1 /**
2  * Copyright (C) 2022 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 #include "aptXHDbtenc.h"
17 
18 #include "AptxEncoder.h"
19 #include "AptxParameters.h"
20 #include "AptxTables.h"
21 #include "CodewordPacker.h"
22 #include "SyncInserter.h"
23 #include "swversion.h"
24 
25 typedef struct aptxhdbtenc_t {
26   /* m_endian should either be 0 (little endian) or 8 (big endian). */
27   int32_t m_endian;
28 
29   /* Autosync inserter & Checker for use with the stereo aptX HD codec. */
30   /* The current phase of the sync word insertion (7 down to 0) */
31   uint32_t m_syncWordPhase;
32 
33   /* Stereo channel aptX HD encoder (annotated to produce Kalimba test vectors
34    * for it's I/O. This will process valid PCM from a WAV file). */
35   /* Each Encoder_data structure requires 1592 bytes */
36   Encoder_data m_encoderData[2];
37   Qmf_storage m_qmf_l;
38   Qmf_storage m_qmf_r;
39 } aptxhdbtenc;
40 
41 /* Constants */
42 /* Log to linear lookup table used in inverse quantiser*/
43 /* Size of Table: 32*4 = 128 bytes */
44 static const int32_t IQuant_tableLogT[32] = {
45         16384 * 256, 16744 * 256, 17112 * 256, 17488 * 256, 17864 * 256, 18256 * 256, 18656 * 256,
46         19064 * 256, 19480 * 256, 19912 * 256, 20344 * 256, 20792 * 256, 21248 * 256, 21712 * 256,
47         22192 * 256, 22672 * 256, 23168 * 256, 23680 * 256, 24200 * 256, 24728 * 256, 25264 * 256,
48         25824 * 256, 26384 * 256, 26968 * 256, 27552 * 256, 28160 * 256, 28776 * 256, 29408 * 256,
49         30048 * 256, 30704 * 256, 31376 * 256, 32064 * 256};
50 
clearmem_HD(void * mem,int32_t sz)51 static void clearmem_HD(void* mem, int32_t sz) {
52   int8_t* m = (int8_t*)mem;
53   int32_t i = 0;
54   for (; i < sz; i++) {
55     *m = 0;
56     m++;
57   }
58 }
59 
SizeofAptxhdbtenc()60 APTXHDBTENCEXPORT int SizeofAptxhdbtenc() { return sizeof(aptxhdbtenc); }
61 
aptxhdbtenc_version()62 APTXHDBTENCEXPORT const char* aptxhdbtenc_version() { return swversion; }
63 
aptxhdbtenc_init(void * _state,short endian)64 APTXHDBTENCEXPORT int aptxhdbtenc_init(void* _state, short endian) {
65   aptxhdbtenc* state = (aptxhdbtenc*)_state;
66 
67   clearmem_HD(_state, sizeof(aptxhdbtenc));
68 
69   if (state == 0) {
70     return 1;
71   }
72   state->m_syncWordPhase = 7L;
73 
74   if (endian == 0) {
75     state->m_endian = 0;
76   } else {
77     state->m_endian = 8;
78   }
79 
80   for (int j = 0; j < 2; j++) {
81     Encoder_data* encode_dat = &state->m_encoderData[j];
82     uint32_t i;
83 
84     /* Create a quantiser and subband processor for each suband */
85     for (i = LL; i <= HH; i++) {
86       encode_dat->m_codewordHistory = 0L;
87 
88       encode_dat->m_qdata[i].thresholdTablePtr = subbandParameters[i].threshTable;
89       encode_dat->m_qdata[i].thresholdTablePtr_sl1 = subbandParameters[i].threshTable_sl1;
90       encode_dat->m_qdata[i].ditherTablePtr = subbandParameters[i].dithTable;
91       encode_dat->m_qdata[i].minusLambdaDTable = subbandParameters[i].minusLambdaDTable;
92       encode_dat->m_qdata[i].codeBits = subbandParameters[i].numBits;
93       encode_dat->m_qdata[i].qCode = 0L;
94       encode_dat->m_qdata[i].altQcode = 0L;
95       encode_dat->m_qdata[i].distPenalty = 0L;
96 
97       /* initialisation of inverseQuantiser data */
98       encode_dat->m_SubbandData[i].m_iqdata.thresholdTablePtr = subbandParameters[i].threshTable;
99       encode_dat->m_SubbandData[i].m_iqdata.thresholdTablePtr_sl1 =
100               subbandParameters[i].threshTable_sl1;
101       encode_dat->m_SubbandData[i].m_iqdata.ditherTablePtr_sf1 = subbandParameters[i].dithTable_sh1;
102       encode_dat->m_SubbandData[i].m_iqdata.incrTablePtr = subbandParameters[i].incrTable;
103       encode_dat->m_SubbandData[i].m_iqdata.maxLogDelta = subbandParameters[i].maxLogDelta;
104       encode_dat->m_SubbandData[i].m_iqdata.minLogDelta = subbandParameters[i].minLogDelta;
105       encode_dat->m_SubbandData[i].m_iqdata.delta = 0;
106       encode_dat->m_SubbandData[i].m_iqdata.logDelta = 0;
107       encode_dat->m_SubbandData[i].m_iqdata.invQ = 0;
108       encode_dat->m_SubbandData[i].m_iqdata.iquantTableLogPtr = &IQuant_tableLogT[0];
109 
110       // Initializing data for predictor filter
111       encode_dat->m_SubbandData[i].m_predData.m_zeroDelayLine.modulo =
112               subbandParameters[i].numZeros;
113 
114       for (int t = 0; t < 48; t++) {
115         encode_dat->m_SubbandData[i].m_predData.m_zeroDelayLine.buffer[t] = 0;
116       }
117 
118       encode_dat->m_SubbandData[i].m_predData.m_zeroDelayLine.pointer = 0;
119       /* Initialise the previous zero filter output and predictor output to zero
120        */
121       encode_dat->m_SubbandData[i].m_predData.m_zeroVal = 0L;
122       encode_dat->m_SubbandData[i].m_predData.m_predVal = 0L;
123       encode_dat->m_SubbandData[i].m_predData.m_numZeros = subbandParameters[i].numZeros;
124       /* Initialise the contents of the pole data delay line to zero */
125       encode_dat->m_SubbandData[i].m_predData.m_poleDelayLine[0] = 0L;
126       encode_dat->m_SubbandData[i].m_predData.m_poleDelayLine[1] = 0L;
127 
128       for (int k = 0; k < 24; k++) {
129         encode_dat->m_SubbandData[i].m_ZeroCoeffData.m_zeroCoeff[k] = 0;
130       }
131 
132       // Initializing data for zerocoeff update function.
133       encode_dat->m_SubbandData[i].m_ZeroCoeffData.m_numZeros = subbandParameters[i].numZeros;
134 
135       /* Initializing data for PoleCoeff Update function.
136        * Fill the adaptation delay line with +1 initially */
137       encode_dat->m_SubbandData[i].m_PoleCoeffData.m_poleAdaptDelayLine.s32 = 0x00010001;
138 
139       /* Zero the pole coefficients */
140       encode_dat->m_SubbandData[i].m_PoleCoeffData.m_poleCoeff[0] = 0L;
141       encode_dat->m_SubbandData[i].m_PoleCoeffData.m_poleCoeff[1] = 0L;
142     }
143   }
144   return 0;
145 }
146 
aptxhdbtenc_encodestereo(void * _state,void * _pcmL,void * _pcmR,void * _buffer)147 APTXHDBTENCEXPORT int aptxhdbtenc_encodestereo(void* _state, void* _pcmL, void* _pcmR,
148                                                void* _buffer) {
149   aptxhdbtenc* state = (aptxhdbtenc*)_state;
150   int32_t* pcmL = (int32_t*)_pcmL;
151   int32_t* pcmR = (int32_t*)_pcmR;
152   int32_t* buffer = (int32_t*)_buffer;
153 
154   // Feed the PCM to the dual aptX HD encoders
155   aptxhdEncode(pcmL, &state->m_qmf_l, &state->m_encoderData[0]);
156   aptxhdEncode(pcmR, &state->m_qmf_r, &state->m_encoderData[1]);
157 
158   // Insert the autosync information into the stereo quantised codes
159   xbtEncinsertSync(&state->m_encoderData[0], &state->m_encoderData[1], &state->m_syncWordPhase);
160 
161   aptxhdPostEncode(&state->m_encoderData[0]);
162   aptxhdPostEncode(&state->m_encoderData[1]);
163 
164   // Pack the (possibly adjusted) codes into a 24-bit codeword per channel
165   buffer[0] = packCodeword(&state->m_encoderData[0]);
166   buffer[1] = packCodeword(&state->m_encoderData[1]);
167 
168   return 0;
169 }
170