1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5package regexp
6
7import (
8	"io"
9	"regexp/syntax"
10	"sync"
11)
12
13// A queue is a 'sparse array' holding pending threads of execution.
14// See https://research.swtch.com/2008/03/using-uninitialized-memory-for-fun-and.html
15type queue struct {
16	sparse []uint32
17	dense  []entry
18}
19
20// An entry is an entry on a queue.
21// It holds both the instruction pc and the actual thread.
22// Some queue entries are just place holders so that the machine
23// knows it has considered that pc. Such entries have t == nil.
24type entry struct {
25	pc uint32
26	t  *thread
27}
28
29// A thread is the state of a single path through the machine:
30// an instruction and a corresponding capture array.
31// See https://swtch.com/~rsc/regexp/regexp2.html
32type thread struct {
33	inst *syntax.Inst
34	cap  []int
35}
36
37// A machine holds all the state during an NFA simulation for p.
38type machine struct {
39	re       *Regexp      // corresponding Regexp
40	p        *syntax.Prog // compiled program
41	q0, q1   queue        // two queues for runq, nextq
42	pool     []*thread    // pool of available threads
43	matched  bool         // whether a match was found
44	matchcap []int        // capture information for the match
45
46	inputs inputs
47}
48
49type inputs struct {
50	// cached inputs, to avoid allocation
51	bytes  inputBytes
52	string inputString
53	reader inputReader
54}
55
56func (i *inputs) newBytes(b []byte) input {
57	i.bytes.str = b
58	return &i.bytes
59}
60
61func (i *inputs) newString(s string) input {
62	i.string.str = s
63	return &i.string
64}
65
66func (i *inputs) newReader(r io.RuneReader) input {
67	i.reader.r = r
68	i.reader.atEOT = false
69	i.reader.pos = 0
70	return &i.reader
71}
72
73func (i *inputs) clear() {
74	// We need to clear 1 of these.
75	// Avoid the expense of clearing the others (pointer write barrier).
76	if i.bytes.str != nil {
77		i.bytes.str = nil
78	} else if i.reader.r != nil {
79		i.reader.r = nil
80	} else {
81		i.string.str = ""
82	}
83}
84
85func (i *inputs) init(r io.RuneReader, b []byte, s string) (input, int) {
86	if r != nil {
87		return i.newReader(r), 0
88	}
89	if b != nil {
90		return i.newBytes(b), len(b)
91	}
92	return i.newString(s), len(s)
93}
94
95func (m *machine) init(ncap int) {
96	for _, t := range m.pool {
97		t.cap = t.cap[:ncap]
98	}
99	m.matchcap = m.matchcap[:ncap]
100}
101
102// alloc allocates a new thread with the given instruction.
103// It uses the free pool if possible.
104func (m *machine) alloc(i *syntax.Inst) *thread {
105	var t *thread
106	if n := len(m.pool); n > 0 {
107		t = m.pool[n-1]
108		m.pool = m.pool[:n-1]
109	} else {
110		t = new(thread)
111		t.cap = make([]int, len(m.matchcap), cap(m.matchcap))
112	}
113	t.inst = i
114	return t
115}
116
117// A lazyFlag is a lazily-evaluated syntax.EmptyOp,
118// for checking zero-width flags like ^ $ \A \z \B \b.
119// It records the pair of relevant runes and does not
120// determine the implied flags until absolutely necessary
121// (most of the time, that means never).
122type lazyFlag uint64
123
124func newLazyFlag(r1, r2 rune) lazyFlag {
125	return lazyFlag(uint64(r1)<<32 | uint64(uint32(r2)))
126}
127
128func (f lazyFlag) match(op syntax.EmptyOp) bool {
129	if op == 0 {
130		return true
131	}
132	r1 := rune(f >> 32)
133	if op&syntax.EmptyBeginLine != 0 {
134		if r1 != '\n' && r1 >= 0 {
135			return false
136		}
137		op &^= syntax.EmptyBeginLine
138	}
139	if op&syntax.EmptyBeginText != 0 {
140		if r1 >= 0 {
141			return false
142		}
143		op &^= syntax.EmptyBeginText
144	}
145	if op == 0 {
146		return true
147	}
148	r2 := rune(f)
149	if op&syntax.EmptyEndLine != 0 {
150		if r2 != '\n' && r2 >= 0 {
151			return false
152		}
153		op &^= syntax.EmptyEndLine
154	}
155	if op&syntax.EmptyEndText != 0 {
156		if r2 >= 0 {
157			return false
158		}
159		op &^= syntax.EmptyEndText
160	}
161	if op == 0 {
162		return true
163	}
164	if syntax.IsWordChar(r1) != syntax.IsWordChar(r2) {
165		op &^= syntax.EmptyWordBoundary
166	} else {
167		op &^= syntax.EmptyNoWordBoundary
168	}
169	return op == 0
170}
171
172// match runs the machine over the input starting at pos.
173// It reports whether a match was found.
174// If so, m.matchcap holds the submatch information.
175func (m *machine) match(i input, pos int) bool {
176	startCond := m.re.cond
177	if startCond == ^syntax.EmptyOp(0) { // impossible
178		return false
179	}
180	m.matched = false
181	for i := range m.matchcap {
182		m.matchcap[i] = -1
183	}
184	runq, nextq := &m.q0, &m.q1
185	r, r1 := endOfText, endOfText
186	width, width1 := 0, 0
187	r, width = i.step(pos)
188	if r != endOfText {
189		r1, width1 = i.step(pos + width)
190	}
191	var flag lazyFlag
192	if pos == 0 {
193		flag = newLazyFlag(-1, r)
194	} else {
195		flag = i.context(pos)
196	}
197	for {
198		if len(runq.dense) == 0 {
199			if startCond&syntax.EmptyBeginText != 0 && pos != 0 {
200				// Anchored match, past beginning of text.
201				break
202			}
203			if m.matched {
204				// Have match; finished exploring alternatives.
205				break
206			}
207			if len(m.re.prefix) > 0 && r1 != m.re.prefixRune && i.canCheckPrefix() {
208				// Match requires literal prefix; fast search for it.
209				advance := i.index(m.re, pos)
210				if advance < 0 {
211					break
212				}
213				pos += advance
214				r, width = i.step(pos)
215				r1, width1 = i.step(pos + width)
216			}
217		}
218		if !m.matched {
219			if len(m.matchcap) > 0 {
220				m.matchcap[0] = pos
221			}
222			m.add(runq, uint32(m.p.Start), pos, m.matchcap, &flag, nil)
223		}
224		flag = newLazyFlag(r, r1)
225		m.step(runq, nextq, pos, pos+width, r, &flag)
226		if width == 0 {
227			break
228		}
229		if len(m.matchcap) == 0 && m.matched {
230			// Found a match and not paying attention
231			// to where it is, so any match will do.
232			break
233		}
234		pos += width
235		r, width = r1, width1
236		if r != endOfText {
237			r1, width1 = i.step(pos + width)
238		}
239		runq, nextq = nextq, runq
240	}
241	m.clear(nextq)
242	return m.matched
243}
244
245// clear frees all threads on the thread queue.
246func (m *machine) clear(q *queue) {
247	for _, d := range q.dense {
248		if d.t != nil {
249			m.pool = append(m.pool, d.t)
250		}
251	}
252	q.dense = q.dense[:0]
253}
254
255// step executes one step of the machine, running each of the threads
256// on runq and appending new threads to nextq.
257// The step processes the rune c (which may be endOfText),
258// which starts at position pos and ends at nextPos.
259// nextCond gives the setting for the empty-width flags after c.
260func (m *machine) step(runq, nextq *queue, pos, nextPos int, c rune, nextCond *lazyFlag) {
261	longest := m.re.longest
262	for j := 0; j < len(runq.dense); j++ {
263		d := &runq.dense[j]
264		t := d.t
265		if t == nil {
266			continue
267		}
268		if longest && m.matched && len(t.cap) > 0 && m.matchcap[0] < t.cap[0] {
269			m.pool = append(m.pool, t)
270			continue
271		}
272		i := t.inst
273		add := false
274		switch i.Op {
275		default:
276			panic("bad inst")
277
278		case syntax.InstMatch:
279			if len(t.cap) > 0 && (!longest || !m.matched || m.matchcap[1] < pos) {
280				t.cap[1] = pos
281				copy(m.matchcap, t.cap)
282			}
283			if !longest {
284				// First-match mode: cut off all lower-priority threads.
285				for _, d := range runq.dense[j+1:] {
286					if d.t != nil {
287						m.pool = append(m.pool, d.t)
288					}
289				}
290				runq.dense = runq.dense[:0]
291			}
292			m.matched = true
293
294		case syntax.InstRune:
295			add = i.MatchRune(c)
296		case syntax.InstRune1:
297			add = c == i.Rune[0]
298		case syntax.InstRuneAny:
299			add = true
300		case syntax.InstRuneAnyNotNL:
301			add = c != '\n'
302		}
303		if add {
304			t = m.add(nextq, i.Out, nextPos, t.cap, nextCond, t)
305		}
306		if t != nil {
307			m.pool = append(m.pool, t)
308		}
309	}
310	runq.dense = runq.dense[:0]
311}
312
313// add adds an entry to q for pc, unless the q already has such an entry.
314// It also recursively adds an entry for all instructions reachable from pc by following
315// empty-width conditions satisfied by cond.  pos gives the current position
316// in the input.
317func (m *machine) add(q *queue, pc uint32, pos int, cap []int, cond *lazyFlag, t *thread) *thread {
318Again:
319	if pc == 0 {
320		return t
321	}
322	if j := q.sparse[pc]; j < uint32(len(q.dense)) && q.dense[j].pc == pc {
323		return t
324	}
325
326	j := len(q.dense)
327	q.dense = q.dense[:j+1]
328	d := &q.dense[j]
329	d.t = nil
330	d.pc = pc
331	q.sparse[pc] = uint32(j)
332
333	i := &m.p.Inst[pc]
334	switch i.Op {
335	default:
336		panic("unhandled")
337	case syntax.InstFail:
338		// nothing
339	case syntax.InstAlt, syntax.InstAltMatch:
340		t = m.add(q, i.Out, pos, cap, cond, t)
341		pc = i.Arg
342		goto Again
343	case syntax.InstEmptyWidth:
344		if cond.match(syntax.EmptyOp(i.Arg)) {
345			pc = i.Out
346			goto Again
347		}
348	case syntax.InstNop:
349		pc = i.Out
350		goto Again
351	case syntax.InstCapture:
352		if int(i.Arg) < len(cap) {
353			opos := cap[i.Arg]
354			cap[i.Arg] = pos
355			m.add(q, i.Out, pos, cap, cond, nil)
356			cap[i.Arg] = opos
357		} else {
358			pc = i.Out
359			goto Again
360		}
361	case syntax.InstMatch, syntax.InstRune, syntax.InstRune1, syntax.InstRuneAny, syntax.InstRuneAnyNotNL:
362		if t == nil {
363			t = m.alloc(i)
364		} else {
365			t.inst = i
366		}
367		if len(cap) > 0 && &t.cap[0] != &cap[0] {
368			copy(t.cap, cap)
369		}
370		d.t = t
371		t = nil
372	}
373	return t
374}
375
376type onePassMachine struct {
377	inputs   inputs
378	matchcap []int
379}
380
381var onePassPool sync.Pool
382
383func newOnePassMachine() *onePassMachine {
384	m, ok := onePassPool.Get().(*onePassMachine)
385	if !ok {
386		m = new(onePassMachine)
387	}
388	return m
389}
390
391func freeOnePassMachine(m *onePassMachine) {
392	m.inputs.clear()
393	onePassPool.Put(m)
394}
395
396// doOnePass implements r.doExecute using the one-pass execution engine.
397func (re *Regexp) doOnePass(ir io.RuneReader, ib []byte, is string, pos, ncap int, dstCap []int) []int {
398	startCond := re.cond
399	if startCond == ^syntax.EmptyOp(0) { // impossible
400		return nil
401	}
402
403	m := newOnePassMachine()
404	if cap(m.matchcap) < ncap {
405		m.matchcap = make([]int, ncap)
406	} else {
407		m.matchcap = m.matchcap[:ncap]
408	}
409
410	matched := false
411	for i := range m.matchcap {
412		m.matchcap[i] = -1
413	}
414
415	i, _ := m.inputs.init(ir, ib, is)
416
417	r, r1 := endOfText, endOfText
418	width, width1 := 0, 0
419	r, width = i.step(pos)
420	if r != endOfText {
421		r1, width1 = i.step(pos + width)
422	}
423	var flag lazyFlag
424	if pos == 0 {
425		flag = newLazyFlag(-1, r)
426	} else {
427		flag = i.context(pos)
428	}
429	pc := re.onepass.Start
430	inst := &re.onepass.Inst[pc]
431	// If there is a simple literal prefix, skip over it.
432	if pos == 0 && flag.match(syntax.EmptyOp(inst.Arg)) &&
433		len(re.prefix) > 0 && i.canCheckPrefix() {
434		// Match requires literal prefix; fast search for it.
435		if !i.hasPrefix(re) {
436			goto Return
437		}
438		pos += len(re.prefix)
439		r, width = i.step(pos)
440		r1, width1 = i.step(pos + width)
441		flag = i.context(pos)
442		pc = int(re.prefixEnd)
443	}
444	for {
445		inst = &re.onepass.Inst[pc]
446		pc = int(inst.Out)
447		switch inst.Op {
448		default:
449			panic("bad inst")
450		case syntax.InstMatch:
451			matched = true
452			if len(m.matchcap) > 0 {
453				m.matchcap[0] = 0
454				m.matchcap[1] = pos
455			}
456			goto Return
457		case syntax.InstRune:
458			if !inst.MatchRune(r) {
459				goto Return
460			}
461		case syntax.InstRune1:
462			if r != inst.Rune[0] {
463				goto Return
464			}
465		case syntax.InstRuneAny:
466			// Nothing
467		case syntax.InstRuneAnyNotNL:
468			if r == '\n' {
469				goto Return
470			}
471		// peek at the input rune to see which branch of the Alt to take
472		case syntax.InstAlt, syntax.InstAltMatch:
473			pc = int(onePassNext(inst, r))
474			continue
475		case syntax.InstFail:
476			goto Return
477		case syntax.InstNop:
478			continue
479		case syntax.InstEmptyWidth:
480			if !flag.match(syntax.EmptyOp(inst.Arg)) {
481				goto Return
482			}
483			continue
484		case syntax.InstCapture:
485			if int(inst.Arg) < len(m.matchcap) {
486				m.matchcap[inst.Arg] = pos
487			}
488			continue
489		}
490		if width == 0 {
491			break
492		}
493		flag = newLazyFlag(r, r1)
494		pos += width
495		r, width = r1, width1
496		if r != endOfText {
497			r1, width1 = i.step(pos + width)
498		}
499	}
500
501Return:
502	if !matched {
503		freeOnePassMachine(m)
504		return nil
505	}
506
507	dstCap = append(dstCap, m.matchcap...)
508	freeOnePassMachine(m)
509	return dstCap
510}
511
512// doMatch reports whether either r, b or s match the regexp.
513func (re *Regexp) doMatch(r io.RuneReader, b []byte, s string) bool {
514	return re.doExecute(r, b, s, 0, 0, nil) != nil
515}
516
517// doExecute finds the leftmost match in the input, appends the position
518// of its subexpressions to dstCap and returns dstCap.
519//
520// nil is returned if no matches are found and non-nil if matches are found.
521func (re *Regexp) doExecute(r io.RuneReader, b []byte, s string, pos int, ncap int, dstCap []int) []int {
522	if dstCap == nil {
523		// Make sure 'return dstCap' is non-nil.
524		dstCap = arrayNoInts[:0:0]
525	}
526
527	if r == nil && len(b)+len(s) < re.minInputLen {
528		return nil
529	}
530
531	if re.onepass != nil {
532		return re.doOnePass(r, b, s, pos, ncap, dstCap)
533	}
534	if r == nil && len(b)+len(s) < re.maxBitStateLen {
535		return re.backtrack(b, s, pos, ncap, dstCap)
536	}
537
538	m := re.get()
539	i, _ := m.inputs.init(r, b, s)
540
541	m.init(ncap)
542	if !m.match(i, pos) {
543		re.put(m)
544		return nil
545	}
546
547	dstCap = append(dstCap, m.matchcap...)
548	re.put(m)
549	return dstCap
550}
551
552// arrayNoInts is returned by doExecute match if nil dstCap is passed
553// to it with ncap=0.
554var arrayNoInts [0]int
555