1 /* 2 * Copyright 2004 The WebRTC Project Authors. All rights reserved. 3 * 4 * Use of this source code is governed by a BSD-style license 5 * that can be found in the LICENSE file in the root of the source 6 * tree. An additional intellectual property rights grant can be found 7 * in the file PATENTS. All contributing project authors may 8 * be found in the AUTHORS file in the root of the source tree. 9 */ 10 11 #ifndef RTC_BASE_BUFFER_H_ 12 #define RTC_BASE_BUFFER_H_ 13 14 #include <stdint.h> 15 16 #include <algorithm> 17 #include <cstring> 18 #include <memory> 19 #include <type_traits> 20 #include <utility> 21 22 #include "absl/strings/string_view.h" 23 #include "api/array_view.h" 24 #include "rtc_base/checks.h" 25 #include "rtc_base/type_traits.h" 26 #include "rtc_base/zero_memory.h" 27 28 namespace rtc { 29 30 namespace internal { 31 32 // (Internal; please don't use outside this file.) Determines if elements of 33 // type U are compatible with a BufferT<T>. For most types, we just ignore 34 // top-level const and forbid top-level volatile and require T and U to be 35 // otherwise equal, but all byte-sized integers (notably char, int8_t, and 36 // uint8_t) are compatible with each other. (Note: We aim to get rid of this 37 // behavior, and treat all types the same.) 38 template <typename T, typename U> 39 struct BufferCompat { 40 static constexpr bool value = 41 !std::is_volatile<U>::value && 42 ((std::is_integral<T>::value && sizeof(T) == 1) 43 ? (std::is_integral<U>::value && sizeof(U) == 1) 44 : (std::is_same<T, typename std::remove_const<U>::type>::value)); 45 }; 46 47 } // namespace internal 48 49 // Basic buffer class, can be grown and shrunk dynamically. 50 // Unlike std::string/vector, does not initialize data when increasing size. 51 // If "ZeroOnFree" is true, any memory is explicitly cleared before releasing. 52 // The type alias "ZeroOnFreeBuffer" below should be used instead of setting 53 // "ZeroOnFree" in the template manually to "true". 54 template <typename T, bool ZeroOnFree = false> 55 class BufferT { 56 // We want T's destructor and default constructor to be trivial, i.e. perform 57 // no action, so that we don't have to touch the memory we allocate and 58 // deallocate. And we want T to be trivially copyable, so that we can copy T 59 // instances with std::memcpy. This is precisely the definition of a trivial 60 // type. 61 static_assert(std::is_trivial<T>::value, "T must be a trivial type."); 62 63 // This class relies heavily on being able to mutate its data. 64 static_assert(!std::is_const<T>::value, "T may not be const"); 65 66 public: 67 using value_type = T; 68 using const_iterator = const T*; 69 70 // An empty BufferT. BufferT()71 BufferT() : size_(0), capacity_(0), data_(nullptr) { 72 RTC_DCHECK(IsConsistent()); 73 } 74 75 // Disable copy construction and copy assignment, since copying a buffer is 76 // expensive enough that we want to force the user to be explicit about it. 77 BufferT(const BufferT&) = delete; 78 BufferT& operator=(const BufferT&) = delete; 79 BufferT(BufferT && buf)80 BufferT(BufferT&& buf) 81 : size_(buf.size()), 82 capacity_(buf.capacity()), 83 data_(std::move(buf.data_)) { 84 RTC_DCHECK(IsConsistent()); 85 buf.OnMovedFrom(); 86 } 87 88 // Construct a buffer with the specified number of uninitialized elements. BufferT(size_t size)89 explicit BufferT(size_t size) : BufferT(size, size) {} 90 BufferT(size_t size,size_t capacity)91 BufferT(size_t size, size_t capacity) 92 : size_(size), 93 capacity_(std::max(size, capacity)), 94 data_(capacity_ > 0 ? new T[capacity_] : nullptr) { 95 RTC_DCHECK(IsConsistent()); 96 } 97 98 // Construct a buffer and copy the specified number of elements into it. 99 template <typename U, 100 typename std::enable_if< 101 internal::BufferCompat<T, U>::value>::type* = nullptr> BufferT(const U * data,size_t size)102 BufferT(const U* data, size_t size) : BufferT(data, size, size) {} 103 104 template <typename U, 105 typename std::enable_if< 106 internal::BufferCompat<T, U>::value>::type* = nullptr> BufferT(U * data,size_t size,size_t capacity)107 BufferT(U* data, size_t size, size_t capacity) : BufferT(size, capacity) { 108 static_assert(sizeof(T) == sizeof(U), ""); 109 if (size > 0) { 110 RTC_DCHECK(data); 111 std::memcpy(data_.get(), data, size * sizeof(U)); 112 } 113 } 114 115 // Construct a buffer from the contents of an array. 116 template <typename U, 117 size_t N, 118 typename std::enable_if< 119 internal::BufferCompat<T, U>::value>::type* = nullptr> BufferT(U (& array)[N])120 BufferT(U (&array)[N]) : BufferT(array, N) {} 121 ~BufferT()122 ~BufferT() { MaybeZeroCompleteBuffer(); } 123 124 // Implicit conversion to absl::string_view if T is compatible with char. 125 template <typename U = T> 126 operator typename std::enable_if<internal::BufferCompat<U, char>::value, type()127 absl::string_view>::type() const { 128 return absl::string_view(data<char>(), size()); 129 } 130 131 // Get a pointer to the data. Just .data() will give you a (const) T*, but if 132 // T is a byte-sized integer, you may also use .data<U>() for any other 133 // byte-sized integer U. 134 template <typename U = T, 135 typename std::enable_if< 136 internal::BufferCompat<T, U>::value>::type* = nullptr> data()137 const U* data() const { 138 RTC_DCHECK(IsConsistent()); 139 return reinterpret_cast<U*>(data_.get()); 140 } 141 142 template <typename U = T, 143 typename std::enable_if< 144 internal::BufferCompat<T, U>::value>::type* = nullptr> data()145 U* data() { 146 RTC_DCHECK(IsConsistent()); 147 return reinterpret_cast<U*>(data_.get()); 148 } 149 empty()150 bool empty() const { 151 RTC_DCHECK(IsConsistent()); 152 return size_ == 0; 153 } 154 size()155 size_t size() const { 156 RTC_DCHECK(IsConsistent()); 157 return size_; 158 } 159 capacity()160 size_t capacity() const { 161 RTC_DCHECK(IsConsistent()); 162 return capacity_; 163 } 164 165 BufferT& operator=(BufferT&& buf) { 166 RTC_DCHECK(buf.IsConsistent()); 167 MaybeZeroCompleteBuffer(); 168 size_ = buf.size_; 169 capacity_ = buf.capacity_; 170 using std::swap; 171 swap(data_, buf.data_); 172 buf.data_.reset(); 173 buf.OnMovedFrom(); 174 return *this; 175 } 176 177 bool operator==(const BufferT& buf) const { 178 RTC_DCHECK(IsConsistent()); 179 if (size_ != buf.size_) { 180 return false; 181 } 182 if (std::is_integral<T>::value) { 183 // Optimization. 184 return std::memcmp(data_.get(), buf.data_.get(), size_ * sizeof(T)) == 0; 185 } 186 for (size_t i = 0; i < size_; ++i) { 187 if (data_[i] != buf.data_[i]) { 188 return false; 189 } 190 } 191 return true; 192 } 193 194 bool operator!=(const BufferT& buf) const { return !(*this == buf); } 195 196 T& operator[](size_t index) { 197 RTC_DCHECK_LT(index, size_); 198 return data()[index]; 199 } 200 201 T operator[](size_t index) const { 202 RTC_DCHECK_LT(index, size_); 203 return data()[index]; 204 } 205 begin()206 T* begin() { return data(); } end()207 T* end() { return data() + size(); } begin()208 const T* begin() const { return data(); } end()209 const T* end() const { return data() + size(); } cbegin()210 const T* cbegin() const { return data(); } cend()211 const T* cend() const { return data() + size(); } 212 213 // The SetData functions replace the contents of the buffer. They accept the 214 // same input types as the constructors. 215 template <typename U, 216 typename std::enable_if< 217 internal::BufferCompat<T, U>::value>::type* = nullptr> SetData(const U * data,size_t size)218 void SetData(const U* data, size_t size) { 219 RTC_DCHECK(IsConsistent()); 220 const size_t old_size = size_; 221 size_ = 0; 222 AppendData(data, size); 223 if (ZeroOnFree && size_ < old_size) { 224 ZeroTrailingData(old_size - size_); 225 } 226 } 227 228 template <typename U, 229 size_t N, 230 typename std::enable_if< 231 internal::BufferCompat<T, U>::value>::type* = nullptr> SetData(const U (& array)[N])232 void SetData(const U (&array)[N]) { 233 SetData(array, N); 234 } 235 236 template <typename W, 237 typename std::enable_if< 238 HasDataAndSize<const W, const T>::value>::type* = nullptr> SetData(const W & w)239 void SetData(const W& w) { 240 SetData(w.data(), w.size()); 241 } 242 243 // Replaces the data in the buffer with at most `max_elements` of data, using 244 // the function `setter`, which should have the following signature: 245 // 246 // size_t setter(ArrayView<U> view) 247 // 248 // `setter` is given an appropriately typed ArrayView of length exactly 249 // `max_elements` that describes the area where it should write the data; it 250 // should return the number of elements actually written. (If it doesn't fill 251 // the whole ArrayView, it should leave the unused space at the end.) 252 template <typename U = T, 253 typename F, 254 typename std::enable_if< 255 internal::BufferCompat<T, U>::value>::type* = nullptr> SetData(size_t max_elements,F && setter)256 size_t SetData(size_t max_elements, F&& setter) { 257 RTC_DCHECK(IsConsistent()); 258 const size_t old_size = size_; 259 size_ = 0; 260 const size_t written = AppendData<U>(max_elements, std::forward<F>(setter)); 261 if (ZeroOnFree && size_ < old_size) { 262 ZeroTrailingData(old_size - size_); 263 } 264 return written; 265 } 266 267 // The AppendData functions add data to the end of the buffer. They accept 268 // the same input types as the constructors. 269 template <typename U, 270 typename std::enable_if< 271 internal::BufferCompat<T, U>::value>::type* = nullptr> AppendData(const U * data,size_t size)272 void AppendData(const U* data, size_t size) { 273 if (size == 0) { 274 return; 275 } 276 RTC_DCHECK(data); 277 RTC_DCHECK(IsConsistent()); 278 const size_t new_size = size_ + size; 279 EnsureCapacityWithHeadroom(new_size, true); 280 static_assert(sizeof(T) == sizeof(U), ""); 281 std::memcpy(data_.get() + size_, data, size * sizeof(U)); 282 size_ = new_size; 283 RTC_DCHECK(IsConsistent()); 284 } 285 286 template <typename U, 287 size_t N, 288 typename std::enable_if< 289 internal::BufferCompat<T, U>::value>::type* = nullptr> AppendData(const U (& array)[N])290 void AppendData(const U (&array)[N]) { 291 AppendData(array, N); 292 } 293 294 template <typename W, 295 typename std::enable_if< 296 HasDataAndSize<const W, const T>::value>::type* = nullptr> AppendData(const W & w)297 void AppendData(const W& w) { 298 AppendData(w.data(), w.size()); 299 } 300 301 template <typename U, 302 typename std::enable_if< 303 internal::BufferCompat<T, U>::value>::type* = nullptr> AppendData(const U & item)304 void AppendData(const U& item) { 305 AppendData(&item, 1); 306 } 307 308 // Appends at most `max_elements` to the end of the buffer, using the function 309 // `setter`, which should have the following signature: 310 // 311 // size_t setter(ArrayView<U> view) 312 // 313 // `setter` is given an appropriately typed ArrayView of length exactly 314 // `max_elements` that describes the area where it should write the data; it 315 // should return the number of elements actually written. (If it doesn't fill 316 // the whole ArrayView, it should leave the unused space at the end.) 317 template <typename U = T, 318 typename F, 319 typename std::enable_if< 320 internal::BufferCompat<T, U>::value>::type* = nullptr> AppendData(size_t max_elements,F && setter)321 size_t AppendData(size_t max_elements, F&& setter) { 322 RTC_DCHECK(IsConsistent()); 323 const size_t old_size = size_; 324 SetSize(old_size + max_elements); 325 U* base_ptr = data<U>() + old_size; 326 size_t written_elements = setter(rtc::ArrayView<U>(base_ptr, max_elements)); 327 328 RTC_CHECK_LE(written_elements, max_elements); 329 size_ = old_size + written_elements; 330 RTC_DCHECK(IsConsistent()); 331 return written_elements; 332 } 333 334 // Sets the size of the buffer. If the new size is smaller than the old, the 335 // buffer contents will be kept but truncated; if the new size is greater, 336 // the existing contents will be kept and the new space will be 337 // uninitialized. SetSize(size_t size)338 void SetSize(size_t size) { 339 const size_t old_size = size_; 340 EnsureCapacityWithHeadroom(size, true); 341 size_ = size; 342 if (ZeroOnFree && size_ < old_size) { 343 ZeroTrailingData(old_size - size_); 344 } 345 } 346 347 // Ensure that the buffer size can be increased to at least capacity without 348 // further reallocation. (Of course, this operation might need to reallocate 349 // the buffer.) EnsureCapacity(size_t capacity)350 void EnsureCapacity(size_t capacity) { 351 // Don't allocate extra headroom, since the user is asking for a specific 352 // capacity. 353 EnsureCapacityWithHeadroom(capacity, false); 354 } 355 356 // Resets the buffer to zero size without altering capacity. Works even if the 357 // buffer has been moved from. Clear()358 void Clear() { 359 MaybeZeroCompleteBuffer(); 360 size_ = 0; 361 RTC_DCHECK(IsConsistent()); 362 } 363 364 // Swaps two buffers. Also works for buffers that have been moved from. swap(BufferT & a,BufferT & b)365 friend void swap(BufferT& a, BufferT& b) { 366 using std::swap; 367 swap(a.size_, b.size_); 368 swap(a.capacity_, b.capacity_); 369 swap(a.data_, b.data_); 370 } 371 372 private: EnsureCapacityWithHeadroom(size_t capacity,bool extra_headroom)373 void EnsureCapacityWithHeadroom(size_t capacity, bool extra_headroom) { 374 RTC_DCHECK(IsConsistent()); 375 if (capacity <= capacity_) 376 return; 377 378 // If the caller asks for extra headroom, ensure that the new capacity is 379 // >= 1.5 times the old capacity. Any constant > 1 is sufficient to prevent 380 // quadratic behavior; as to why we pick 1.5 in particular, see 381 // https://github.com/facebook/folly/blob/master/folly/docs/FBVector.md and 382 // http://www.gahcep.com/cpp-internals-stl-vector-part-1/. 383 const size_t new_capacity = 384 extra_headroom ? std::max(capacity, capacity_ + capacity_ / 2) 385 : capacity; 386 387 std::unique_ptr<T[]> new_data(new T[new_capacity]); 388 if (data_ != nullptr) { 389 std::memcpy(new_data.get(), data_.get(), size_ * sizeof(T)); 390 } 391 MaybeZeroCompleteBuffer(); 392 data_ = std::move(new_data); 393 capacity_ = new_capacity; 394 RTC_DCHECK(IsConsistent()); 395 } 396 397 // Zero the complete buffer if template argument "ZeroOnFree" is true. MaybeZeroCompleteBuffer()398 void MaybeZeroCompleteBuffer() { 399 if (ZeroOnFree && capacity_ > 0) { 400 // It would be sufficient to only zero "size_" elements, as all other 401 // methods already ensure that the unused capacity contains no sensitive 402 // data---but better safe than sorry. 403 ExplicitZeroMemory(data_.get(), capacity_ * sizeof(T)); 404 } 405 } 406 407 // Zero the first "count" elements of unused capacity. ZeroTrailingData(size_t count)408 void ZeroTrailingData(size_t count) { 409 RTC_DCHECK(IsConsistent()); 410 RTC_DCHECK_LE(count, capacity_ - size_); 411 ExplicitZeroMemory(data_.get() + size_, count * sizeof(T)); 412 } 413 414 // Precondition for all methods except Clear, operator= and the destructor. 415 // Postcondition for all methods except move construction and move 416 // assignment, which leave the moved-from object in a possibly inconsistent 417 // state. IsConsistent()418 bool IsConsistent() const { 419 return (data_ || capacity_ == 0) && capacity_ >= size_; 420 } 421 422 // Called when *this has been moved from. Conceptually it's a no-op, but we 423 // can mutate the state slightly to help subsequent sanity checks catch bugs. OnMovedFrom()424 void OnMovedFrom() { 425 RTC_DCHECK(!data_); // Our heap block should have been stolen. 426 #if RTC_DCHECK_IS_ON 427 // Ensure that *this is always inconsistent, to provoke bugs. 428 size_ = 1; 429 capacity_ = 0; 430 #else 431 // Make *this consistent and empty. Shouldn't be necessary, but better safe 432 // than sorry. 433 size_ = 0; 434 capacity_ = 0; 435 #endif 436 } 437 438 size_t size_; 439 size_t capacity_; 440 std::unique_ptr<T[]> data_; 441 }; 442 443 // By far the most common sort of buffer. 444 using Buffer = BufferT<uint8_t>; 445 446 // A buffer that zeros memory before releasing it. 447 template <typename T> 448 using ZeroOnFreeBuffer = BufferT<T, true>; 449 450 } // namespace rtc 451 452 #endif // RTC_BASE_BUFFER_H_ 453