xref: /aosp_15_r20/external/armnn/src/armnn/layers/PreluLayer.cpp (revision 89c4ff92f2867872bb9e2354d150bf0c8c502810)
1 //
2 // Copyright © 2017 Arm Ltd and Contributors. All rights reserved.
3 // SPDX-License-Identifier: MIT
4 //
5 
6 #include "PreluLayer.hpp"
7 
8 #include "LayerCloneBase.hpp"
9 
10 #include <armnn/utility/NumericCast.hpp>
11 
12 #include <armnn/backends/TensorHandle.hpp>
13 #include <armnn/backends/WorkloadData.hpp>
14 #include <armnn/backends/WorkloadFactory.hpp>
15 
16 namespace armnn
17 {
18 
PreluLayer(const char * name)19 PreluLayer::PreluLayer(const char* name)
20     : Layer(2, 1, LayerType::Prelu, name)
21 {}
22 
CreateWorkload(const IWorkloadFactory & factory) const23 std::unique_ptr<IWorkload> PreluLayer::CreateWorkload(const IWorkloadFactory& factory) const
24 {
25     PreluQueueDescriptor descriptor;
26     SetAdditionalInfo(descriptor);
27 
28     return factory.CreateWorkload(LayerType::Prelu, descriptor, PrepInfoAndDesc(descriptor));
29 }
30 
Clone(Graph & graph) const31 PreluLayer* PreluLayer::Clone(Graph& graph) const
32 {
33     auto layer = CloneBase<PreluLayer>(graph, GetName());
34 
35     return std::move(layer);
36 }
37 
InferOutputShapes(const std::vector<TensorShape> & inputShapes) const38 std::vector<TensorShape> PreluLayer::InferOutputShapes(const std::vector<TensorShape>& inputShapes) const
39 {
40     ARMNN_ASSERT(inputShapes.size() == 2);
41 
42     const TensorShape& inputShape = inputShapes[0];
43     const TensorShape& alphaShape = inputShapes[1];
44 
45     const unsigned int inputShapeDimensions = inputShape.GetNumDimensions();
46     const unsigned int alphaShapeDimensions = alphaShape.GetNumDimensions();
47 
48     ARMNN_ASSERT(inputShapeDimensions > 0);
49     ARMNN_ASSERT(alphaShapeDimensions > 0);
50 
51     // The size of the output is the maximum size along each dimension of the input operands,
52     // it starts with the trailing dimensions, and works its way forward
53 
54     unsigned int outputDimensions = std::max(inputShapeDimensions, alphaShapeDimensions);
55 
56     TensorShape outputShape(outputDimensions);
57 
58     int inputShapeIndex = armnn::numeric_cast<int>(inputShapeDimensions) - 1;
59     int alphaShapeIndex = armnn::numeric_cast<int>(alphaShapeDimensions) - 1;
60     unsigned int outputShapeIndex = outputDimensions - 1;
61 
62     // Loop backwards through the common part of the shapes
63     while (inputShapeIndex >= 0 && alphaShapeIndex >= 0)
64     {
65         unsigned int inputDimension = inputShape[armnn::numeric_cast<unsigned int>(inputShapeIndex)];
66         unsigned int alphaDimension = alphaShape[armnn::numeric_cast<unsigned int>(alphaShapeIndex)];
67 
68         // Check that the inputs are broadcast compatible
69         ARMNN_ASSERT_MSG(inputDimension == alphaDimension || inputDimension == 1 || alphaDimension == 1,
70                          "PreluLayer: Dimensions should either match or one should be of size 1");
71 
72         outputShape[outputShapeIndex] = std::max(inputDimension, alphaDimension);
73 
74         inputShapeIndex--;
75         alphaShapeIndex--;
76         outputShapeIndex--;
77     }
78 
79     // Loop backwards through the remaing part of the input shape (if any)
80     while (inputShapeIndex >= 0)
81     {
82         outputShape[outputShapeIndex] = inputShape[armnn::numeric_cast<unsigned int>(inputShapeIndex)];
83 
84         inputShapeIndex--;
85         outputShapeIndex--;
86     }
87 
88     // Loop backwards through the remaing part of the alpha shape (if any)
89     while (alphaShapeIndex >= 0)
90     {
91         outputShape[outputShapeIndex] = alphaShape[armnn::numeric_cast<unsigned int>(alphaShapeIndex)];
92 
93         alphaShapeIndex--;
94         outputShapeIndex--;
95     }
96 
97     return { outputShape };
98 }
99 
ValidateTensorShapesFromInputs()100 void PreluLayer::ValidateTensorShapesFromInputs()
101 {
102     VerifyLayerConnections(2, CHECK_LOCATION());
103 
104     const TensorShape& outputShape = GetOutputSlot(0).GetTensorInfo().GetShape();
105 
106     VerifyShapeInferenceType(outputShape, m_ShapeInferenceMethod);
107 
108     std::vector<TensorShape> inferredShapes = InferOutputShapes(
109     {
110         GetInputSlot(0).GetConnection()->GetTensorInfo().GetShape(),
111         GetInputSlot(1).GetConnection()->GetTensorInfo().GetShape()
112     });
113 
114     ARMNN_ASSERT(inferredShapes.size() == 1);
115 
116     ValidateAndCopyShape(outputShape, inferredShapes[0], m_ShapeInferenceMethod, "PreluLayer");
117 }
118 
ExecuteStrategy(IStrategy & strategy) const119 void PreluLayer::ExecuteStrategy(IStrategy& strategy) const
120 {
121     strategy.ExecuteStrategy(this, GetParameters(), {}, GetName());
122 }
123 
124 } // namespace armnn
125