1// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package unicode provides data and functions to test some properties of
6// Unicode code points.
7package unicode
8
9const (
10	MaxRune         = '\U0010FFFF' // Maximum valid Unicode code point.
11	ReplacementChar = '\uFFFD'     // Represents invalid code points.
12	MaxASCII        = '\u007F'     // maximum ASCII value.
13	MaxLatin1       = '\u00FF'     // maximum Latin-1 value.
14)
15
16// RangeTable defines a set of Unicode code points by listing the ranges of
17// code points within the set. The ranges are listed in two slices
18// to save space: a slice of 16-bit ranges and a slice of 32-bit ranges.
19// The two slices must be in sorted order and non-overlapping.
20// Also, R32 should contain only values >= 0x10000 (1<<16).
21type RangeTable struct {
22	R16         []Range16
23	R32         []Range32
24	LatinOffset int // number of entries in R16 with Hi <= MaxLatin1
25}
26
27// Range16 represents of a range of 16-bit Unicode code points. The range runs from Lo to Hi
28// inclusive and has the specified stride.
29type Range16 struct {
30	Lo     uint16
31	Hi     uint16
32	Stride uint16
33}
34
35// Range32 represents of a range of Unicode code points and is used when one or
36// more of the values will not fit in 16 bits. The range runs from Lo to Hi
37// inclusive and has the specified stride. Lo and Hi must always be >= 1<<16.
38type Range32 struct {
39	Lo     uint32
40	Hi     uint32
41	Stride uint32
42}
43
44// CaseRange represents a range of Unicode code points for simple (one
45// code point to one code point) case conversion.
46// The range runs from Lo to Hi inclusive, with a fixed stride of 1. Deltas
47// are the number to add to the code point to reach the code point for a
48// different case for that character. They may be negative. If zero, it
49// means the character is in the corresponding case. There is a special
50// case representing sequences of alternating corresponding Upper and Lower
51// pairs. It appears with a fixed Delta of
52//
53//	{UpperLower, UpperLower, UpperLower}
54//
55// The constant UpperLower has an otherwise impossible delta value.
56type CaseRange struct {
57	Lo    uint32
58	Hi    uint32
59	Delta d
60}
61
62// SpecialCase represents language-specific case mappings such as Turkish.
63// Methods of SpecialCase customize (by overriding) the standard mappings.
64type SpecialCase []CaseRange
65
66// BUG(r): There is no mechanism for full case folding, that is, for
67// characters that involve multiple runes in the input or output.
68
69// Indices into the Delta arrays inside CaseRanges for case mapping.
70const (
71	UpperCase = iota
72	LowerCase
73	TitleCase
74	MaxCase
75)
76
77type d [MaxCase]rune // to make the CaseRanges text shorter
78
79// If the Delta field of a [CaseRange] is UpperLower, it means
80// this CaseRange represents a sequence of the form (say)
81// [Upper] [Lower] [Upper] [Lower].
82const (
83	UpperLower = MaxRune + 1 // (Cannot be a valid delta.)
84)
85
86// linearMax is the maximum size table for linear search for non-Latin1 rune.
87// Derived by running 'go test -calibrate'.
88const linearMax = 18
89
90// is16 reports whether r is in the sorted slice of 16-bit ranges.
91func is16(ranges []Range16, r uint16) bool {
92	if len(ranges) <= linearMax || r <= MaxLatin1 {
93		for i := range ranges {
94			range_ := &ranges[i]
95			if r < range_.Lo {
96				return false
97			}
98			if r <= range_.Hi {
99				return range_.Stride == 1 || (r-range_.Lo)%range_.Stride == 0
100			}
101		}
102		return false
103	}
104
105	// binary search over ranges
106	lo := 0
107	hi := len(ranges)
108	for lo < hi {
109		m := int(uint(lo+hi) >> 1)
110		range_ := &ranges[m]
111		if range_.Lo <= r && r <= range_.Hi {
112			return range_.Stride == 1 || (r-range_.Lo)%range_.Stride == 0
113		}
114		if r < range_.Lo {
115			hi = m
116		} else {
117			lo = m + 1
118		}
119	}
120	return false
121}
122
123// is32 reports whether r is in the sorted slice of 32-bit ranges.
124func is32(ranges []Range32, r uint32) bool {
125	if len(ranges) <= linearMax {
126		for i := range ranges {
127			range_ := &ranges[i]
128			if r < range_.Lo {
129				return false
130			}
131			if r <= range_.Hi {
132				return range_.Stride == 1 || (r-range_.Lo)%range_.Stride == 0
133			}
134		}
135		return false
136	}
137
138	// binary search over ranges
139	lo := 0
140	hi := len(ranges)
141	for lo < hi {
142		m := int(uint(lo+hi) >> 1)
143		range_ := ranges[m]
144		if range_.Lo <= r && r <= range_.Hi {
145			return range_.Stride == 1 || (r-range_.Lo)%range_.Stride == 0
146		}
147		if r < range_.Lo {
148			hi = m
149		} else {
150			lo = m + 1
151		}
152	}
153	return false
154}
155
156// Is reports whether the rune is in the specified table of ranges.
157func Is(rangeTab *RangeTable, r rune) bool {
158	r16 := rangeTab.R16
159	// Compare as uint32 to correctly handle negative runes.
160	if len(r16) > 0 && uint32(r) <= uint32(r16[len(r16)-1].Hi) {
161		return is16(r16, uint16(r))
162	}
163	r32 := rangeTab.R32
164	if len(r32) > 0 && r >= rune(r32[0].Lo) {
165		return is32(r32, uint32(r))
166	}
167	return false
168}
169
170func isExcludingLatin(rangeTab *RangeTable, r rune) bool {
171	r16 := rangeTab.R16
172	// Compare as uint32 to correctly handle negative runes.
173	if off := rangeTab.LatinOffset; len(r16) > off && uint32(r) <= uint32(r16[len(r16)-1].Hi) {
174		return is16(r16[off:], uint16(r))
175	}
176	r32 := rangeTab.R32
177	if len(r32) > 0 && r >= rune(r32[0].Lo) {
178		return is32(r32, uint32(r))
179	}
180	return false
181}
182
183// IsUpper reports whether the rune is an upper case letter.
184func IsUpper(r rune) bool {
185	// See comment in IsGraphic.
186	if uint32(r) <= MaxLatin1 {
187		return properties[uint8(r)]&pLmask == pLu
188	}
189	return isExcludingLatin(Upper, r)
190}
191
192// IsLower reports whether the rune is a lower case letter.
193func IsLower(r rune) bool {
194	// See comment in IsGraphic.
195	if uint32(r) <= MaxLatin1 {
196		return properties[uint8(r)]&pLmask == pLl
197	}
198	return isExcludingLatin(Lower, r)
199}
200
201// IsTitle reports whether the rune is a title case letter.
202func IsTitle(r rune) bool {
203	if r <= MaxLatin1 {
204		return false
205	}
206	return isExcludingLatin(Title, r)
207}
208
209// to maps the rune using the specified case mapping.
210// It additionally reports whether caseRange contained a mapping for r.
211func to(_case int, r rune, caseRange []CaseRange) (mappedRune rune, foundMapping bool) {
212	if _case < 0 || MaxCase <= _case {
213		return ReplacementChar, false // as reasonable an error as any
214	}
215	// binary search over ranges
216	lo := 0
217	hi := len(caseRange)
218	for lo < hi {
219		m := int(uint(lo+hi) >> 1)
220		cr := caseRange[m]
221		if rune(cr.Lo) <= r && r <= rune(cr.Hi) {
222			delta := cr.Delta[_case]
223			if delta > MaxRune {
224				// In an Upper-Lower sequence, which always starts with
225				// an UpperCase letter, the real deltas always look like:
226				//	{0, 1, 0}    UpperCase (Lower is next)
227				//	{-1, 0, -1}  LowerCase (Upper, Title are previous)
228				// The characters at even offsets from the beginning of the
229				// sequence are upper case; the ones at odd offsets are lower.
230				// The correct mapping can be done by clearing or setting the low
231				// bit in the sequence offset.
232				// The constants UpperCase and TitleCase are even while LowerCase
233				// is odd so we take the low bit from _case.
234				return rune(cr.Lo) + ((r-rune(cr.Lo))&^1 | rune(_case&1)), true
235			}
236			return r + delta, true
237		}
238		if r < rune(cr.Lo) {
239			hi = m
240		} else {
241			lo = m + 1
242		}
243	}
244	return r, false
245}
246
247// To maps the rune to the specified case: [UpperCase], [LowerCase], or [TitleCase].
248func To(_case int, r rune) rune {
249	r, _ = to(_case, r, CaseRanges)
250	return r
251}
252
253// ToUpper maps the rune to upper case.
254func ToUpper(r rune) rune {
255	if r <= MaxASCII {
256		if 'a' <= r && r <= 'z' {
257			r -= 'a' - 'A'
258		}
259		return r
260	}
261	return To(UpperCase, r)
262}
263
264// ToLower maps the rune to lower case.
265func ToLower(r rune) rune {
266	if r <= MaxASCII {
267		if 'A' <= r && r <= 'Z' {
268			r += 'a' - 'A'
269		}
270		return r
271	}
272	return To(LowerCase, r)
273}
274
275// ToTitle maps the rune to title case.
276func ToTitle(r rune) rune {
277	if r <= MaxASCII {
278		if 'a' <= r && r <= 'z' { // title case is upper case for ASCII
279			r -= 'a' - 'A'
280		}
281		return r
282	}
283	return To(TitleCase, r)
284}
285
286// ToUpper maps the rune to upper case giving priority to the special mapping.
287func (special SpecialCase) ToUpper(r rune) rune {
288	r1, hadMapping := to(UpperCase, r, []CaseRange(special))
289	if r1 == r && !hadMapping {
290		r1 = ToUpper(r)
291	}
292	return r1
293}
294
295// ToTitle maps the rune to title case giving priority to the special mapping.
296func (special SpecialCase) ToTitle(r rune) rune {
297	r1, hadMapping := to(TitleCase, r, []CaseRange(special))
298	if r1 == r && !hadMapping {
299		r1 = ToTitle(r)
300	}
301	return r1
302}
303
304// ToLower maps the rune to lower case giving priority to the special mapping.
305func (special SpecialCase) ToLower(r rune) rune {
306	r1, hadMapping := to(LowerCase, r, []CaseRange(special))
307	if r1 == r && !hadMapping {
308		r1 = ToLower(r)
309	}
310	return r1
311}
312
313// caseOrbit is defined in tables.go as []foldPair. Right now all the
314// entries fit in uint16, so use uint16. If that changes, compilation
315// will fail (the constants in the composite literal will not fit in uint16)
316// and the types here can change to uint32.
317type foldPair struct {
318	From uint16
319	To   uint16
320}
321
322// SimpleFold iterates over Unicode code points equivalent under
323// the Unicode-defined simple case folding. Among the code points
324// equivalent to rune (including rune itself), SimpleFold returns the
325// smallest rune > r if one exists, or else the smallest rune >= 0.
326// If r is not a valid Unicode code point, SimpleFold(r) returns r.
327//
328// For example:
329//
330//	SimpleFold('A') = 'a'
331//	SimpleFold('a') = 'A'
332//
333//	SimpleFold('K') = 'k'
334//	SimpleFold('k') = '\u212A' (Kelvin symbol, K)
335//	SimpleFold('\u212A') = 'K'
336//
337//	SimpleFold('1') = '1'
338//
339//	SimpleFold(-2) = -2
340func SimpleFold(r rune) rune {
341	if r < 0 || r > MaxRune {
342		return r
343	}
344
345	if int(r) < len(asciiFold) {
346		return rune(asciiFold[r])
347	}
348
349	// Consult caseOrbit table for special cases.
350	lo := 0
351	hi := len(caseOrbit)
352	for lo < hi {
353		m := int(uint(lo+hi) >> 1)
354		if rune(caseOrbit[m].From) < r {
355			lo = m + 1
356		} else {
357			hi = m
358		}
359	}
360	if lo < len(caseOrbit) && rune(caseOrbit[lo].From) == r {
361		return rune(caseOrbit[lo].To)
362	}
363
364	// No folding specified. This is a one- or two-element
365	// equivalence class containing rune and ToLower(rune)
366	// and ToUpper(rune) if they are different from rune.
367	if l := ToLower(r); l != r {
368		return l
369	}
370	return ToUpper(r)
371}
372