx0, (VEC_TYPE_OUT)w, cond_conv); 444 res = select(res, in, CONDITION_TO_USE(in, res)); 445 } 446 447 // Store result 448 STORE_VECTOR_SELECT(indx, DATA_TYPE_OUTPUT, output_addr, VEC_SIZE, VEC_SIZE_LEFTOVER, VEC_SIZE_LEFTOVER != 0 && get_global_id(0) == 0); 449} 450#endif /* defined(BATCH) && defined(DEPTH) */ 451#endif // defined(VEC_SIZE) && defined(DATA_TYPE) && defined(DATA_TYPE_OUTPUT)