1# Copyright © 2020-2022 Arm Ltd and Contributors. All rights reserved. 2# SPDX-License-Identifier: MIT 3 4""" 5Object detection demo that takes a video file, runs inference on each frame producing 6bounding boxes and labels around detected objects, and saves the processed video. 7""" 8 9import os 10import sys 11 12script_dir = os.path.dirname(__file__) 13sys.path.insert(1, os.path.join(script_dir, '..', 'common')) 14 15import cv2 16from tqdm import tqdm 17from argparse import ArgumentParser 18 19from ssd import ssd_processing, ssd_resize_factor 20from yolo import yolo_processing, yolo_resize_factor 21from utils import dict_labels, Profiling 22from cv_utils import init_video_file_capture, preprocess, draw_bounding_boxes 23import style_transfer 24 25 26def get_model_processing(model_name: str, video: cv2.VideoCapture, input_data_shape: tuple): 27 """ 28 Gets model-specific information such as model labels and decoding and processing functions. 29 The user can include their own network and functions by adding another statement. 30 31 Args: 32 model_name: Name of type of supported model. 33 video: Video capture object, contains information about data source. 34 input_data_shape: Contains shape of model input layer. 35 36 Returns: 37 Model labels, decoding and processing functions. 38 """ 39 if model_name == 'ssd_mobilenet_v1': 40 return ssd_processing, ssd_resize_factor(video) 41 elif model_name == 'yolo_v3_tiny': 42 return yolo_processing, yolo_resize_factor(video, input_data_shape) 43 else: 44 raise ValueError(f'{model_name} is not a valid model name') 45 46 47def main(args): 48 enable_profile = args.profiling_enabled == "true" 49 action_profiler = Profiling(enable_profile) 50 overall_profiler = Profiling(enable_profile) 51 overall_profiler.profiling_start() 52 action_profiler.profiling_start() 53 54 if args.tflite_delegate_path is not None: 55 from network_executor_tflite import TFLiteNetworkExecutor as NetworkExecutor 56 exec_input_args = (args.model_file_path, args.preferred_backends, args.tflite_delegate_path) 57 else: 58 from network_executor import ArmnnNetworkExecutor as NetworkExecutor 59 exec_input_args = (args.model_file_path, args.preferred_backends) 60 61 executor = NetworkExecutor(*exec_input_args) 62 action_profiler.profiling_stop_and_print_us("Executor initialization") 63 64 action_profiler.profiling_start() 65 video, video_writer, frame_count = init_video_file_capture(args.video_file_path, args.output_video_file_path) 66 process_output, resize_factor = get_model_processing(args.model_name, video, executor.get_shape()) 67 action_profiler.profiling_stop_and_print_us("Video initialization") 68 69 labels = dict_labels(args.label_path, include_rgb=True) 70 71 if all(element is not None for element in [args.style_predict_model_file_path, 72 args.style_transfer_model_file_path, 73 args.style_image_path, args.style_transfer_class]): 74 style_image = cv2.imread(args.style_image_path) 75 action_profiler.profiling_start() 76 style_transfer_executor = style_transfer.StyleTransfer(args.style_predict_model_file_path, 77 args.style_transfer_model_file_path, 78 style_image, args.preferred_backends, 79 args.tflite_delegate_path) 80 action_profiler.profiling_stop_and_print_us("Style Transfer Executor initialization") 81 82 for _ in tqdm(frame_count, desc='Processing frames'): 83 frame_present, frame = video.read() 84 if not frame_present: 85 continue 86 model_name = args.model_name 87 if model_name == "ssd_mobilenet_v1": 88 input_data = preprocess(frame, executor.get_data_type(), executor.get_shape(), True) 89 else: 90 input_data = preprocess(frame, executor.get_data_type(), executor.get_shape(), False) 91 92 action_profiler.profiling_start() 93 output_result = executor.run([input_data]) 94 action_profiler.profiling_stop_and_print_us("Running inference") 95 96 detections = process_output(output_result) 97 98 if all(element is not None for element in [args.style_predict_model_file_path, 99 args.style_transfer_model_file_path, 100 args.style_image_path, args.style_transfer_class]): 101 action_profiler.profiling_start() 102 frame = style_transfer.create_stylized_detection(style_transfer_executor, args.style_transfer_class, 103 frame, detections, resize_factor, labels) 104 action_profiler.profiling_stop_and_print_us("Running Style Transfer") 105 else: 106 draw_bounding_boxes(frame, detections, resize_factor, labels) 107 108 video_writer.write(frame) 109 print('Finished processing frames') 110 overall_profiler.profiling_stop_and_print_us("Total compute time") 111 video.release(), video_writer.release() 112 113 114if __name__ == '__main__': 115 parser = ArgumentParser() 116 parser.add_argument('--video_file_path', required=True, type=str, 117 help='Path to the video file to run object detection on') 118 parser.add_argument('--model_file_path', required=True, type=str, 119 help='Path to the Object Detection model to use') 120 parser.add_argument('--model_name', required=True, type=str, 121 help='The name of the model being used. Accepted options: ssd_mobilenet_v1, yolo_v3_tiny') 122 parser.add_argument('--label_path', required=True, type=str, 123 help='Path to the labelset for the provided model file') 124 parser.add_argument('--output_video_file_path', type=str, 125 help='Path to the output video file with detections added in') 126 parser.add_argument('--preferred_backends', type=str, nargs='+', default=['CpuAcc', 'CpuRef'], 127 help='Takes the preferred backends in preference order, separated by whitespace, ' 128 'for example: CpuAcc GpuAcc CpuRef. Accepted options: [CpuAcc, CpuRef, GpuAcc]. ' 129 'Defaults to [CpuAcc, CpuRef]') 130 parser.add_argument('--tflite_delegate_path', type=str, 131 help='Enter TensorFlow Lite Delegate file path (.so file). If not entered,' 132 'will use armnn executor') 133 parser.add_argument('--profiling_enabled', type=str, 134 help='[OPTIONAL] Enabling this option will print important ML related milestones timing' 135 'information in micro-seconds. By default, this option is disabled.' 136 'Accepted options are true/false.') 137 parser.add_argument('--style_predict_model_file_path', type=str, 138 help='Path to the style prediction model to use') 139 parser.add_argument('--style_transfer_model_file_path', type=str, 140 help='Path to the style transfer model to use') 141 parser.add_argument('--style_image_path', type=str, 142 help='Path to the style image to create stylized frames') 143 parser.add_argument('--style_transfer_class', type=str, 144 help='A class to transform its style') 145 146 args = parser.parse_args() 147 main(args) 148