1 // SPDX-License-Identifier: GPL-2.0 2 3 //! Devres abstraction 4 //! 5 //! [`Devres`] represents an abstraction for the kernel devres (device resource management) 6 //! implementation. 7 8 use crate::{ 9 alloc::Flags, 10 bindings, 11 device::Device, 12 error::{Error, Result}, 13 ffi::c_void, 14 prelude::*, 15 revocable::Revocable, 16 sync::Arc, 17 types::ARef, 18 }; 19 20 use core::ops::Deref; 21 22 #[pin_data] 23 struct DevresInner<T> { 24 dev: ARef<Device>, 25 callback: unsafe extern "C" fn(*mut c_void), 26 #[pin] 27 data: Revocable<T>, 28 } 29 30 /// This abstraction is meant to be used by subsystems to containerize [`Device`] bound resources to 31 /// manage their lifetime. 32 /// 33 /// [`Device`] bound resources should be freed when either the resource goes out of scope or the 34 /// [`Device`] is unbound respectively, depending on what happens first. 35 /// 36 /// To achieve that [`Devres`] registers a devres callback on creation, which is called once the 37 /// [`Device`] is unbound, revoking access to the encapsulated resource (see also [`Revocable`]). 38 /// 39 /// After the [`Devres`] has been unbound it is not possible to access the encapsulated resource 40 /// anymore. 41 /// 42 /// [`Devres`] users should make sure to simply free the corresponding backing resource in `T`'s 43 /// [`Drop`] implementation. 44 /// 45 /// # Example 46 /// 47 /// ```no_run 48 /// # use kernel::{bindings, c_str, device::Device, devres::Devres, io::{Io, IoRaw}}; 49 /// # use core::ops::Deref; 50 /// 51 /// // See also [`pci::Bar`] for a real example. 52 /// struct IoMem<const SIZE: usize>(IoRaw<SIZE>); 53 /// 54 /// impl<const SIZE: usize> IoMem<SIZE> { 55 /// /// # Safety 56 /// /// 57 /// /// [`paddr`, `paddr` + `SIZE`) must be a valid MMIO region that is mappable into the CPUs 58 /// /// virtual address space. 59 /// unsafe fn new(paddr: usize) -> Result<Self>{ 60 /// // SAFETY: By the safety requirements of this function [`paddr`, `paddr` + `SIZE`) is 61 /// // valid for `ioremap`. 62 /// let addr = unsafe { bindings::ioremap(paddr as _, SIZE as _) }; 63 /// if addr.is_null() { 64 /// return Err(ENOMEM); 65 /// } 66 /// 67 /// Ok(IoMem(IoRaw::new(addr as _, SIZE)?)) 68 /// } 69 /// } 70 /// 71 /// impl<const SIZE: usize> Drop for IoMem<SIZE> { 72 /// fn drop(&mut self) { 73 /// // SAFETY: `self.0.addr()` is guaranteed to be properly mapped by `Self::new`. 74 /// unsafe { bindings::iounmap(self.0.addr() as _); }; 75 /// } 76 /// } 77 /// 78 /// impl<const SIZE: usize> Deref for IoMem<SIZE> { 79 /// type Target = Io<SIZE>; 80 /// 81 /// fn deref(&self) -> &Self::Target { 82 /// // SAFETY: The memory range stored in `self` has been properly mapped in `Self::new`. 83 /// unsafe { Io::from_raw(&self.0) } 84 /// } 85 /// } 86 /// # fn no_run() -> Result<(), Error> { 87 /// # // SAFETY: Invalid usage; just for the example to get an `ARef<Device>` instance. 88 /// # let dev = unsafe { Device::get_device(core::ptr::null_mut()) }; 89 /// 90 /// // SAFETY: Invalid usage for example purposes. 91 /// let iomem = unsafe { IoMem::<{ core::mem::size_of::<u32>() }>::new(0xBAAAAAAD)? }; 92 /// let devres = Devres::new(&dev, iomem, GFP_KERNEL)?; 93 /// 94 /// let res = devres.try_access().ok_or(ENXIO)?; 95 /// res.writel(0x42, 0x0); 96 /// # Ok(()) 97 /// # } 98 /// ``` 99 pub struct Devres<T>(Arc<DevresInner<T>>); 100 101 impl<T> DevresInner<T> { new(dev: &Device, data: T, flags: Flags) -> Result<Arc<DevresInner<T>>>102 fn new(dev: &Device, data: T, flags: Flags) -> Result<Arc<DevresInner<T>>> { 103 let inner = Arc::pin_init( 104 pin_init!( DevresInner { 105 dev: dev.into(), 106 callback: Self::devres_callback, 107 data <- Revocable::new(data), 108 }), 109 flags, 110 )?; 111 112 // Convert `Arc<DevresInner>` into a raw pointer and make devres own this reference until 113 // `Self::devres_callback` is called. 114 let data = inner.clone().into_raw(); 115 116 // SAFETY: `devm_add_action` guarantees to call `Self::devres_callback` once `dev` is 117 // detached. 118 let ret = 119 unsafe { bindings::devm_add_action(dev.as_raw(), Some(inner.callback), data as _) }; 120 121 if ret != 0 { 122 // SAFETY: We just created another reference to `inner` in order to pass it to 123 // `bindings::devm_add_action`. If `bindings::devm_add_action` fails, we have to drop 124 // this reference accordingly. 125 let _ = unsafe { Arc::from_raw(data) }; 126 return Err(Error::from_errno(ret)); 127 } 128 129 Ok(inner) 130 } 131 as_ptr(&self) -> *const Self132 fn as_ptr(&self) -> *const Self { 133 self as _ 134 } 135 remove_action(this: &Arc<Self>)136 fn remove_action(this: &Arc<Self>) { 137 // SAFETY: 138 // - `self.inner.dev` is a valid `Device`, 139 // - the `action` and `data` pointers are the exact same ones as given to devm_add_action() 140 // previously, 141 // - `self` is always valid, even if the action has been released already. 142 let ret = unsafe { 143 bindings::devm_remove_action_nowarn( 144 this.dev.as_raw(), 145 Some(this.callback), 146 this.as_ptr() as _, 147 ) 148 }; 149 150 if ret == 0 { 151 // SAFETY: We leaked an `Arc` reference to devm_add_action() in `DevresInner::new`; if 152 // devm_remove_action_nowarn() was successful we can (and have to) claim back ownership 153 // of this reference. 154 let _ = unsafe { Arc::from_raw(this.as_ptr()) }; 155 } 156 } 157 158 #[allow(clippy::missing_safety_doc)] devres_callback(ptr: *mut kernel::ffi::c_void)159 unsafe extern "C" fn devres_callback(ptr: *mut kernel::ffi::c_void) { 160 let ptr = ptr as *mut DevresInner<T>; 161 // Devres owned this memory; now that we received the callback, drop the `Arc` and hence the 162 // reference. 163 // SAFETY: Safe, since we leaked an `Arc` reference to devm_add_action() in 164 // `DevresInner::new`. 165 let inner = unsafe { Arc::from_raw(ptr) }; 166 167 inner.data.revoke(); 168 } 169 } 170 171 impl<T> Devres<T> { 172 /// Creates a new [`Devres`] instance of the given `data`. The `data` encapsulated within the 173 /// returned `Devres` instance' `data` will be revoked once the device is detached. new(dev: &Device, data: T, flags: Flags) -> Result<Self>174 pub fn new(dev: &Device, data: T, flags: Flags) -> Result<Self> { 175 let inner = DevresInner::new(dev, data, flags)?; 176 177 Ok(Devres(inner)) 178 } 179 180 /// Same as [`Devres::new`], but does not return a `Devres` instance. Instead the given `data` 181 /// is owned by devres and will be revoked / dropped, once the device is detached. new_foreign_owned(dev: &Device, data: T, flags: Flags) -> Result182 pub fn new_foreign_owned(dev: &Device, data: T, flags: Flags) -> Result { 183 let _ = DevresInner::new(dev, data, flags)?; 184 185 Ok(()) 186 } 187 } 188 189 impl<T> Deref for Devres<T> { 190 type Target = Revocable<T>; 191 deref(&self) -> &Self::Target192 fn deref(&self) -> &Self::Target { 193 &self.0.data 194 } 195 } 196 197 impl<T> Drop for Devres<T> { drop(&mut self)198 fn drop(&mut self) { 199 DevresInner::remove_action(&self.0); 200 } 201 } 202