1 /* 2 * Copyright (c) 2019-2021 Arm Limited. 3 * 4 * SPDX-License-Identifier: MIT 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to 8 * deal in the Software without restriction, including without limitation the 9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or 10 * sell copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in all 14 * copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 22 * SOFTWARE. 23 */ 24 25 #pragma once 26 27 #include "arm_gemm.hpp" 28 29 #include "barrier.hpp" 30 #include "gemm_implementation.hpp" 31 #include "quantized.hpp" 32 33 namespace arm_gemm { 34 35 /* Quantized wrapper - do an integer GEMM and wrap around the quantization. */ 36 37 template<typename To, typename Tr, typename Tgemm> 38 class QuantizeWrapper : public GemmCommon<To, Tr> { 39 private: 40 UniqueGemmCommon<To, Tgemm> _subgemm = nullptr; 41 int32_t *_row_sums = nullptr; 42 int32_t *_col_sums = nullptr; 43 Requantize32 _params; 44 GemmArgs _args; 45 barrier _barrier; 46 47 void *working_space = nullptr; 48 bool arrays_set = false; 49 50 /* We need a subgemm which outputs the 32-bit intermediates - how much space is needed for that? */ subgemm_output_size() const51 size_t subgemm_output_size() const { 52 return (_args._Msize * _args._Nsize * _args._nbatches * _args._nmulti * sizeof(int32_t)); 53 } 54 col_sum_size() const55 size_t col_sum_size() const { 56 return (_args._Nsize * _args._nmulti * sizeof(int32_t)); 57 } 58 row_sum_size() const59 size_t row_sum_size() const { 60 return (_args._Msize * _args._nbatches * _args._nmulti * sizeof(int32_t)); 61 } 62 63 /* Local working space: We need space for the subgemm output (above) and 64 * the row sums. */ local_working_size() const65 size_t local_working_size() const { 66 return subgemm_output_size() + row_sum_size(); 67 } 68 set_child_arrays()69 void set_child_arrays() { 70 if (working_space == nullptr || arrays_set == false) 71 return; 72 73 /* Use the first part of our working space for the subgemm result, pass the operand details straight through. */ 74 _subgemm->set_arrays(this->_Aptr, this->_lda, this->_A_batch_stride, this->_A_multi_stride, 75 this->_Bptr, this->_ldb, this->_B_multi_stride, 76 reinterpret_cast<Tgemm *>(working_space), _args._Nsize, (_args._Nsize * _args._Msize), (_args._Nsize * _args._Msize * _args._nbatches), 77 nullptr, 0); 78 } 79 col_sums_pretransposed(const To * B,const int ldb,const int B_multi_stride)80 void col_sums_pretransposed(const To *B, const int ldb, const int B_multi_stride) { 81 for (unsigned int multi=0; multi<_args._nmulti; multi++) { 82 compute_col_sums(_params, _args._Nsize, _args._Ksize, B + (multi * B_multi_stride), ldb, _col_sums + (multi * _args._Nsize), _args._Ksize, multi, 0); 83 } 84 } 85 requantize_runtime(unsigned int threadid)86 void requantize_runtime(unsigned int threadid) { 87 unsigned int first_row = (threadid * _args._Msize) / _args._maxthreads; 88 unsigned int last_row = ((threadid+1) * _args._Msize) / _args._maxthreads; 89 90 for (unsigned int multi=0; multi<_args._nmulti; multi++) { 91 for (unsigned int batch=0; batch<_args._nbatches; batch++) { 92 /* Compute row sums now */ 93 compute_row_sums(_params, _args._Ksize, (last_row - first_row), this->_Aptr + (multi * this->_A_multi_stride) + (batch * this->_A_batch_stride) + (first_row * this->_lda), 94 this->_lda, _row_sums + (multi * _args._nbatches * _args._Msize) + (batch * _args._Msize) + first_row); 95 // If we don't care about negative values, call the version of this function that doesn't correct before shifting. 96 // 'c_offset' represents zero, so if the lowest possible quantized output value is the same or more than that we will not output negative numbers. 97 requantize_block_32(_params, _args._Nsize, (last_row - first_row), 98 reinterpret_cast<Tgemm *>(working_space) + (multi * (_args._Msize * _args._Nsize * _args._nbatches)) + (batch * (_args._Msize * _args._Nsize)) + (first_row * _args._Nsize), 99 _args._Nsize, 100 this->_Cptr + (multi * this->_C_multi_stride) + (batch * this->_C_batch_stride) + (first_row * this->_ldc), this->_ldc, 101 _row_sums + (multi * _args._nbatches * _args._Msize) + (batch * _args._Msize) + first_row, 102 _col_sums + (multi * _args._Nsize), 0); 103 } 104 } 105 } 106 107 108 public: 109 QuantizeWrapper(const QuantizeWrapper &) = delete; 110 QuantizeWrapper operator=(const QuantizeWrapper &) = delete; 111 QuantizeWrapper(const GemmArgs & args,const Requantize32 & qp)112 QuantizeWrapper(const GemmArgs &args, const Requantize32 &qp) : _params(qp), _args(args), _barrier(args._maxthreads) { 113 GemmArgs newargs = GemmArgs(args._ci, args._Msize, args._Nsize, args._Ksize, args._Ksections, args._nbatches, args._nmulti, args._indirect_input, Activation(), args._maxthreads); 114 _subgemm = gemm<To, Tgemm>(newargs); 115 116 if (_subgemm == nullptr) { 117 return; 118 } 119 } 120 set_arrays(const To * A,const int lda,const int A_batch_stride,const int A_multi_stride,const To * B,const int ldb,const int B_multi_stride,Tr * C,const int ldc,const int C_batch_stride,const int C_multi_stride,const Tr * bias,const int bias_multi_stride)121 void set_arrays(const To *A, const int lda, const int A_batch_stride, const int A_multi_stride, 122 const To *B, const int ldb, const int B_multi_stride, 123 Tr *C, const int ldc, const int C_batch_stride, const int C_multi_stride, 124 const Tr *bias, const int bias_multi_stride) override { 125 GemmCommon<To, Tr>::set_arrays(A, lda, A_batch_stride, A_multi_stride, B, ldb, B_multi_stride, C, ldc, C_batch_stride, C_multi_stride, bias, bias_multi_stride); 126 127 arrays_set = true; 128 set_child_arrays(); 129 } 130 get_window_size() const131 ndrange_t get_window_size() const override { 132 return { _subgemm->get_window_size() }; 133 } 134 set_nthreads(int nthreads)135 void set_nthreads(int nthreads) override { 136 _subgemm->set_nthreads(nthreads); 137 _barrier.set_nthreads(nthreads); 138 _args._maxthreads = nthreads; 139 } 140 execute(const ndcoord_t & work_range,const ndcoord_t & thread_locator,int threadid)141 void execute(const ndcoord_t &work_range, const ndcoord_t &thread_locator, int threadid) override { 142 _subgemm->execute(work_range, thread_locator, threadid); 143 144 _barrier.arrive_and_wait(); 145 146 requantize_runtime(threadid); 147 } 148 get_working_size() const149 size_t get_working_size() const override { 150 return _subgemm->get_working_size() + local_working_size(); 151 } 152 153 // Space arrangement: 154 155 // ptr 156 // V 157 // | subgemm output | row_sums | subgemm working space | set_working_space(void * space)158 void set_working_space(void *space) override { 159 uintptr_t space_int = reinterpret_cast<uintptr_t>(space); 160 161 working_space = space; 162 _subgemm->set_working_space(reinterpret_cast<void *>(space_int + local_working_size())); 163 164 _row_sums = reinterpret_cast<int32_t *>(space_int + subgemm_output_size()); 165 166 set_child_arrays(); 167 } 168 B_is_pretransposed() const169 bool B_is_pretransposed() const override { 170 /* We clear this flag if the subgemm isn't pretransposed, so just return its value */ 171 return _subgemm->B_is_pretransposed(); 172 } 173 B_pretranspose_required() const174 bool B_pretranspose_required() const override { 175 return _subgemm->B_pretranspose_required(); 176 } 177 get_B_pretransposed_array_size() const178 size_t get_B_pretransposed_array_size() const override { 179 return _subgemm->get_B_pretransposed_array_size() + col_sum_size(); 180 } 181 requantize_bias(void * in_buffer,const To * B,const int ldb,const int B_multi_stride)182 void requantize_bias(void *in_buffer, const To *B, const int ldb, const int B_multi_stride) override { 183 _col_sums = reinterpret_cast<int32_t *>(in_buffer); 184 col_sums_pretransposed(B, ldb, B_multi_stride); 185 } 186 pretranspose_B_array(void * buffer,const To * B,const int ldb,const int B_multi_stride)187 void pretranspose_B_array(void *buffer, const To *B, const int ldb, const int B_multi_stride) override { 188 uintptr_t buffer_int = reinterpret_cast<uintptr_t>(buffer); 189 _subgemm->pretranspose_B_array(reinterpret_cast<void *>(buffer_int + col_sum_size()), B, ldb, B_multi_stride); 190 191 requantize_bias(buffer, B, ldb, B_multi_stride); 192 } 193 set_pretransposed_B_data(void * buffer)194 void set_pretransposed_B_data(void *buffer) override { 195 uintptr_t buffer_int = reinterpret_cast<uintptr_t>(buffer); 196 _subgemm->set_pretransposed_B_data(reinterpret_cast<void *>(buffer_int + col_sum_size())); 197 _col_sums = reinterpret_cast<int32_t *>(buffer); 198 } 199 set_quantized_bias(const int32_t * bias,size_t bias_multi_stride)200 void set_quantized_bias(const int32_t *bias, size_t bias_multi_stride) override { 201 _params.bias = bias; 202 _params.bias_multi_stride = bias_multi_stride; 203 } 204 get_config()205 GemmConfig get_config() override { 206 GemmConfig c = _subgemm->get_config(); 207 208 std::string n = "quantize_wrapper["; 209 n.append(c.filter); 210 n.append("]"); 211 212 c.method = GemmMethod::QUANTIZE_WRAPPER; 213 c.filter = n; 214 215 return c; 216 } 217 }; 218 219 } // namespace arm_gemm 220