1 use crate::coord::ranged1d::types::RangedCoordf64; 2 use crate::coord::ranged1d::{AsRangedCoord, DefaultFormatting, KeyPointHint, Ranged}; 3 use std::marker::PhantomData; 4 use std::ops::Range; 5 6 /// The trait for the type that is able to be presented in the log scale. 7 /// This trait is primarily used by [LogRangeExt](struct.LogRangeExt.html). 8 pub trait LogScalable: Clone { 9 /// Make the conversion from the type to the floating point number as_f64(&self) -> f6410 fn as_f64(&self) -> f64; 11 /// Convert a floating point number to the scale from_f64(f: f64) -> Self12 fn from_f64(f: f64) -> Self; 13 } 14 15 macro_rules! impl_log_scalable { 16 (i, $t:ty) => { 17 impl LogScalable for $t { 18 fn as_f64(&self) -> f64 { 19 if *self != 0 { 20 return *self as f64; 21 } 22 // If this is an integer, we should allow zero point to be shown 23 // on the chart, thus we can't map the zero point to inf. 24 // So we just assigning a value smaller than 1 as the alternative 25 // of the zero point. 26 return 0.5; 27 } 28 fn from_f64(f: f64) -> $t { 29 f.round() as $t 30 } 31 } 32 }; 33 (f, $t:ty) => { 34 impl LogScalable for $t { 35 fn as_f64(&self) -> f64 { 36 *self as f64 37 } 38 fn from_f64(f: f64) -> $t { 39 f as $t 40 } 41 } 42 }; 43 } 44 45 impl_log_scalable!(i, u8); 46 impl_log_scalable!(i, u16); 47 impl_log_scalable!(i, u32); 48 impl_log_scalable!(i, u64); 49 50 impl_log_scalable!(i, i8); 51 impl_log_scalable!(i, i16); 52 impl_log_scalable!(i, i32); 53 impl_log_scalable!(i, i64); 54 55 impl_log_scalable!(f, f32); 56 impl_log_scalable!(f, f64); 57 58 /// Convert a range to a log scale coordinate spec 59 pub trait IntoLogRange { 60 /// The type of the value 61 type ValueType: LogScalable; 62 63 /// Make the log scale coordinate log_scale(self) -> LogRangeExt<Self::ValueType>64 fn log_scale(self) -> LogRangeExt<Self::ValueType>; 65 } 66 67 impl<T: LogScalable> IntoLogRange for Range<T> { 68 type ValueType = T; log_scale(self) -> LogRangeExt<T>69 fn log_scale(self) -> LogRangeExt<T> { 70 LogRangeExt { 71 range: self, 72 zero: 0.0, 73 base: 10.0, 74 } 75 } 76 } 77 78 /// The logarithmic coodinate decorator. 79 /// This decorator is used to make the axis rendered as logarithmically. 80 #[derive(Clone)] 81 pub struct LogRangeExt<V: LogScalable> { 82 range: Range<V>, 83 zero: f64, 84 base: f64, 85 } 86 87 impl<V: LogScalable> LogRangeExt<V> { 88 /// Set the zero point of the log scale coordinate. Zero point is the point where we map -inf 89 /// of the axis to the coordinate zero_point(mut self, value: V) -> Self where V: PartialEq,90 pub fn zero_point(mut self, value: V) -> Self 91 where 92 V: PartialEq, 93 { 94 self.zero = if V::from_f64(0.0) == value { 95 0.0 96 } else { 97 value.as_f64() 98 }; 99 100 self 101 } 102 103 /// Set the base multipler base(mut self, base: f64) -> Self104 pub fn base(mut self, base: f64) -> Self { 105 if self.base > 1.0 { 106 self.base = base; 107 } 108 self 109 } 110 } 111 112 impl<V: LogScalable> From<LogRangeExt<V>> for LogCoord<V> { from(spec: LogRangeExt<V>) -> LogCoord<V>113 fn from(spec: LogRangeExt<V>) -> LogCoord<V> { 114 let zero_point = spec.zero; 115 let mut start = spec.range.start.as_f64() - zero_point; 116 let mut end = spec.range.end.as_f64() - zero_point; 117 let negative = if start < 0.0 || end < 0.0 { 118 start = -start; 119 end = -end; 120 true 121 } else { 122 false 123 }; 124 125 if start < end { 126 if start == 0.0 { 127 start = start.max(end * 1e-5); 128 } 129 } else if end == 0.0 { 130 end = end.max(start * 1e-5); 131 } 132 133 LogCoord { 134 linear: (start.ln()..end.ln()).into(), 135 logic: spec.range, 136 normalized: start..end, 137 base: spec.base, 138 zero_point, 139 negative, 140 marker: PhantomData, 141 } 142 } 143 } 144 145 impl<V: LogScalable> AsRangedCoord for LogRangeExt<V> { 146 type CoordDescType = LogCoord<V>; 147 type Value = V; 148 } 149 150 /// A log scaled coordinate axis 151 pub struct LogCoord<V: LogScalable> { 152 linear: RangedCoordf64, 153 logic: Range<V>, 154 normalized: Range<f64>, 155 base: f64, 156 zero_point: f64, 157 negative: bool, 158 marker: PhantomData<V>, 159 } 160 161 impl<V: LogScalable> LogCoord<V> { value_to_f64(&self, value: &V) -> f64162 fn value_to_f64(&self, value: &V) -> f64 { 163 let fv = value.as_f64() - self.zero_point; 164 if self.negative { 165 -fv 166 } else { 167 fv 168 } 169 } 170 f64_to_value(&self, fv: f64) -> V171 fn f64_to_value(&self, fv: f64) -> V { 172 let fv = if self.negative { -fv } else { fv }; 173 V::from_f64(fv + self.zero_point) 174 } 175 is_inf(&self, fv: f64) -> bool176 fn is_inf(&self, fv: f64) -> bool { 177 let fv = if self.negative { -fv } else { fv }; 178 let a = V::from_f64(fv + self.zero_point); 179 let b = V::from_f64(self.zero_point); 180 181 (V::as_f64(&a) - V::as_f64(&b)).abs() < std::f64::EPSILON 182 } 183 } 184 185 impl<V: LogScalable> Ranged for LogCoord<V> { 186 type FormatOption = DefaultFormatting; 187 type ValueType = V; 188 map(&self, value: &V, limit: (i32, i32)) -> i32189 fn map(&self, value: &V, limit: (i32, i32)) -> i32 { 190 let fv = self.value_to_f64(value); 191 let value_ln = fv.ln(); 192 self.linear.map(&value_ln, limit) 193 } 194 key_points<Hint: KeyPointHint>(&self, hint: Hint) -> Vec<Self::ValueType>195 fn key_points<Hint: KeyPointHint>(&self, hint: Hint) -> Vec<Self::ValueType> { 196 let max_points = hint.max_num_points(); 197 198 let base = self.base; 199 let base_ln = base.ln(); 200 201 let Range { mut start, mut end } = self.normalized; 202 203 if start > end { 204 std::mem::swap(&mut start, &mut end); 205 } 206 207 let bold_count = ((end / start).ln().abs() / base_ln).floor().max(1.0) as usize; 208 209 let light_density = if max_points < bold_count { 210 0 211 } else { 212 let density = 1 + (max_points - bold_count) / bold_count; 213 let mut exp = 1; 214 while exp * 10 <= density { 215 exp *= 10; 216 } 217 exp - 1 218 }; 219 220 let mut multiplier = base; 221 let mut cnt = 1; 222 while max_points < bold_count / cnt { 223 multiplier *= base; 224 cnt += 1; 225 } 226 227 let mut ret = vec![]; 228 let mut val = (base).powf((start.ln() / base_ln).ceil()); 229 230 while val <= end { 231 if !self.is_inf(val) { 232 ret.push(self.f64_to_value(val)); 233 } 234 for i in 1..=light_density { 235 let v = val 236 * (1.0 237 + multiplier / f64::from(light_density as u32 + 1) * f64::from(i as u32)); 238 if v > end { 239 break; 240 } 241 if !self.is_inf(val) { 242 ret.push(self.f64_to_value(v)); 243 } 244 } 245 val *= multiplier; 246 } 247 248 ret 249 } 250 range(&self) -> Range<V>251 fn range(&self) -> Range<V> { 252 self.logic.clone() 253 } 254 } 255 256 /// The logarithmic coodinate decorator. 257 /// This decorator is used to make the axis rendered as logarithmically. 258 #[deprecated(note = "LogRange is deprecated, use IntoLogRange trait method instead")] 259 #[derive(Clone)] 260 pub struct LogRange<V: LogScalable>(pub Range<V>); 261 262 #[allow(deprecated)] 263 impl<V: LogScalable> AsRangedCoord for LogRange<V> { 264 type CoordDescType = LogCoord<V>; 265 type Value = V; 266 } 267 268 #[allow(deprecated)] 269 impl<V: LogScalable> From<LogRange<V>> for LogCoord<V> { from(range: LogRange<V>) -> LogCoord<V>270 fn from(range: LogRange<V>) -> LogCoord<V> { 271 range.0.log_scale().into() 272 } 273 } 274 275 #[cfg(test)] 276 mod test { 277 use super::*; 278 #[test] regression_test_issue_143()279 fn regression_test_issue_143() { 280 let range: LogCoord<f64> = (1.0..5.0).log_scale().into(); 281 282 range.key_points(100); 283 } 284 } 285