1// Copyright 2014 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5package runtime 6 7import ( 8 "internal/abi" 9 "internal/bytealg" 10 "internal/goarch" 11 "unsafe" 12) 13 14// The constant is known to the compiler. 15// There is no fundamental theory behind this number. 16const tmpStringBufSize = 32 17 18type tmpBuf [tmpStringBufSize]byte 19 20// concatstrings implements a Go string concatenation x+y+z+... 21// The operands are passed in the slice a. 22// If buf != nil, the compiler has determined that the result does not 23// escape the calling function, so the string data can be stored in buf 24// if small enough. 25func concatstrings(buf *tmpBuf, a []string) string { 26 idx := 0 27 l := 0 28 count := 0 29 for i, x := range a { 30 n := len(x) 31 if n == 0 { 32 continue 33 } 34 if l+n < l { 35 throw("string concatenation too long") 36 } 37 l += n 38 count++ 39 idx = i 40 } 41 if count == 0 { 42 return "" 43 } 44 45 // If there is just one string and either it is not on the stack 46 // or our result does not escape the calling frame (buf != nil), 47 // then we can return that string directly. 48 if count == 1 && (buf != nil || !stringDataOnStack(a[idx])) { 49 return a[idx] 50 } 51 s, b := rawstringtmp(buf, l) 52 for _, x := range a { 53 copy(b, x) 54 b = b[len(x):] 55 } 56 return s 57} 58 59func concatstring2(buf *tmpBuf, a0, a1 string) string { 60 return concatstrings(buf, []string{a0, a1}) 61} 62 63func concatstring3(buf *tmpBuf, a0, a1, a2 string) string { 64 return concatstrings(buf, []string{a0, a1, a2}) 65} 66 67func concatstring4(buf *tmpBuf, a0, a1, a2, a3 string) string { 68 return concatstrings(buf, []string{a0, a1, a2, a3}) 69} 70 71func concatstring5(buf *tmpBuf, a0, a1, a2, a3, a4 string) string { 72 return concatstrings(buf, []string{a0, a1, a2, a3, a4}) 73} 74 75// slicebytetostring converts a byte slice to a string. 76// It is inserted by the compiler into generated code. 77// ptr is a pointer to the first element of the slice; 78// n is the length of the slice. 79// Buf is a fixed-size buffer for the result, 80// it is not nil if the result does not escape. 81// 82// slicebytetostring should be an internal detail, 83// but widely used packages access it using linkname. 84// Notable members of the hall of shame include: 85// - github.com/cloudwego/frugal 86// 87// Do not remove or change the type signature. 88// See go.dev/issue/67401. 89// 90//go:linkname slicebytetostring 91func slicebytetostring(buf *tmpBuf, ptr *byte, n int) string { 92 if n == 0 { 93 // Turns out to be a relatively common case. 94 // Consider that you want to parse out data between parens in "foo()bar", 95 // you find the indices and convert the subslice to string. 96 return "" 97 } 98 if raceenabled { 99 racereadrangepc(unsafe.Pointer(ptr), 100 uintptr(n), 101 getcallerpc(), 102 abi.FuncPCABIInternal(slicebytetostring)) 103 } 104 if msanenabled { 105 msanread(unsafe.Pointer(ptr), uintptr(n)) 106 } 107 if asanenabled { 108 asanread(unsafe.Pointer(ptr), uintptr(n)) 109 } 110 if n == 1 { 111 p := unsafe.Pointer(&staticuint64s[*ptr]) 112 if goarch.BigEndian { 113 p = add(p, 7) 114 } 115 return unsafe.String((*byte)(p), 1) 116 } 117 118 var p unsafe.Pointer 119 if buf != nil && n <= len(buf) { 120 p = unsafe.Pointer(buf) 121 } else { 122 p = mallocgc(uintptr(n), nil, false) 123 } 124 memmove(p, unsafe.Pointer(ptr), uintptr(n)) 125 return unsafe.String((*byte)(p), n) 126} 127 128// stringDataOnStack reports whether the string's data is 129// stored on the current goroutine's stack. 130func stringDataOnStack(s string) bool { 131 ptr := uintptr(unsafe.Pointer(unsafe.StringData(s))) 132 stk := getg().stack 133 return stk.lo <= ptr && ptr < stk.hi 134} 135 136func rawstringtmp(buf *tmpBuf, l int) (s string, b []byte) { 137 if buf != nil && l <= len(buf) { 138 b = buf[:l] 139 s = slicebytetostringtmp(&b[0], len(b)) 140 } else { 141 s, b = rawstring(l) 142 } 143 return 144} 145 146// slicebytetostringtmp returns a "string" referring to the actual []byte bytes. 147// 148// Callers need to ensure that the returned string will not be used after 149// the calling goroutine modifies the original slice or synchronizes with 150// another goroutine. 151// 152// The function is only called when instrumenting 153// and otherwise intrinsified by the compiler. 154// 155// Some internal compiler optimizations use this function. 156// - Used for m[T1{... Tn{..., string(k), ...} ...}] and m[string(k)] 157// where k is []byte, T1 to Tn is a nesting of struct and array literals. 158// - Used for "<"+string(b)+">" concatenation where b is []byte. 159// - Used for string(b)=="foo" comparison where b is []byte. 160func slicebytetostringtmp(ptr *byte, n int) string { 161 if raceenabled && n > 0 { 162 racereadrangepc(unsafe.Pointer(ptr), 163 uintptr(n), 164 getcallerpc(), 165 abi.FuncPCABIInternal(slicebytetostringtmp)) 166 } 167 if msanenabled && n > 0 { 168 msanread(unsafe.Pointer(ptr), uintptr(n)) 169 } 170 if asanenabled && n > 0 { 171 asanread(unsafe.Pointer(ptr), uintptr(n)) 172 } 173 return unsafe.String(ptr, n) 174} 175 176func stringtoslicebyte(buf *tmpBuf, s string) []byte { 177 var b []byte 178 if buf != nil && len(s) <= len(buf) { 179 *buf = tmpBuf{} 180 b = buf[:len(s)] 181 } else { 182 b = rawbyteslice(len(s)) 183 } 184 copy(b, s) 185 return b 186} 187 188func stringtoslicerune(buf *[tmpStringBufSize]rune, s string) []rune { 189 // two passes. 190 // unlike slicerunetostring, no race because strings are immutable. 191 n := 0 192 for range s { 193 n++ 194 } 195 196 var a []rune 197 if buf != nil && n <= len(buf) { 198 *buf = [tmpStringBufSize]rune{} 199 a = buf[:n] 200 } else { 201 a = rawruneslice(n) 202 } 203 204 n = 0 205 for _, r := range s { 206 a[n] = r 207 n++ 208 } 209 return a 210} 211 212func slicerunetostring(buf *tmpBuf, a []rune) string { 213 if raceenabled && len(a) > 0 { 214 racereadrangepc(unsafe.Pointer(&a[0]), 215 uintptr(len(a))*unsafe.Sizeof(a[0]), 216 getcallerpc(), 217 abi.FuncPCABIInternal(slicerunetostring)) 218 } 219 if msanenabled && len(a) > 0 { 220 msanread(unsafe.Pointer(&a[0]), uintptr(len(a))*unsafe.Sizeof(a[0])) 221 } 222 if asanenabled && len(a) > 0 { 223 asanread(unsafe.Pointer(&a[0]), uintptr(len(a))*unsafe.Sizeof(a[0])) 224 } 225 var dum [4]byte 226 size1 := 0 227 for _, r := range a { 228 size1 += encoderune(dum[:], r) 229 } 230 s, b := rawstringtmp(buf, size1+3) 231 size2 := 0 232 for _, r := range a { 233 // check for race 234 if size2 >= size1 { 235 break 236 } 237 size2 += encoderune(b[size2:], r) 238 } 239 return s[:size2] 240} 241 242type stringStruct struct { 243 str unsafe.Pointer 244 len int 245} 246 247// Variant with *byte pointer type for DWARF debugging. 248type stringStructDWARF struct { 249 str *byte 250 len int 251} 252 253func stringStructOf(sp *string) *stringStruct { 254 return (*stringStruct)(unsafe.Pointer(sp)) 255} 256 257func intstring(buf *[4]byte, v int64) (s string) { 258 var b []byte 259 if buf != nil { 260 b = buf[:] 261 s = slicebytetostringtmp(&b[0], len(b)) 262 } else { 263 s, b = rawstring(4) 264 } 265 if int64(rune(v)) != v { 266 v = runeError 267 } 268 n := encoderune(b, rune(v)) 269 return s[:n] 270} 271 272// rawstring allocates storage for a new string. The returned 273// string and byte slice both refer to the same storage. 274// The storage is not zeroed. Callers should use 275// b to set the string contents and then drop b. 276func rawstring(size int) (s string, b []byte) { 277 p := mallocgc(uintptr(size), nil, false) 278 return unsafe.String((*byte)(p), size), unsafe.Slice((*byte)(p), size) 279} 280 281// rawbyteslice allocates a new byte slice. The byte slice is not zeroed. 282func rawbyteslice(size int) (b []byte) { 283 cap := roundupsize(uintptr(size), true) 284 p := mallocgc(cap, nil, false) 285 if cap != uintptr(size) { 286 memclrNoHeapPointers(add(p, uintptr(size)), cap-uintptr(size)) 287 } 288 289 *(*slice)(unsafe.Pointer(&b)) = slice{p, size, int(cap)} 290 return 291} 292 293// rawruneslice allocates a new rune slice. The rune slice is not zeroed. 294func rawruneslice(size int) (b []rune) { 295 if uintptr(size) > maxAlloc/4 { 296 throw("out of memory") 297 } 298 mem := roundupsize(uintptr(size)*4, true) 299 p := mallocgc(mem, nil, false) 300 if mem != uintptr(size)*4 { 301 memclrNoHeapPointers(add(p, uintptr(size)*4), mem-uintptr(size)*4) 302 } 303 304 *(*slice)(unsafe.Pointer(&b)) = slice{p, size, int(mem / 4)} 305 return 306} 307 308// used by cmd/cgo 309func gobytes(p *byte, n int) (b []byte) { 310 if n == 0 { 311 return make([]byte, 0) 312 } 313 314 if n < 0 || uintptr(n) > maxAlloc { 315 panic(errorString("gobytes: length out of range")) 316 } 317 318 bp := mallocgc(uintptr(n), nil, false) 319 memmove(bp, unsafe.Pointer(p), uintptr(n)) 320 321 *(*slice)(unsafe.Pointer(&b)) = slice{bp, n, n} 322 return 323} 324 325// This is exported via linkname to assembly in syscall (for Plan9) and cgo. 326// 327//go:linkname gostring 328func gostring(p *byte) string { 329 l := findnull(p) 330 if l == 0 { 331 return "" 332 } 333 s, b := rawstring(l) 334 memmove(unsafe.Pointer(&b[0]), unsafe.Pointer(p), uintptr(l)) 335 return s 336} 337 338// internal_syscall_gostring is a version of gostring for internal/syscall/unix. 339// 340//go:linkname internal_syscall_gostring internal/syscall/unix.gostring 341func internal_syscall_gostring(p *byte) string { 342 return gostring(p) 343} 344 345func gostringn(p *byte, l int) string { 346 if l == 0 { 347 return "" 348 } 349 s, b := rawstring(l) 350 memmove(unsafe.Pointer(&b[0]), unsafe.Pointer(p), uintptr(l)) 351 return s 352} 353 354const ( 355 maxUint64 = ^uint64(0) 356 maxInt64 = int64(maxUint64 >> 1) 357) 358 359// atoi64 parses an int64 from a string s. 360// The bool result reports whether s is a number 361// representable by a value of type int64. 362func atoi64(s string) (int64, bool) { 363 if s == "" { 364 return 0, false 365 } 366 367 neg := false 368 if s[0] == '-' { 369 neg = true 370 s = s[1:] 371 } 372 373 un := uint64(0) 374 for i := 0; i < len(s); i++ { 375 c := s[i] 376 if c < '0' || c > '9' { 377 return 0, false 378 } 379 if un > maxUint64/10 { 380 // overflow 381 return 0, false 382 } 383 un *= 10 384 un1 := un + uint64(c) - '0' 385 if un1 < un { 386 // overflow 387 return 0, false 388 } 389 un = un1 390 } 391 392 if !neg && un > uint64(maxInt64) { 393 return 0, false 394 } 395 if neg && un > uint64(maxInt64)+1 { 396 return 0, false 397 } 398 399 n := int64(un) 400 if neg { 401 n = -n 402 } 403 404 return n, true 405} 406 407// atoi is like atoi64 but for integers 408// that fit into an int. 409func atoi(s string) (int, bool) { 410 if n, ok := atoi64(s); n == int64(int(n)) { 411 return int(n), ok 412 } 413 return 0, false 414} 415 416// atoi32 is like atoi but for integers 417// that fit into an int32. 418func atoi32(s string) (int32, bool) { 419 if n, ok := atoi64(s); n == int64(int32(n)) { 420 return int32(n), ok 421 } 422 return 0, false 423} 424 425// parseByteCount parses a string that represents a count of bytes. 426// 427// s must match the following regular expression: 428// 429// ^[0-9]+(([KMGT]i)?B)?$ 430// 431// In other words, an integer byte count with an optional unit 432// suffix. Acceptable suffixes include one of 433// - KiB, MiB, GiB, TiB which represent binary IEC/ISO 80000 units, or 434// - B, which just represents bytes. 435// 436// Returns an int64 because that's what its callers want and receive, 437// but the result is always non-negative. 438func parseByteCount(s string) (int64, bool) { 439 // The empty string is not valid. 440 if s == "" { 441 return 0, false 442 } 443 // Handle the easy non-suffix case. 444 last := s[len(s)-1] 445 if last >= '0' && last <= '9' { 446 n, ok := atoi64(s) 447 if !ok || n < 0 { 448 return 0, false 449 } 450 return n, ok 451 } 452 // Failing a trailing digit, this must always end in 'B'. 453 // Also at this point there must be at least one digit before 454 // that B. 455 if last != 'B' || len(s) < 2 { 456 return 0, false 457 } 458 // The one before that must always be a digit or 'i'. 459 if c := s[len(s)-2]; c >= '0' && c <= '9' { 460 // Trivial 'B' suffix. 461 n, ok := atoi64(s[:len(s)-1]) 462 if !ok || n < 0 { 463 return 0, false 464 } 465 return n, ok 466 } else if c != 'i' { 467 return 0, false 468 } 469 // Finally, we need at least 4 characters now, for the unit 470 // prefix and at least one digit. 471 if len(s) < 4 { 472 return 0, false 473 } 474 power := 0 475 switch s[len(s)-3] { 476 case 'K': 477 power = 1 478 case 'M': 479 power = 2 480 case 'G': 481 power = 3 482 case 'T': 483 power = 4 484 default: 485 // Invalid suffix. 486 return 0, false 487 } 488 m := uint64(1) 489 for i := 0; i < power; i++ { 490 m *= 1024 491 } 492 n, ok := atoi64(s[:len(s)-3]) 493 if !ok || n < 0 { 494 return 0, false 495 } 496 un := uint64(n) 497 if un > maxUint64/m { 498 // Overflow. 499 return 0, false 500 } 501 un *= m 502 if un > uint64(maxInt64) { 503 // Overflow. 504 return 0, false 505 } 506 return int64(un), true 507} 508 509//go:nosplit 510func findnull(s *byte) int { 511 if s == nil { 512 return 0 513 } 514 515 // Avoid IndexByteString on Plan 9 because it uses SSE instructions 516 // on x86 machines, and those are classified as floating point instructions, 517 // which are illegal in a note handler. 518 if GOOS == "plan9" { 519 p := (*[maxAlloc/2 - 1]byte)(unsafe.Pointer(s)) 520 l := 0 521 for p[l] != 0 { 522 l++ 523 } 524 return l 525 } 526 527 // pageSize is the unit we scan at a time looking for NULL. 528 // It must be the minimum page size for any architecture Go 529 // runs on. It's okay (just a minor performance loss) if the 530 // actual system page size is larger than this value. 531 const pageSize = 4096 532 533 offset := 0 534 ptr := unsafe.Pointer(s) 535 // IndexByteString uses wide reads, so we need to be careful 536 // with page boundaries. Call IndexByteString on 537 // [ptr, endOfPage) interval. 538 safeLen := int(pageSize - uintptr(ptr)%pageSize) 539 540 for { 541 t := *(*string)(unsafe.Pointer(&stringStruct{ptr, safeLen})) 542 // Check one page at a time. 543 if i := bytealg.IndexByteString(t, 0); i != -1 { 544 return offset + i 545 } 546 // Move to next page 547 ptr = unsafe.Pointer(uintptr(ptr) + uintptr(safeLen)) 548 offset += safeLen 549 safeLen = pageSize 550 } 551} 552 553func findnullw(s *uint16) int { 554 if s == nil { 555 return 0 556 } 557 p := (*[maxAlloc/2/2 - 1]uint16)(unsafe.Pointer(s)) 558 l := 0 559 for p[l] != 0 { 560 l++ 561 } 562 return l 563} 564 565//go:nosplit 566func gostringnocopy(str *byte) string { 567 ss := stringStruct{str: unsafe.Pointer(str), len: findnull(str)} 568 s := *(*string)(unsafe.Pointer(&ss)) 569 return s 570} 571 572func gostringw(strw *uint16) string { 573 var buf [8]byte 574 str := (*[maxAlloc/2/2 - 1]uint16)(unsafe.Pointer(strw)) 575 n1 := 0 576 for i := 0; str[i] != 0; i++ { 577 n1 += encoderune(buf[:], rune(str[i])) 578 } 579 s, b := rawstring(n1 + 4) 580 n2 := 0 581 for i := 0; str[i] != 0; i++ { 582 // check for race 583 if n2 >= n1 { 584 break 585 } 586 n2 += encoderune(b[n2:], rune(str[i])) 587 } 588 b[n2] = 0 // for luck 589 return s[:n2] 590} 591