xref: /aosp_15_r20/external/openscreen/third_party/abseil/src/absl/strings/charconv.cc (revision 3f982cf4871df8771c9d4abe6e9a6f8d829b2736)
1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/strings/charconv.h"
16 
17 #include <algorithm>
18 #include <cassert>
19 #include <cmath>
20 #include <cstring>
21 
22 #include "absl/base/casts.h"
23 #include "absl/base/internal/bits.h"
24 #include "absl/numeric/int128.h"
25 #include "absl/strings/internal/charconv_bigint.h"
26 #include "absl/strings/internal/charconv_parse.h"
27 
28 // The macro ABSL_BIT_PACK_FLOATS is defined on x86-64, where IEEE floating
29 // point numbers have the same endianness in memory as a bitfield struct
30 // containing the corresponding parts.
31 //
32 // When set, we replace calls to ldexp() with manual bit packing, which is
33 // faster and is unaffected by floating point environment.
34 #ifdef ABSL_BIT_PACK_FLOATS
35 #error ABSL_BIT_PACK_FLOATS cannot be directly set
36 #elif defined(__x86_64__) || defined(_M_X64)
37 #define ABSL_BIT_PACK_FLOATS 1
38 #endif
39 
40 // A note about subnormals:
41 //
42 // The code below talks about "normals" and "subnormals".  A normal IEEE float
43 // has a fixed-width mantissa and power of two exponent.  For example, a normal
44 // `double` has a 53-bit mantissa.  Because the high bit is always 1, it is not
45 // stored in the representation.  The implicit bit buys an extra bit of
46 // resolution in the datatype.
47 //
48 // The downside of this scheme is that there is a large gap between DBL_MIN and
49 // zero.  (Large, at least, relative to the different between DBL_MIN and the
50 // next representable number).  This gap is softened by the "subnormal" numbers,
51 // which have the same power-of-two exponent as DBL_MIN, but no implicit 53rd
52 // bit.  An all-bits-zero exponent in the encoding represents subnormals.  (Zero
53 // is represented as a subnormal with an all-bits-zero mantissa.)
54 //
55 // The code below, in calculations, represents the mantissa as a uint64_t.  The
56 // end result normally has the 53rd bit set.  It represents subnormals by using
57 // narrower mantissas.
58 
59 namespace absl {
60 ABSL_NAMESPACE_BEGIN
61 namespace {
62 
63 template <typename FloatType>
64 struct FloatTraits;
65 
66 template <>
67 struct FloatTraits<double> {
68   // The number of mantissa bits in the given float type.  This includes the
69   // implied high bit.
70   static constexpr int kTargetMantissaBits = 53;
71 
72   // The largest supported IEEE exponent, in our integral mantissa
73   // representation.
74   //
75   // If `m` is the largest possible int kTargetMantissaBits bits wide, then
76   // m * 2**kMaxExponent is exactly equal to DBL_MAX.
77   static constexpr int kMaxExponent = 971;
78 
79   // The smallest supported IEEE normal exponent, in our integral mantissa
80   // representation.
81   //
82   // If `m` is the smallest possible int kTargetMantissaBits bits wide, then
83   // m * 2**kMinNormalExponent is exactly equal to DBL_MIN.
84   static constexpr int kMinNormalExponent = -1074;
85 
MakeNanabsl::__anon330af5090111::FloatTraits86   static double MakeNan(const char* tagp) {
87     // Support nan no matter which namespace it's in.  Some platforms
88     // incorrectly don't put it in namespace std.
89     using namespace std;  // NOLINT
90     return nan(tagp);
91   }
92 
93   // Builds a nonzero floating point number out of the provided parts.
94   //
95   // This is intended to do the same operation as ldexp(mantissa, exponent),
96   // but using purely integer math, to avoid -ffastmath and floating
97   // point environment issues.  Using type punning is also faster. We fall back
98   // to ldexp on a per-platform basis for portability.
99   //
100   // `exponent` must be between kMinNormalExponent and kMaxExponent.
101   //
102   // `mantissa` must either be exactly kTargetMantissaBits wide, in which case
103   // a normal value is made, or it must be less narrow than that, in which case
104   // `exponent` must be exactly kMinNormalExponent, and a subnormal value is
105   // made.
Makeabsl::__anon330af5090111::FloatTraits106   static double Make(uint64_t mantissa, int exponent, bool sign) {
107 #ifndef ABSL_BIT_PACK_FLOATS
108     // Support ldexp no matter which namespace it's in.  Some platforms
109     // incorrectly don't put it in namespace std.
110     using namespace std;  // NOLINT
111     return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent);
112 #else
113     constexpr uint64_t kMantissaMask =
114         (uint64_t(1) << (kTargetMantissaBits - 1)) - 1;
115     uint64_t dbl = static_cast<uint64_t>(sign) << 63;
116     if (mantissa > kMantissaMask) {
117       // Normal value.
118       // Adjust by 1023 for the exponent representation bias, and an additional
119       // 52 due to the implied decimal point in the IEEE mantissa represenation.
120       dbl += uint64_t{exponent + 1023u + kTargetMantissaBits - 1} << 52;
121       mantissa &= kMantissaMask;
122     } else {
123       // subnormal value
124       assert(exponent == kMinNormalExponent);
125     }
126     dbl += mantissa;
127     return absl::bit_cast<double>(dbl);
128 #endif  // ABSL_BIT_PACK_FLOATS
129   }
130 };
131 
132 // Specialization of floating point traits for the `float` type.  See the
133 // FloatTraits<double> specialization above for meaning of each of the following
134 // members and methods.
135 template <>
136 struct FloatTraits<float> {
137   static constexpr int kTargetMantissaBits = 24;
138   static constexpr int kMaxExponent = 104;
139   static constexpr int kMinNormalExponent = -149;
MakeNanabsl::__anon330af5090111::FloatTraits140   static float MakeNan(const char* tagp) {
141     // Support nanf no matter which namespace it's in.  Some platforms
142     // incorrectly don't put it in namespace std.
143     using namespace std;  // NOLINT
144     return nanf(tagp);
145   }
Makeabsl::__anon330af5090111::FloatTraits146   static float Make(uint32_t mantissa, int exponent, bool sign) {
147 #ifndef ABSL_BIT_PACK_FLOATS
148     // Support ldexpf no matter which namespace it's in.  Some platforms
149     // incorrectly don't put it in namespace std.
150     using namespace std;  // NOLINT
151     return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent);
152 #else
153     constexpr uint32_t kMantissaMask =
154         (uint32_t(1) << (kTargetMantissaBits - 1)) - 1;
155     uint32_t flt = static_cast<uint32_t>(sign) << 31;
156     if (mantissa > kMantissaMask) {
157       // Normal value.
158       // Adjust by 127 for the exponent representation bias, and an additional
159       // 23 due to the implied decimal point in the IEEE mantissa represenation.
160       flt += uint32_t{exponent + 127u + kTargetMantissaBits - 1} << 23;
161       mantissa &= kMantissaMask;
162     } else {
163       // subnormal value
164       assert(exponent == kMinNormalExponent);
165     }
166     flt += mantissa;
167     return absl::bit_cast<float>(flt);
168 #endif  // ABSL_BIT_PACK_FLOATS
169   }
170 };
171 
172 // Decimal-to-binary conversions require coercing powers of 10 into a mantissa
173 // and a power of 2.  The two helper functions Power10Mantissa(n) and
174 // Power10Exponent(n) perform this task.  Together, these represent a hand-
175 // rolled floating point value which is equal to or just less than 10**n.
176 //
177 // The return values satisfy two range guarantees:
178 //
179 //   Power10Mantissa(n) * 2**Power10Exponent(n) <= 10**n
180 //     < (Power10Mantissa(n) + 1) * 2**Power10Exponent(n)
181 //
182 //   2**63 <= Power10Mantissa(n) < 2**64.
183 //
184 // Lookups into the power-of-10 table must first check the Power10Overflow() and
185 // Power10Underflow() functions, to avoid out-of-bounds table access.
186 //
187 // Indexes into these tables are biased by -kPower10TableMin, and the table has
188 // values in the range [kPower10TableMin, kPower10TableMax].
189 extern const uint64_t kPower10MantissaTable[];
190 extern const int16_t kPower10ExponentTable[];
191 
192 // The smallest allowed value for use with the Power10Mantissa() and
193 // Power10Exponent() functions below.  (If a smaller exponent is needed in
194 // calculations, the end result is guaranteed to underflow.)
195 constexpr int kPower10TableMin = -342;
196 
197 // The largest allowed value for use with the Power10Mantissa() and
198 // Power10Exponent() functions below.  (If a smaller exponent is needed in
199 // calculations, the end result is guaranteed to overflow.)
200 constexpr int kPower10TableMax = 308;
201 
Power10Mantissa(int n)202 uint64_t Power10Mantissa(int n) {
203   return kPower10MantissaTable[n - kPower10TableMin];
204 }
205 
Power10Exponent(int n)206 int Power10Exponent(int n) {
207   return kPower10ExponentTable[n - kPower10TableMin];
208 }
209 
210 // Returns true if n is large enough that 10**n always results in an IEEE
211 // overflow.
Power10Overflow(int n)212 bool Power10Overflow(int n) { return n > kPower10TableMax; }
213 
214 // Returns true if n is small enough that 10**n times a ParsedFloat mantissa
215 // always results in an IEEE underflow.
Power10Underflow(int n)216 bool Power10Underflow(int n) { return n < kPower10TableMin; }
217 
218 // Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal
219 // to 10**n numerically.  Put another way, this returns true if there is no
220 // truncation error in Power10Mantissa(n).
Power10Exact(int n)221 bool Power10Exact(int n) { return n >= 0 && n <= 27; }
222 
223 // Sentinel exponent values for representing numbers too large or too close to
224 // zero to represent in a double.
225 constexpr int kOverflow = 99999;
226 constexpr int kUnderflow = -99999;
227 
228 // Struct representing the calculated conversion result of a positive (nonzero)
229 // floating point number.
230 //
231 // The calculated number is mantissa * 2**exponent (mantissa is treated as an
232 // integer.)  `mantissa` is chosen to be the correct width for the IEEE float
233 // representation being calculated.  (`mantissa` will always have the same bit
234 // width for normal values, and narrower bit widths for subnormals.)
235 //
236 // If the result of conversion was an underflow or overflow, exponent is set
237 // to kUnderflow or kOverflow.
238 struct CalculatedFloat {
239   uint64_t mantissa = 0;
240   int exponent = 0;
241 };
242 
243 // Returns the bit width of the given uint128.  (Equivalently, returns 128
244 // minus the number of leading zero bits.)
BitWidth(uint128 value)245 int BitWidth(uint128 value) {
246   if (Uint128High64(value) == 0) {
247     return 64 - base_internal::CountLeadingZeros64(Uint128Low64(value));
248   }
249   return 128 - base_internal::CountLeadingZeros64(Uint128High64(value));
250 }
251 
252 // Calculates how far to the right a mantissa needs to be shifted to create a
253 // properly adjusted mantissa for an IEEE floating point number.
254 //
255 // `mantissa_width` is the bit width of the mantissa to be shifted, and
256 // `binary_exponent` is the exponent of the number before the shift.
257 //
258 // This accounts for subnormal values, and will return a larger-than-normal
259 // shift if binary_exponent would otherwise be too low.
260 template <typename FloatType>
NormalizedShiftSize(int mantissa_width,int binary_exponent)261 int NormalizedShiftSize(int mantissa_width, int binary_exponent) {
262   const int normal_shift =
263       mantissa_width - FloatTraits<FloatType>::kTargetMantissaBits;
264   const int minimum_shift =
265       FloatTraits<FloatType>::kMinNormalExponent - binary_exponent;
266   return std::max(normal_shift, minimum_shift);
267 }
268 
269 // Right shifts a uint128 so that it has the requested bit width.  (The
270 // resulting value will have 128 - bit_width leading zeroes.)  The initial
271 // `value` must be wider than the requested bit width.
272 //
273 // Returns the number of bits shifted.
TruncateToBitWidth(int bit_width,uint128 * value)274 int TruncateToBitWidth(int bit_width, uint128* value) {
275   const int current_bit_width = BitWidth(*value);
276   const int shift = current_bit_width - bit_width;
277   *value >>= shift;
278   return shift;
279 }
280 
281 // Checks if the given ParsedFloat represents one of the edge cases that are
282 // not dependent on number base: zero, infinity, or NaN.  If so, sets *value
283 // the appropriate double, and returns true.
284 template <typename FloatType>
HandleEdgeCase(const strings_internal::ParsedFloat & input,bool negative,FloatType * value)285 bool HandleEdgeCase(const strings_internal::ParsedFloat& input, bool negative,
286                     FloatType* value) {
287   if (input.type == strings_internal::FloatType::kNan) {
288     // A bug in both clang and gcc would cause the compiler to optimize away the
289     // buffer we are building below.  Declaring the buffer volatile avoids the
290     // issue, and has no measurable performance impact in microbenchmarks.
291     //
292     // https://bugs.llvm.org/show_bug.cgi?id=37778
293     // https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113
294     constexpr ptrdiff_t kNanBufferSize = 128;
295     volatile char n_char_sequence[kNanBufferSize];
296     if (input.subrange_begin == nullptr) {
297       n_char_sequence[0] = '\0';
298     } else {
299       ptrdiff_t nan_size = input.subrange_end - input.subrange_begin;
300       nan_size = std::min(nan_size, kNanBufferSize - 1);
301       std::copy_n(input.subrange_begin, nan_size, n_char_sequence);
302       n_char_sequence[nan_size] = '\0';
303     }
304     char* nan_argument = const_cast<char*>(n_char_sequence);
305     *value = negative ? -FloatTraits<FloatType>::MakeNan(nan_argument)
306                       : FloatTraits<FloatType>::MakeNan(nan_argument);
307     return true;
308   }
309   if (input.type == strings_internal::FloatType::kInfinity) {
310     *value = negative ? -std::numeric_limits<FloatType>::infinity()
311                       : std::numeric_limits<FloatType>::infinity();
312     return true;
313   }
314   if (input.mantissa == 0) {
315     *value = negative ? -0.0 : 0.0;
316     return true;
317   }
318   return false;
319 }
320 
321 // Given a CalculatedFloat result of a from_chars conversion, generate the
322 // correct output values.
323 //
324 // CalculatedFloat can represent an underflow or overflow, in which case the
325 // error code in *result is set.  Otherwise, the calculated floating point
326 // number is stored in *value.
327 template <typename FloatType>
EncodeResult(const CalculatedFloat & calculated,bool negative,absl::from_chars_result * result,FloatType * value)328 void EncodeResult(const CalculatedFloat& calculated, bool negative,
329                   absl::from_chars_result* result, FloatType* value) {
330   if (calculated.exponent == kOverflow) {
331     result->ec = std::errc::result_out_of_range;
332     *value = negative ? -std::numeric_limits<FloatType>::max()
333                       : std::numeric_limits<FloatType>::max();
334     return;
335   } else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) {
336     result->ec = std::errc::result_out_of_range;
337     *value = negative ? -0.0 : 0.0;
338     return;
339   }
340   *value = FloatTraits<FloatType>::Make(calculated.mantissa,
341                                         calculated.exponent, negative);
342 }
343 
344 // Returns the given uint128 shifted to the right by `shift` bits, and rounds
345 // the remaining bits using round_to_nearest logic.  The value is returned as a
346 // uint64_t, since this is the type used by this library for storing calculated
347 // floating point mantissas.
348 //
349 // It is expected that the width of the input value shifted by `shift` will
350 // be the correct bit-width for the target mantissa, which is strictly narrower
351 // than a uint64_t.
352 //
353 // If `input_exact` is false, then a nonzero error epsilon is assumed.  For
354 // rounding purposes, the true value being rounded is strictly greater than the
355 // input value.  The error may represent a single lost carry bit.
356 //
357 // When input_exact, shifted bits of the form 1000000... represent a tie, which
358 // is broken by rounding to even -- the rounding direction is chosen so the low
359 // bit of the returned value is 0.
360 //
361 // When !input_exact, shifted bits of the form 10000000... represent a value
362 // strictly greater than one half (due to the error epsilon), and so ties are
363 // always broken by rounding up.
364 //
365 // When !input_exact, shifted bits of the form 01111111... are uncertain;
366 // the true value may or may not be greater than 10000000..., due to the
367 // possible lost carry bit.  The correct rounding direction is unknown.  In this
368 // case, the result is rounded down, and `output_exact` is set to false.
369 //
370 // Zero and negative values of `shift` are accepted, in which case the word is
371 // shifted left, as necessary.
ShiftRightAndRound(uint128 value,int shift,bool input_exact,bool * output_exact)372 uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact,
373                             bool* output_exact) {
374   if (shift <= 0) {
375     *output_exact = input_exact;
376     return static_cast<uint64_t>(value << -shift);
377   }
378   if (shift >= 128) {
379     // Exponent is so small that we are shifting away all significant bits.
380     // Answer will not be representable, even as a subnormal, so return a zero
381     // mantissa (which represents underflow).
382     *output_exact = true;
383     return 0;
384   }
385 
386   *output_exact = true;
387   const uint128 shift_mask = (uint128(1) << shift) - 1;
388   const uint128 halfway_point = uint128(1) << (shift - 1);
389 
390   const uint128 shifted_bits = value & shift_mask;
391   value >>= shift;
392   if (shifted_bits > halfway_point) {
393     // Shifted bits greater than 10000... require rounding up.
394     return static_cast<uint64_t>(value + 1);
395   }
396   if (shifted_bits == halfway_point) {
397     // In exact mode, shifted bits of 10000... mean we're exactly halfway
398     // between two numbers, and we must round to even.  So only round up if
399     // the low bit of `value` is set.
400     //
401     // In inexact mode, the nonzero error means the actual value is greater
402     // than the halfway point and we must alway round up.
403     if ((value & 1) == 1 || !input_exact) {
404       ++value;
405     }
406     return static_cast<uint64_t>(value);
407   }
408   if (!input_exact && shifted_bits == halfway_point - 1) {
409     // Rounding direction is unclear, due to error.
410     *output_exact = false;
411   }
412   // Otherwise, round down.
413   return static_cast<uint64_t>(value);
414 }
415 
416 // Checks if a floating point guess needs to be rounded up, using high precision
417 // math.
418 //
419 // `guess_mantissa` and `guess_exponent` represent a candidate guess for the
420 // number represented by `parsed_decimal`.
421 //
422 // The exact number represented by `parsed_decimal` must lie between the two
423 // numbers:
424 //   A = `guess_mantissa * 2**guess_exponent`
425 //   B = `(guess_mantissa + 1) * 2**guess_exponent`
426 //
427 // This function returns false if `A` is the better guess, and true if `B` is
428 // the better guess, with rounding ties broken by rounding to even.
MustRoundUp(uint64_t guess_mantissa,int guess_exponent,const strings_internal::ParsedFloat & parsed_decimal)429 bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent,
430                  const strings_internal::ParsedFloat& parsed_decimal) {
431   // 768 is the number of digits needed in the worst case.  We could determine a
432   // better limit dynamically based on the value of parsed_decimal.exponent.
433   // This would optimize pathological input cases only.  (Sane inputs won't have
434   // hundreds of digits of mantissa.)
435   absl::strings_internal::BigUnsigned<84> exact_mantissa;
436   int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768);
437 
438   // Adjust the `guess` arguments to be halfway between A and B.
439   guess_mantissa = guess_mantissa * 2 + 1;
440   guess_exponent -= 1;
441 
442   // In our comparison:
443   // lhs = exact = exact_mantissa * 10**exact_exponent
444   //             = exact_mantissa * 5**exact_exponent * 2**exact_exponent
445   // rhs = guess = guess_mantissa * 2**guess_exponent
446   //
447   // Because we are doing integer math, we can't directly deal with negative
448   // exponents.  We instead move these to the other side of the inequality.
449   absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa;
450   int comparison;
451   if (exact_exponent >= 0) {
452     lhs.MultiplyByFiveToTheNth(exact_exponent);
453     absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa);
454     // There are powers of 2 on both sides of the inequality; reduce this to
455     // a single bit-shift.
456     if (exact_exponent > guess_exponent) {
457       lhs.ShiftLeft(exact_exponent - guess_exponent);
458     } else {
459       rhs.ShiftLeft(guess_exponent - exact_exponent);
460     }
461     comparison = Compare(lhs, rhs);
462   } else {
463     // Move the power of 5 to the other side of the equation, giving us:
464     // lhs = exact_mantissa * 2**exact_exponent
465     // rhs = guess_mantissa * 5**(-exact_exponent) * 2**guess_exponent
466     absl::strings_internal::BigUnsigned<84> rhs =
467         absl::strings_internal::BigUnsigned<84>::FiveToTheNth(-exact_exponent);
468     rhs.MultiplyBy(guess_mantissa);
469     if (exact_exponent > guess_exponent) {
470       lhs.ShiftLeft(exact_exponent - guess_exponent);
471     } else {
472       rhs.ShiftLeft(guess_exponent - exact_exponent);
473     }
474     comparison = Compare(lhs, rhs);
475   }
476   if (comparison < 0) {
477     return false;
478   } else if (comparison > 0) {
479     return true;
480   } else {
481     // When lhs == rhs, the decimal input is exactly between A and B.
482     // Round towards even -- round up only if the low bit of the initial
483     // `guess_mantissa` was a 1.  We shifted guess_mantissa left 1 bit at
484     // the beginning of this function, so test the 2nd bit here.
485     return (guess_mantissa & 2) == 2;
486   }
487 }
488 
489 // Constructs a CalculatedFloat from a given mantissa and exponent, but
490 // with the following normalizations applied:
491 //
492 // If rounding has caused mantissa to increase just past the allowed bit
493 // width, shift and adjust exponent.
494 //
495 // If exponent is too high, sets kOverflow.
496 //
497 // If mantissa is zero (representing a non-zero value not representable, even
498 // as a subnormal), sets kUnderflow.
499 template <typename FloatType>
CalculatedFloatFromRawValues(uint64_t mantissa,int exponent)500 CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent) {
501   CalculatedFloat result;
502   if (mantissa == uint64_t(1) << FloatTraits<FloatType>::kTargetMantissaBits) {
503     mantissa >>= 1;
504     exponent += 1;
505   }
506   if (exponent > FloatTraits<FloatType>::kMaxExponent) {
507     result.exponent = kOverflow;
508   } else if (mantissa == 0) {
509     result.exponent = kUnderflow;
510   } else {
511     result.exponent = exponent;
512     result.mantissa = mantissa;
513   }
514   return result;
515 }
516 
517 template <typename FloatType>
CalculateFromParsedHexadecimal(const strings_internal::ParsedFloat & parsed_hex)518 CalculatedFloat CalculateFromParsedHexadecimal(
519     const strings_internal::ParsedFloat& parsed_hex) {
520   uint64_t mantissa = parsed_hex.mantissa;
521   int exponent = parsed_hex.exponent;
522   int mantissa_width = 64 - base_internal::CountLeadingZeros64(mantissa);
523   const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent);
524   bool result_exact;
525   exponent += shift;
526   mantissa = ShiftRightAndRound(mantissa, shift,
527                                 /* input exact= */ true, &result_exact);
528   // ParseFloat handles rounding in the hexadecimal case, so we don't have to
529   // check `result_exact` here.
530   return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent);
531 }
532 
533 template <typename FloatType>
CalculateFromParsedDecimal(const strings_internal::ParsedFloat & parsed_decimal)534 CalculatedFloat CalculateFromParsedDecimal(
535     const strings_internal::ParsedFloat& parsed_decimal) {
536   CalculatedFloat result;
537 
538   // Large or small enough decimal exponents will always result in overflow
539   // or underflow.
540   if (Power10Underflow(parsed_decimal.exponent)) {
541     result.exponent = kUnderflow;
542     return result;
543   } else if (Power10Overflow(parsed_decimal.exponent)) {
544     result.exponent = kOverflow;
545     return result;
546   }
547 
548   // Otherwise convert our power of 10 into a power of 2 times an integer
549   // mantissa, and multiply this by our parsed decimal mantissa.
550   uint128 wide_binary_mantissa = parsed_decimal.mantissa;
551   wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent);
552   int binary_exponent = Power10Exponent(parsed_decimal.exponent);
553 
554   // Discard bits that are inaccurate due to truncation error.  The magic
555   // `mantissa_width` constants below are justified in
556   // https://abseil.io/about/design/charconv. They represent the number of bits
557   // in `wide_binary_mantissa` that are guaranteed to be unaffected by error
558   // propagation.
559   bool mantissa_exact;
560   int mantissa_width;
561   if (parsed_decimal.subrange_begin) {
562     // Truncated mantissa
563     mantissa_width = 58;
564     mantissa_exact = false;
565     binary_exponent +=
566         TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
567   } else if (!Power10Exact(parsed_decimal.exponent)) {
568     // Exact mantissa, truncated power of ten
569     mantissa_width = 63;
570     mantissa_exact = false;
571     binary_exponent +=
572         TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
573   } else {
574     // Product is exact
575     mantissa_width = BitWidth(wide_binary_mantissa);
576     mantissa_exact = true;
577   }
578 
579   // Shift into an FloatType-sized mantissa, and round to nearest.
580   const int shift =
581       NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent);
582   bool result_exact;
583   binary_exponent += shift;
584   uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift,
585                                                 mantissa_exact, &result_exact);
586   if (!result_exact) {
587     // We could not determine the rounding direction using int128 math.  Use
588     // full resolution math instead.
589     if (MustRoundUp(binary_mantissa, binary_exponent, parsed_decimal)) {
590       binary_mantissa += 1;
591     }
592   }
593 
594   return CalculatedFloatFromRawValues<FloatType>(binary_mantissa,
595                                                  binary_exponent);
596 }
597 
598 template <typename FloatType>
FromCharsImpl(const char * first,const char * last,FloatType & value,chars_format fmt_flags)599 from_chars_result FromCharsImpl(const char* first, const char* last,
600                                 FloatType& value, chars_format fmt_flags) {
601   from_chars_result result;
602   result.ptr = first;  // overwritten on successful parse
603   result.ec = std::errc();
604 
605   bool negative = false;
606   if (first != last && *first == '-') {
607     ++first;
608     negative = true;
609   }
610   // If the `hex` flag is *not* set, then we will accept a 0x prefix and try
611   // to parse a hexadecimal float.
612   if ((fmt_flags & chars_format::hex) == chars_format{} && last - first >= 2 &&
613       *first == '0' && (first[1] == 'x' || first[1] == 'X')) {
614     const char* hex_first = first + 2;
615     strings_internal::ParsedFloat hex_parse =
616         strings_internal::ParseFloat<16>(hex_first, last, fmt_flags);
617     if (hex_parse.end == nullptr ||
618         hex_parse.type != strings_internal::FloatType::kNumber) {
619       // Either we failed to parse a hex float after the "0x", or we read
620       // "0xinf" or "0xnan" which we don't want to match.
621       //
622       // However, a string that begins with "0x" also begins with "0", which
623       // is normally a valid match for the number zero.  So we want these
624       // strings to match zero unless fmt_flags is `scientific`.  (This flag
625       // means an exponent is required, which the string "0" does not have.)
626       if (fmt_flags == chars_format::scientific) {
627         result.ec = std::errc::invalid_argument;
628       } else {
629         result.ptr = first + 1;
630         value = negative ? -0.0 : 0.0;
631       }
632       return result;
633     }
634     // We matched a value.
635     result.ptr = hex_parse.end;
636     if (HandleEdgeCase(hex_parse, negative, &value)) {
637       return result;
638     }
639     CalculatedFloat calculated =
640         CalculateFromParsedHexadecimal<FloatType>(hex_parse);
641     EncodeResult(calculated, negative, &result, &value);
642     return result;
643   }
644   // Otherwise, we choose the number base based on the flags.
645   if ((fmt_flags & chars_format::hex) == chars_format::hex) {
646     strings_internal::ParsedFloat hex_parse =
647         strings_internal::ParseFloat<16>(first, last, fmt_flags);
648     if (hex_parse.end == nullptr) {
649       result.ec = std::errc::invalid_argument;
650       return result;
651     }
652     result.ptr = hex_parse.end;
653     if (HandleEdgeCase(hex_parse, negative, &value)) {
654       return result;
655     }
656     CalculatedFloat calculated =
657         CalculateFromParsedHexadecimal<FloatType>(hex_parse);
658     EncodeResult(calculated, negative, &result, &value);
659     return result;
660   } else {
661     strings_internal::ParsedFloat decimal_parse =
662         strings_internal::ParseFloat<10>(first, last, fmt_flags);
663     if (decimal_parse.end == nullptr) {
664       result.ec = std::errc::invalid_argument;
665       return result;
666     }
667     result.ptr = decimal_parse.end;
668     if (HandleEdgeCase(decimal_parse, negative, &value)) {
669       return result;
670     }
671     CalculatedFloat calculated =
672         CalculateFromParsedDecimal<FloatType>(decimal_parse);
673     EncodeResult(calculated, negative, &result, &value);
674     return result;
675   }
676 }
677 }  // namespace
678 
from_chars(const char * first,const char * last,double & value,chars_format fmt)679 from_chars_result from_chars(const char* first, const char* last, double& value,
680                              chars_format fmt) {
681   return FromCharsImpl(first, last, value, fmt);
682 }
683 
from_chars(const char * first,const char * last,float & value,chars_format fmt)684 from_chars_result from_chars(const char* first, const char* last, float& value,
685                              chars_format fmt) {
686   return FromCharsImpl(first, last, value, fmt);
687 }
688 
689 namespace {
690 
691 // Table of powers of 10, from kPower10TableMin to kPower10TableMax.
692 //
693 // kPower10MantissaTable[i - kPower10TableMin] stores the 64-bit mantissa (high
694 // bit always on), and kPower10ExponentTable[i - kPower10TableMin] stores the
695 // power-of-two exponent.  For a given number i, this gives the unique mantissa
696 // and exponent such that mantissa * 2**exponent <= 10**i < (mantissa + 1) *
697 // 2**exponent.
698 
699 const uint64_t kPower10MantissaTable[] = {
700     0xeef453d6923bd65aU, 0x9558b4661b6565f8U, 0xbaaee17fa23ebf76U,
701     0xe95a99df8ace6f53U, 0x91d8a02bb6c10594U, 0xb64ec836a47146f9U,
702     0xe3e27a444d8d98b7U, 0x8e6d8c6ab0787f72U, 0xb208ef855c969f4fU,
703     0xde8b2b66b3bc4723U, 0x8b16fb203055ac76U, 0xaddcb9e83c6b1793U,
704     0xd953e8624b85dd78U, 0x87d4713d6f33aa6bU, 0xa9c98d8ccb009506U,
705     0xd43bf0effdc0ba48U, 0x84a57695fe98746dU, 0xa5ced43b7e3e9188U,
706     0xcf42894a5dce35eaU, 0x818995ce7aa0e1b2U, 0xa1ebfb4219491a1fU,
707     0xca66fa129f9b60a6U, 0xfd00b897478238d0U, 0x9e20735e8cb16382U,
708     0xc5a890362fddbc62U, 0xf712b443bbd52b7bU, 0x9a6bb0aa55653b2dU,
709     0xc1069cd4eabe89f8U, 0xf148440a256e2c76U, 0x96cd2a865764dbcaU,
710     0xbc807527ed3e12bcU, 0xeba09271e88d976bU, 0x93445b8731587ea3U,
711     0xb8157268fdae9e4cU, 0xe61acf033d1a45dfU, 0x8fd0c16206306babU,
712     0xb3c4f1ba87bc8696U, 0xe0b62e2929aba83cU, 0x8c71dcd9ba0b4925U,
713     0xaf8e5410288e1b6fU, 0xdb71e91432b1a24aU, 0x892731ac9faf056eU,
714     0xab70fe17c79ac6caU, 0xd64d3d9db981787dU, 0x85f0468293f0eb4eU,
715     0xa76c582338ed2621U, 0xd1476e2c07286faaU, 0x82cca4db847945caU,
716     0xa37fce126597973cU, 0xcc5fc196fefd7d0cU, 0xff77b1fcbebcdc4fU,
717     0x9faacf3df73609b1U, 0xc795830d75038c1dU, 0xf97ae3d0d2446f25U,
718     0x9becce62836ac577U, 0xc2e801fb244576d5U, 0xf3a20279ed56d48aU,
719     0x9845418c345644d6U, 0xbe5691ef416bd60cU, 0xedec366b11c6cb8fU,
720     0x94b3a202eb1c3f39U, 0xb9e08a83a5e34f07U, 0xe858ad248f5c22c9U,
721     0x91376c36d99995beU, 0xb58547448ffffb2dU, 0xe2e69915b3fff9f9U,
722     0x8dd01fad907ffc3bU, 0xb1442798f49ffb4aU, 0xdd95317f31c7fa1dU,
723     0x8a7d3eef7f1cfc52U, 0xad1c8eab5ee43b66U, 0xd863b256369d4a40U,
724     0x873e4f75e2224e68U, 0xa90de3535aaae202U, 0xd3515c2831559a83U,
725     0x8412d9991ed58091U, 0xa5178fff668ae0b6U, 0xce5d73ff402d98e3U,
726     0x80fa687f881c7f8eU, 0xa139029f6a239f72U, 0xc987434744ac874eU,
727     0xfbe9141915d7a922U, 0x9d71ac8fada6c9b5U, 0xc4ce17b399107c22U,
728     0xf6019da07f549b2bU, 0x99c102844f94e0fbU, 0xc0314325637a1939U,
729     0xf03d93eebc589f88U, 0x96267c7535b763b5U, 0xbbb01b9283253ca2U,
730     0xea9c227723ee8bcbU, 0x92a1958a7675175fU, 0xb749faed14125d36U,
731     0xe51c79a85916f484U, 0x8f31cc0937ae58d2U, 0xb2fe3f0b8599ef07U,
732     0xdfbdcece67006ac9U, 0x8bd6a141006042bdU, 0xaecc49914078536dU,
733     0xda7f5bf590966848U, 0x888f99797a5e012dU, 0xaab37fd7d8f58178U,
734     0xd5605fcdcf32e1d6U, 0x855c3be0a17fcd26U, 0xa6b34ad8c9dfc06fU,
735     0xd0601d8efc57b08bU, 0x823c12795db6ce57U, 0xa2cb1717b52481edU,
736     0xcb7ddcdda26da268U, 0xfe5d54150b090b02U, 0x9efa548d26e5a6e1U,
737     0xc6b8e9b0709f109aU, 0xf867241c8cc6d4c0U, 0x9b407691d7fc44f8U,
738     0xc21094364dfb5636U, 0xf294b943e17a2bc4U, 0x979cf3ca6cec5b5aU,
739     0xbd8430bd08277231U, 0xece53cec4a314ebdU, 0x940f4613ae5ed136U,
740     0xb913179899f68584U, 0xe757dd7ec07426e5U, 0x9096ea6f3848984fU,
741     0xb4bca50b065abe63U, 0xe1ebce4dc7f16dfbU, 0x8d3360f09cf6e4bdU,
742     0xb080392cc4349decU, 0xdca04777f541c567U, 0x89e42caaf9491b60U,
743     0xac5d37d5b79b6239U, 0xd77485cb25823ac7U, 0x86a8d39ef77164bcU,
744     0xa8530886b54dbdebU, 0xd267caa862a12d66U, 0x8380dea93da4bc60U,
745     0xa46116538d0deb78U, 0xcd795be870516656U, 0x806bd9714632dff6U,
746     0xa086cfcd97bf97f3U, 0xc8a883c0fdaf7df0U, 0xfad2a4b13d1b5d6cU,
747     0x9cc3a6eec6311a63U, 0xc3f490aa77bd60fcU, 0xf4f1b4d515acb93bU,
748     0x991711052d8bf3c5U, 0xbf5cd54678eef0b6U, 0xef340a98172aace4U,
749     0x9580869f0e7aac0eU, 0xbae0a846d2195712U, 0xe998d258869facd7U,
750     0x91ff83775423cc06U, 0xb67f6455292cbf08U, 0xe41f3d6a7377eecaU,
751     0x8e938662882af53eU, 0xb23867fb2a35b28dU, 0xdec681f9f4c31f31U,
752     0x8b3c113c38f9f37eU, 0xae0b158b4738705eU, 0xd98ddaee19068c76U,
753     0x87f8a8d4cfa417c9U, 0xa9f6d30a038d1dbcU, 0xd47487cc8470652bU,
754     0x84c8d4dfd2c63f3bU, 0xa5fb0a17c777cf09U, 0xcf79cc9db955c2ccU,
755     0x81ac1fe293d599bfU, 0xa21727db38cb002fU, 0xca9cf1d206fdc03bU,
756     0xfd442e4688bd304aU, 0x9e4a9cec15763e2eU, 0xc5dd44271ad3cdbaU,
757     0xf7549530e188c128U, 0x9a94dd3e8cf578b9U, 0xc13a148e3032d6e7U,
758     0xf18899b1bc3f8ca1U, 0x96f5600f15a7b7e5U, 0xbcb2b812db11a5deU,
759     0xebdf661791d60f56U, 0x936b9fcebb25c995U, 0xb84687c269ef3bfbU,
760     0xe65829b3046b0afaU, 0x8ff71a0fe2c2e6dcU, 0xb3f4e093db73a093U,
761     0xe0f218b8d25088b8U, 0x8c974f7383725573U, 0xafbd2350644eeacfU,
762     0xdbac6c247d62a583U, 0x894bc396ce5da772U, 0xab9eb47c81f5114fU,
763     0xd686619ba27255a2U, 0x8613fd0145877585U, 0xa798fc4196e952e7U,
764     0xd17f3b51fca3a7a0U, 0x82ef85133de648c4U, 0xa3ab66580d5fdaf5U,
765     0xcc963fee10b7d1b3U, 0xffbbcfe994e5c61fU, 0x9fd561f1fd0f9bd3U,
766     0xc7caba6e7c5382c8U, 0xf9bd690a1b68637bU, 0x9c1661a651213e2dU,
767     0xc31bfa0fe5698db8U, 0xf3e2f893dec3f126U, 0x986ddb5c6b3a76b7U,
768     0xbe89523386091465U, 0xee2ba6c0678b597fU, 0x94db483840b717efU,
769     0xba121a4650e4ddebU, 0xe896a0d7e51e1566U, 0x915e2486ef32cd60U,
770     0xb5b5ada8aaff80b8U, 0xe3231912d5bf60e6U, 0x8df5efabc5979c8fU,
771     0xb1736b96b6fd83b3U, 0xddd0467c64bce4a0U, 0x8aa22c0dbef60ee4U,
772     0xad4ab7112eb3929dU, 0xd89d64d57a607744U, 0x87625f056c7c4a8bU,
773     0xa93af6c6c79b5d2dU, 0xd389b47879823479U, 0x843610cb4bf160cbU,
774     0xa54394fe1eedb8feU, 0xce947a3da6a9273eU, 0x811ccc668829b887U,
775     0xa163ff802a3426a8U, 0xc9bcff6034c13052U, 0xfc2c3f3841f17c67U,
776     0x9d9ba7832936edc0U, 0xc5029163f384a931U, 0xf64335bcf065d37dU,
777     0x99ea0196163fa42eU, 0xc06481fb9bcf8d39U, 0xf07da27a82c37088U,
778     0x964e858c91ba2655U, 0xbbe226efb628afeaU, 0xeadab0aba3b2dbe5U,
779     0x92c8ae6b464fc96fU, 0xb77ada0617e3bbcbU, 0xe55990879ddcaabdU,
780     0x8f57fa54c2a9eab6U, 0xb32df8e9f3546564U, 0xdff9772470297ebdU,
781     0x8bfbea76c619ef36U, 0xaefae51477a06b03U, 0xdab99e59958885c4U,
782     0x88b402f7fd75539bU, 0xaae103b5fcd2a881U, 0xd59944a37c0752a2U,
783     0x857fcae62d8493a5U, 0xa6dfbd9fb8e5b88eU, 0xd097ad07a71f26b2U,
784     0x825ecc24c873782fU, 0xa2f67f2dfa90563bU, 0xcbb41ef979346bcaU,
785     0xfea126b7d78186bcU, 0x9f24b832e6b0f436U, 0xc6ede63fa05d3143U,
786     0xf8a95fcf88747d94U, 0x9b69dbe1b548ce7cU, 0xc24452da229b021bU,
787     0xf2d56790ab41c2a2U, 0x97c560ba6b0919a5U, 0xbdb6b8e905cb600fU,
788     0xed246723473e3813U, 0x9436c0760c86e30bU, 0xb94470938fa89bceU,
789     0xe7958cb87392c2c2U, 0x90bd77f3483bb9b9U, 0xb4ecd5f01a4aa828U,
790     0xe2280b6c20dd5232U, 0x8d590723948a535fU, 0xb0af48ec79ace837U,
791     0xdcdb1b2798182244U, 0x8a08f0f8bf0f156bU, 0xac8b2d36eed2dac5U,
792     0xd7adf884aa879177U, 0x86ccbb52ea94baeaU, 0xa87fea27a539e9a5U,
793     0xd29fe4b18e88640eU, 0x83a3eeeef9153e89U, 0xa48ceaaab75a8e2bU,
794     0xcdb02555653131b6U, 0x808e17555f3ebf11U, 0xa0b19d2ab70e6ed6U,
795     0xc8de047564d20a8bU, 0xfb158592be068d2eU, 0x9ced737bb6c4183dU,
796     0xc428d05aa4751e4cU, 0xf53304714d9265dfU, 0x993fe2c6d07b7fabU,
797     0xbf8fdb78849a5f96U, 0xef73d256a5c0f77cU, 0x95a8637627989aadU,
798     0xbb127c53b17ec159U, 0xe9d71b689dde71afU, 0x9226712162ab070dU,
799     0xb6b00d69bb55c8d1U, 0xe45c10c42a2b3b05U, 0x8eb98a7a9a5b04e3U,
800     0xb267ed1940f1c61cU, 0xdf01e85f912e37a3U, 0x8b61313bbabce2c6U,
801     0xae397d8aa96c1b77U, 0xd9c7dced53c72255U, 0x881cea14545c7575U,
802     0xaa242499697392d2U, 0xd4ad2dbfc3d07787U, 0x84ec3c97da624ab4U,
803     0xa6274bbdd0fadd61U, 0xcfb11ead453994baU, 0x81ceb32c4b43fcf4U,
804     0xa2425ff75e14fc31U, 0xcad2f7f5359a3b3eU, 0xfd87b5f28300ca0dU,
805     0x9e74d1b791e07e48U, 0xc612062576589ddaU, 0xf79687aed3eec551U,
806     0x9abe14cd44753b52U, 0xc16d9a0095928a27U, 0xf1c90080baf72cb1U,
807     0x971da05074da7beeU, 0xbce5086492111aeaU, 0xec1e4a7db69561a5U,
808     0x9392ee8e921d5d07U, 0xb877aa3236a4b449U, 0xe69594bec44de15bU,
809     0x901d7cf73ab0acd9U, 0xb424dc35095cd80fU, 0xe12e13424bb40e13U,
810     0x8cbccc096f5088cbU, 0xafebff0bcb24aafeU, 0xdbe6fecebdedd5beU,
811     0x89705f4136b4a597U, 0xabcc77118461cefcU, 0xd6bf94d5e57a42bcU,
812     0x8637bd05af6c69b5U, 0xa7c5ac471b478423U, 0xd1b71758e219652bU,
813     0x83126e978d4fdf3bU, 0xa3d70a3d70a3d70aU, 0xccccccccccccccccU,
814     0x8000000000000000U, 0xa000000000000000U, 0xc800000000000000U,
815     0xfa00000000000000U, 0x9c40000000000000U, 0xc350000000000000U,
816     0xf424000000000000U, 0x9896800000000000U, 0xbebc200000000000U,
817     0xee6b280000000000U, 0x9502f90000000000U, 0xba43b74000000000U,
818     0xe8d4a51000000000U, 0x9184e72a00000000U, 0xb5e620f480000000U,
819     0xe35fa931a0000000U, 0x8e1bc9bf04000000U, 0xb1a2bc2ec5000000U,
820     0xde0b6b3a76400000U, 0x8ac7230489e80000U, 0xad78ebc5ac620000U,
821     0xd8d726b7177a8000U, 0x878678326eac9000U, 0xa968163f0a57b400U,
822     0xd3c21bcecceda100U, 0x84595161401484a0U, 0xa56fa5b99019a5c8U,
823     0xcecb8f27f4200f3aU, 0x813f3978f8940984U, 0xa18f07d736b90be5U,
824     0xc9f2c9cd04674edeU, 0xfc6f7c4045812296U, 0x9dc5ada82b70b59dU,
825     0xc5371912364ce305U, 0xf684df56c3e01bc6U, 0x9a130b963a6c115cU,
826     0xc097ce7bc90715b3U, 0xf0bdc21abb48db20U, 0x96769950b50d88f4U,
827     0xbc143fa4e250eb31U, 0xeb194f8e1ae525fdU, 0x92efd1b8d0cf37beU,
828     0xb7abc627050305adU, 0xe596b7b0c643c719U, 0x8f7e32ce7bea5c6fU,
829     0xb35dbf821ae4f38bU, 0xe0352f62a19e306eU, 0x8c213d9da502de45U,
830     0xaf298d050e4395d6U, 0xdaf3f04651d47b4cU, 0x88d8762bf324cd0fU,
831     0xab0e93b6efee0053U, 0xd5d238a4abe98068U, 0x85a36366eb71f041U,
832     0xa70c3c40a64e6c51U, 0xd0cf4b50cfe20765U, 0x82818f1281ed449fU,
833     0xa321f2d7226895c7U, 0xcbea6f8ceb02bb39U, 0xfee50b7025c36a08U,
834     0x9f4f2726179a2245U, 0xc722f0ef9d80aad6U, 0xf8ebad2b84e0d58bU,
835     0x9b934c3b330c8577U, 0xc2781f49ffcfa6d5U, 0xf316271c7fc3908aU,
836     0x97edd871cfda3a56U, 0xbde94e8e43d0c8ecU, 0xed63a231d4c4fb27U,
837     0x945e455f24fb1cf8U, 0xb975d6b6ee39e436U, 0xe7d34c64a9c85d44U,
838     0x90e40fbeea1d3a4aU, 0xb51d13aea4a488ddU, 0xe264589a4dcdab14U,
839     0x8d7eb76070a08aecU, 0xb0de65388cc8ada8U, 0xdd15fe86affad912U,
840     0x8a2dbf142dfcc7abU, 0xacb92ed9397bf996U, 0xd7e77a8f87daf7fbU,
841     0x86f0ac99b4e8dafdU, 0xa8acd7c0222311bcU, 0xd2d80db02aabd62bU,
842     0x83c7088e1aab65dbU, 0xa4b8cab1a1563f52U, 0xcde6fd5e09abcf26U,
843     0x80b05e5ac60b6178U, 0xa0dc75f1778e39d6U, 0xc913936dd571c84cU,
844     0xfb5878494ace3a5fU, 0x9d174b2dcec0e47bU, 0xc45d1df942711d9aU,
845     0xf5746577930d6500U, 0x9968bf6abbe85f20U, 0xbfc2ef456ae276e8U,
846     0xefb3ab16c59b14a2U, 0x95d04aee3b80ece5U, 0xbb445da9ca61281fU,
847     0xea1575143cf97226U, 0x924d692ca61be758U, 0xb6e0c377cfa2e12eU,
848     0xe498f455c38b997aU, 0x8edf98b59a373fecU, 0xb2977ee300c50fe7U,
849     0xdf3d5e9bc0f653e1U, 0x8b865b215899f46cU, 0xae67f1e9aec07187U,
850     0xda01ee641a708de9U, 0x884134fe908658b2U, 0xaa51823e34a7eedeU,
851     0xd4e5e2cdc1d1ea96U, 0x850fadc09923329eU, 0xa6539930bf6bff45U,
852     0xcfe87f7cef46ff16U, 0x81f14fae158c5f6eU, 0xa26da3999aef7749U,
853     0xcb090c8001ab551cU, 0xfdcb4fa002162a63U, 0x9e9f11c4014dda7eU,
854     0xc646d63501a1511dU, 0xf7d88bc24209a565U, 0x9ae757596946075fU,
855     0xc1a12d2fc3978937U, 0xf209787bb47d6b84U, 0x9745eb4d50ce6332U,
856     0xbd176620a501fbffU, 0xec5d3fa8ce427affU, 0x93ba47c980e98cdfU,
857     0xb8a8d9bbe123f017U, 0xe6d3102ad96cec1dU, 0x9043ea1ac7e41392U,
858     0xb454e4a179dd1877U, 0xe16a1dc9d8545e94U, 0x8ce2529e2734bb1dU,
859     0xb01ae745b101e9e4U, 0xdc21a1171d42645dU, 0x899504ae72497ebaU,
860     0xabfa45da0edbde69U, 0xd6f8d7509292d603U, 0x865b86925b9bc5c2U,
861     0xa7f26836f282b732U, 0xd1ef0244af2364ffU, 0x8335616aed761f1fU,
862     0xa402b9c5a8d3a6e7U, 0xcd036837130890a1U, 0x802221226be55a64U,
863     0xa02aa96b06deb0fdU, 0xc83553c5c8965d3dU, 0xfa42a8b73abbf48cU,
864     0x9c69a97284b578d7U, 0xc38413cf25e2d70dU, 0xf46518c2ef5b8cd1U,
865     0x98bf2f79d5993802U, 0xbeeefb584aff8603U, 0xeeaaba2e5dbf6784U,
866     0x952ab45cfa97a0b2U, 0xba756174393d88dfU, 0xe912b9d1478ceb17U,
867     0x91abb422ccb812eeU, 0xb616a12b7fe617aaU, 0xe39c49765fdf9d94U,
868     0x8e41ade9fbebc27dU, 0xb1d219647ae6b31cU, 0xde469fbd99a05fe3U,
869     0x8aec23d680043beeU, 0xada72ccc20054ae9U, 0xd910f7ff28069da4U,
870     0x87aa9aff79042286U, 0xa99541bf57452b28U, 0xd3fa922f2d1675f2U,
871     0x847c9b5d7c2e09b7U, 0xa59bc234db398c25U, 0xcf02b2c21207ef2eU,
872     0x8161afb94b44f57dU, 0xa1ba1ba79e1632dcU, 0xca28a291859bbf93U,
873     0xfcb2cb35e702af78U, 0x9defbf01b061adabU, 0xc56baec21c7a1916U,
874     0xf6c69a72a3989f5bU, 0x9a3c2087a63f6399U, 0xc0cb28a98fcf3c7fU,
875     0xf0fdf2d3f3c30b9fU, 0x969eb7c47859e743U, 0xbc4665b596706114U,
876     0xeb57ff22fc0c7959U, 0x9316ff75dd87cbd8U, 0xb7dcbf5354e9beceU,
877     0xe5d3ef282a242e81U, 0x8fa475791a569d10U, 0xb38d92d760ec4455U,
878     0xe070f78d3927556aU, 0x8c469ab843b89562U, 0xaf58416654a6babbU,
879     0xdb2e51bfe9d0696aU, 0x88fcf317f22241e2U, 0xab3c2fddeeaad25aU,
880     0xd60b3bd56a5586f1U, 0x85c7056562757456U, 0xa738c6bebb12d16cU,
881     0xd106f86e69d785c7U, 0x82a45b450226b39cU, 0xa34d721642b06084U,
882     0xcc20ce9bd35c78a5U, 0xff290242c83396ceU, 0x9f79a169bd203e41U,
883     0xc75809c42c684dd1U, 0xf92e0c3537826145U, 0x9bbcc7a142b17ccbU,
884     0xc2abf989935ddbfeU, 0xf356f7ebf83552feU, 0x98165af37b2153deU,
885     0xbe1bf1b059e9a8d6U, 0xeda2ee1c7064130cU, 0x9485d4d1c63e8be7U,
886     0xb9a74a0637ce2ee1U, 0xe8111c87c5c1ba99U, 0x910ab1d4db9914a0U,
887     0xb54d5e4a127f59c8U, 0xe2a0b5dc971f303aU, 0x8da471a9de737e24U,
888     0xb10d8e1456105dadU, 0xdd50f1996b947518U, 0x8a5296ffe33cc92fU,
889     0xace73cbfdc0bfb7bU, 0xd8210befd30efa5aU, 0x8714a775e3e95c78U,
890     0xa8d9d1535ce3b396U, 0xd31045a8341ca07cU, 0x83ea2b892091e44dU,
891     0xa4e4b66b68b65d60U, 0xce1de40642e3f4b9U, 0x80d2ae83e9ce78f3U,
892     0xa1075a24e4421730U, 0xc94930ae1d529cfcU, 0xfb9b7cd9a4a7443cU,
893     0x9d412e0806e88aa5U, 0xc491798a08a2ad4eU, 0xf5b5d7ec8acb58a2U,
894     0x9991a6f3d6bf1765U, 0xbff610b0cc6edd3fU, 0xeff394dcff8a948eU,
895     0x95f83d0a1fb69cd9U, 0xbb764c4ca7a4440fU, 0xea53df5fd18d5513U,
896     0x92746b9be2f8552cU, 0xb7118682dbb66a77U, 0xe4d5e82392a40515U,
897     0x8f05b1163ba6832dU, 0xb2c71d5bca9023f8U, 0xdf78e4b2bd342cf6U,
898     0x8bab8eefb6409c1aU, 0xae9672aba3d0c320U, 0xda3c0f568cc4f3e8U,
899     0x8865899617fb1871U, 0xaa7eebfb9df9de8dU, 0xd51ea6fa85785631U,
900     0x8533285c936b35deU, 0xa67ff273b8460356U, 0xd01fef10a657842cU,
901     0x8213f56a67f6b29bU, 0xa298f2c501f45f42U, 0xcb3f2f7642717713U,
902     0xfe0efb53d30dd4d7U, 0x9ec95d1463e8a506U, 0xc67bb4597ce2ce48U,
903     0xf81aa16fdc1b81daU, 0x9b10a4e5e9913128U, 0xc1d4ce1f63f57d72U,
904     0xf24a01a73cf2dccfU, 0x976e41088617ca01U, 0xbd49d14aa79dbc82U,
905     0xec9c459d51852ba2U, 0x93e1ab8252f33b45U, 0xb8da1662e7b00a17U,
906     0xe7109bfba19c0c9dU, 0x906a617d450187e2U, 0xb484f9dc9641e9daU,
907     0xe1a63853bbd26451U, 0x8d07e33455637eb2U, 0xb049dc016abc5e5fU,
908     0xdc5c5301c56b75f7U, 0x89b9b3e11b6329baU, 0xac2820d9623bf429U,
909     0xd732290fbacaf133U, 0x867f59a9d4bed6c0U, 0xa81f301449ee8c70U,
910     0xd226fc195c6a2f8cU, 0x83585d8fd9c25db7U, 0xa42e74f3d032f525U,
911     0xcd3a1230c43fb26fU, 0x80444b5e7aa7cf85U, 0xa0555e361951c366U,
912     0xc86ab5c39fa63440U, 0xfa856334878fc150U, 0x9c935e00d4b9d8d2U,
913     0xc3b8358109e84f07U, 0xf4a642e14c6262c8U, 0x98e7e9cccfbd7dbdU,
914     0xbf21e44003acdd2cU, 0xeeea5d5004981478U, 0x95527a5202df0ccbU,
915     0xbaa718e68396cffdU, 0xe950df20247c83fdU, 0x91d28b7416cdd27eU,
916     0xb6472e511c81471dU, 0xe3d8f9e563a198e5U, 0x8e679c2f5e44ff8fU,
917 };
918 
919 const int16_t kPower10ExponentTable[] = {
920     -1200, -1196, -1193, -1190, -1186, -1183, -1180, -1176, -1173, -1170, -1166,
921     -1163, -1160, -1156, -1153, -1150, -1146, -1143, -1140, -1136, -1133, -1130,
922     -1127, -1123, -1120, -1117, -1113, -1110, -1107, -1103, -1100, -1097, -1093,
923     -1090, -1087, -1083, -1080, -1077, -1073, -1070, -1067, -1063, -1060, -1057,
924     -1053, -1050, -1047, -1043, -1040, -1037, -1034, -1030, -1027, -1024, -1020,
925     -1017, -1014, -1010, -1007, -1004, -1000, -997,  -994,  -990,  -987,  -984,
926     -980,  -977,  -974,  -970,  -967,  -964,  -960,  -957,  -954,  -950,  -947,
927     -944,  -940,  -937,  -934,  -931,  -927,  -924,  -921,  -917,  -914,  -911,
928     -907,  -904,  -901,  -897,  -894,  -891,  -887,  -884,  -881,  -877,  -874,
929     -871,  -867,  -864,  -861,  -857,  -854,  -851,  -847,  -844,  -841,  -838,
930     -834,  -831,  -828,  -824,  -821,  -818,  -814,  -811,  -808,  -804,  -801,
931     -798,  -794,  -791,  -788,  -784,  -781,  -778,  -774,  -771,  -768,  -764,
932     -761,  -758,  -754,  -751,  -748,  -744,  -741,  -738,  -735,  -731,  -728,
933     -725,  -721,  -718,  -715,  -711,  -708,  -705,  -701,  -698,  -695,  -691,
934     -688,  -685,  -681,  -678,  -675,  -671,  -668,  -665,  -661,  -658,  -655,
935     -651,  -648,  -645,  -642,  -638,  -635,  -632,  -628,  -625,  -622,  -618,
936     -615,  -612,  -608,  -605,  -602,  -598,  -595,  -592,  -588,  -585,  -582,
937     -578,  -575,  -572,  -568,  -565,  -562,  -558,  -555,  -552,  -549,  -545,
938     -542,  -539,  -535,  -532,  -529,  -525,  -522,  -519,  -515,  -512,  -509,
939     -505,  -502,  -499,  -495,  -492,  -489,  -485,  -482,  -479,  -475,  -472,
940     -469,  -465,  -462,  -459,  -455,  -452,  -449,  -446,  -442,  -439,  -436,
941     -432,  -429,  -426,  -422,  -419,  -416,  -412,  -409,  -406,  -402,  -399,
942     -396,  -392,  -389,  -386,  -382,  -379,  -376,  -372,  -369,  -366,  -362,
943     -359,  -356,  -353,  -349,  -346,  -343,  -339,  -336,  -333,  -329,  -326,
944     -323,  -319,  -316,  -313,  -309,  -306,  -303,  -299,  -296,  -293,  -289,
945     -286,  -283,  -279,  -276,  -273,  -269,  -266,  -263,  -259,  -256,  -253,
946     -250,  -246,  -243,  -240,  -236,  -233,  -230,  -226,  -223,  -220,  -216,
947     -213,  -210,  -206,  -203,  -200,  -196,  -193,  -190,  -186,  -183,  -180,
948     -176,  -173,  -170,  -166,  -163,  -160,  -157,  -153,  -150,  -147,  -143,
949     -140,  -137,  -133,  -130,  -127,  -123,  -120,  -117,  -113,  -110,  -107,
950     -103,  -100,  -97,   -93,   -90,   -87,   -83,   -80,   -77,   -73,   -70,
951     -67,   -63,   -60,   -57,   -54,   -50,   -47,   -44,   -40,   -37,   -34,
952     -30,   -27,   -24,   -20,   -17,   -14,   -10,   -7,    -4,    0,     3,
953     6,     10,    13,    16,    20,    23,    26,    30,    33,    36,    39,
954     43,    46,    49,    53,    56,    59,    63,    66,    69,    73,    76,
955     79,    83,    86,    89,    93,    96,    99,    103,   106,   109,   113,
956     116,   119,   123,   126,   129,   132,   136,   139,   142,   146,   149,
957     152,   156,   159,   162,   166,   169,   172,   176,   179,   182,   186,
958     189,   192,   196,   199,   202,   206,   209,   212,   216,   219,   222,
959     226,   229,   232,   235,   239,   242,   245,   249,   252,   255,   259,
960     262,   265,   269,   272,   275,   279,   282,   285,   289,   292,   295,
961     299,   302,   305,   309,   312,   315,   319,   322,   325,   328,   332,
962     335,   338,   342,   345,   348,   352,   355,   358,   362,   365,   368,
963     372,   375,   378,   382,   385,   388,   392,   395,   398,   402,   405,
964     408,   412,   415,   418,   422,   425,   428,   431,   435,   438,   441,
965     445,   448,   451,   455,   458,   461,   465,   468,   471,   475,   478,
966     481,   485,   488,   491,   495,   498,   501,   505,   508,   511,   515,
967     518,   521,   524,   528,   531,   534,   538,   541,   544,   548,   551,
968     554,   558,   561,   564,   568,   571,   574,   578,   581,   584,   588,
969     591,   594,   598,   601,   604,   608,   611,   614,   617,   621,   624,
970     627,   631,   634,   637,   641,   644,   647,   651,   654,   657,   661,
971     664,   667,   671,   674,   677,   681,   684,   687,   691,   694,   697,
972     701,   704,   707,   711,   714,   717,   720,   724,   727,   730,   734,
973     737,   740,   744,   747,   750,   754,   757,   760,   764,   767,   770,
974     774,   777,   780,   784,   787,   790,   794,   797,   800,   804,   807,
975     810,   813,   817,   820,   823,   827,   830,   833,   837,   840,   843,
976     847,   850,   853,   857,   860,   863,   867,   870,   873,   877,   880,
977     883,   887,   890,   893,   897,   900,   903,   907,   910,   913,   916,
978     920,   923,   926,   930,   933,   936,   940,   943,   946,   950,   953,
979     956,   960,
980 };
981 
982 }  // namespace
983 ABSL_NAMESPACE_END
984 }  // namespace absl
985