1 /**
2  * Copyright (C) 2022 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "aptXbtenc.h"
17 
18 #include "AptxEncoder.h"
19 #include "AptxParameters.h"
20 #include "AptxTables.h"
21 #include "CodewordPacker.h"
22 #include "SyncInserter.h"
23 #include "swversion.h"
24 
25 typedef struct aptxbtenc_t {
26   /* m_endian should either be 0 (little endian) or 8 (big endian). */
27   int32_t m_endian;
28 
29   /* m_sync_mode is an enumerated type and will be
30      0 (stereo sync),
31      1 (for dual mono sync), or
32      2 (for dual channel with no autosync).
33   */
34   int32_t m_sync_mode;
35 
36   /* Autosync inserter & Checker for use with the stereo aptX codec. */
37   /* The current phase of the sync word insertion (7 down to 0) */
38   uint32_t m_syncWordPhase;
39 
40   /* Stereo channel aptX encoder (annotated to produce Kalimba test vectors
41    * for it's I/O. This will process valid PCM from a WAV file). */
42   /* Each Encoder_data structure requires 1592 bytes */
43   Encoder_data m_encoderData[2];
44   Qmf_storage m_qmf_l;
45   Qmf_storage m_qmf_r;
46 } aptxbtenc;
47 
48 /* Log to linear lookup table used in inverse quantiser*/
49 /* Size of Table: 32*4 = 128 bytes */
50 static const int32_t IQuant_tableLogT[32] = {
51         16384 * 256, 16744 * 256, 17112 * 256, 17488 * 256, 17864 * 256, 18256 * 256, 18656 * 256,
52         19064 * 256, 19480 * 256, 19912 * 256, 20344 * 256, 20792 * 256, 21248 * 256, 21712 * 256,
53         22192 * 256, 22672 * 256, 23168 * 256, 23680 * 256, 24200 * 256, 24728 * 256, 25264 * 256,
54         25824 * 256, 26384 * 256, 26968 * 256, 27552 * 256, 28160 * 256, 28776 * 256, 29408 * 256,
55         30048 * 256, 30704 * 256, 31376 * 256, 32064 * 256};
56 
clearmem(void * mem,int32_t sz)57 static void clearmem(void* mem, int32_t sz) {
58   int8_t* m = (int8_t*)mem;
59   int32_t i = 0;
60   for (; i < sz; i++) {
61     *m = 0;
62     m++;
63   }
64 }
65 
SizeofAptxbtenc(void)66 APTXBTENCEXPORT int SizeofAptxbtenc(void) { return sizeof(aptxbtenc); }
67 
aptxbtenc_version()68 APTXBTENCEXPORT const char* aptxbtenc_version() { return swversion; }
69 
aptxbtenc_init(void * _state,short endian)70 APTXBTENCEXPORT int aptxbtenc_init(void* _state, short endian) {
71   aptxbtenc* state = (aptxbtenc*)_state;
72   int32_t j = 0;
73   int32_t k;
74   int32_t t;
75 
76   clearmem(_state, sizeof(aptxbtenc));
77 
78   if (state == 0) {
79     return 1;
80   }
81   state->m_syncWordPhase = 7L;
82 
83   if (endian == 0) {
84     state->m_endian = 0;
85   } else {
86     state->m_endian = 8;
87   }
88 
89   /* default setting should be stereo autosync,
90   for backwards-compatibility with legacy applications that use this library */
91   state->m_sync_mode = stereo;
92 
93   for (j = 0; j < 2; j++) {
94     Encoder_data* encode_dat = &state->m_encoderData[j];
95     uint32_t i;
96 
97     /* Create a quantiser and subband processor for each subband */
98     for (i = LL; i <= HH; i++) {
99       encode_dat->m_codewordHistory = 0L;
100 
101       encode_dat->m_qdata[i].thresholdTablePtr = subbandParameters[i].threshTable;
102       encode_dat->m_qdata[i].thresholdTablePtr_sl1 = subbandParameters[i].threshTable_sl1;
103       encode_dat->m_qdata[i].ditherTablePtr = subbandParameters[i].dithTable;
104       encode_dat->m_qdata[i].minusLambdaDTable = subbandParameters[i].minusLambdaDTable;
105       encode_dat->m_qdata[i].codeBits = subbandParameters[i].numBits;
106       encode_dat->m_qdata[i].qCode = 0L;
107       encode_dat->m_qdata[i].altQcode = 0L;
108       encode_dat->m_qdata[i].distPenalty = 0L;
109 
110       /* initialisation of inverseQuantiser data */
111       encode_dat->m_SubbandData[i].m_iqdata.thresholdTablePtr = subbandParameters[i].threshTable;
112       encode_dat->m_SubbandData[i].m_iqdata.thresholdTablePtr_sl1 =
113               subbandParameters[i].threshTable_sl1;
114       encode_dat->m_SubbandData[i].m_iqdata.ditherTablePtr_sf1 = subbandParameters[i].dithTable_sh1;
115       encode_dat->m_SubbandData[i].m_iqdata.incrTablePtr = subbandParameters[i].incrTable;
116       encode_dat->m_SubbandData[i].m_iqdata.maxLogDelta = subbandParameters[i].maxLogDelta;
117       encode_dat->m_SubbandData[i].m_iqdata.minLogDelta = subbandParameters[i].minLogDelta;
118       encode_dat->m_SubbandData[i].m_iqdata.delta = 0;
119       encode_dat->m_SubbandData[i].m_iqdata.logDelta = 0;
120       encode_dat->m_SubbandData[i].m_iqdata.invQ = 0;
121       encode_dat->m_SubbandData[i].m_iqdata.iquantTableLogPtr = &IQuant_tableLogT[0];
122 
123       // Initializing data for predictor filter
124       encode_dat->m_SubbandData[i].m_predData.m_zeroDelayLine.modulo =
125               subbandParameters[i].numZeros;
126 
127       for (t = 0; t < 48; t++) {
128         encode_dat->m_SubbandData[i].m_predData.m_zeroDelayLine.buffer[t] = 0;
129       }
130 
131       encode_dat->m_SubbandData[i].m_predData.m_zeroDelayLine.pointer = 0;
132       /* Initialise the previous zero filter output and predictor output to zero
133        */
134       encode_dat->m_SubbandData[i].m_predData.m_zeroVal = 0L;
135       encode_dat->m_SubbandData[i].m_predData.m_predVal = 0L;
136       encode_dat->m_SubbandData[i].m_predData.m_numZeros = subbandParameters[i].numZeros;
137       /* Initialise the contents of the pole data delay line to zero */
138       encode_dat->m_SubbandData[i].m_predData.m_poleDelayLine[0] = 0L;
139       encode_dat->m_SubbandData[i].m_predData.m_poleDelayLine[1] = 0L;
140 
141       for (k = 0; k < 24; k++) {
142         encode_dat->m_SubbandData[i].m_ZeroCoeffData.m_zeroCoeff[k] = 0;
143       }
144       // Initializing data for zerocoeff update function.
145       encode_dat->m_SubbandData[i].m_ZeroCoeffData.m_numZeros = subbandParameters[i].numZeros;
146 
147       /* Initializing data for PoleCoeff Update function.
148        * Fill the adaptation delay line with +1 initially */
149       encode_dat->m_SubbandData[i].m_PoleCoeffData.m_poleAdaptDelayLine.s32 = 0x00010001;
150 
151       /* Zero the pole coefficients */
152       encode_dat->m_SubbandData[i].m_PoleCoeffData.m_poleCoeff[0] = 0L;
153       encode_dat->m_SubbandData[i].m_PoleCoeffData.m_poleCoeff[1] = 0L;
154     }
155   }
156   return 0;
157 }
158 
aptxbtenc_setsync_mode(void * _state,int32_t sync_mode)159 APTXBTENCEXPORT int aptxbtenc_setsync_mode(void* _state, int32_t sync_mode) {
160   aptxbtenc* state = (aptxbtenc*)_state;
161   state->m_sync_mode = sync_mode;
162 
163   return 0;
164 }
165 
aptxbtenc_encodestereo(void * _state,void * _pcmL,void * _pcmR,void * _buffer)166 APTXBTENCEXPORT int aptxbtenc_encodestereo(void* _state, void* _pcmL, void* _pcmR, void* _buffer) {
167   aptxbtenc* state = (aptxbtenc*)_state;
168   int32_t* pcmL = (int32_t*)_pcmL;
169   int32_t* pcmR = (int32_t*)_pcmR;
170   int16_t* buffer = (int16_t*)_buffer;
171   int16_t tmp_reg;
172   int16_t tmp_out;
173   // Feed the PCM to the dual aptX encoders
174   aptxEncode(pcmL, &state->m_qmf_l, &state->m_encoderData[0]);
175   aptxEncode(pcmR, &state->m_qmf_r, &state->m_encoderData[1]);
176 
177   // only insert sync information if we are not in non-autosync mode.
178   // The Non-autosync mode changes only take effect in the packCodeword()
179   // function.
180   if (state->m_sync_mode != no_sync) {
181     if (state->m_sync_mode == stereo) {
182       // Insert the autosync information into the stereo quantised codes
183       xbtEncinsertSync(&state->m_encoderData[0], &state->m_encoderData[1], &state->m_syncWordPhase);
184     } else {
185       // Insert the autosync information into the two individual mono quantised
186       // codes
187       xbtEncinsertSyncDualMono(&state->m_encoderData[0], &state->m_encoderData[1],
188                                &state->m_syncWordPhase);
189     }
190   }
191 
192   aptxPostEncode(&state->m_encoderData[0]);
193   aptxPostEncode(&state->m_encoderData[1]);
194 
195   // Pack the (possibly adjusted) codes into a 16-bit codeword per channel
196   tmp_reg = packCodeword(&state->m_encoderData[0], state->m_sync_mode);
197   // Swap bytes to output data in big-endian as expected by bc5 code...
198   tmp_out = tmp_reg >> state->m_endian;
199   tmp_out |= tmp_reg << state->m_endian;
200 
201   buffer[0] = tmp_out;
202   tmp_reg = packCodeword(&state->m_encoderData[1], state->m_sync_mode);
203   // Swap bytes to output data in big-endian as expected by bc5 code...
204   tmp_out = tmp_reg >> state->m_endian;
205   tmp_out |= tmp_reg << state->m_endian;
206 
207   buffer[1] = tmp_out;
208 
209   return 0;
210 }
211