1// Copyright 2009 The Go Authors. All rights reserved. 2// Use of this source code is governed by a BSD-style 3// license that can be found in the LICENSE file. 4 5//go:generate go run encgen.go -output enc_helpers.go 6 7package gob 8 9import ( 10 "encoding" 11 "encoding/binary" 12 "math" 13 "math/bits" 14 "reflect" 15 "sync" 16) 17 18const uint64Size = 8 19 20type encHelper func(state *encoderState, v reflect.Value) bool 21 22// encoderState is the global execution state of an instance of the encoder. 23// Field numbers are delta encoded and always increase. The field 24// number is initialized to -1 so 0 comes out as delta(1). A delta of 25// 0 terminates the structure. 26type encoderState struct { 27 enc *Encoder 28 b *encBuffer 29 sendZero bool // encoding an array element or map key/value pair; send zero values 30 fieldnum int // the last field number written. 31 buf [1 + uint64Size]byte // buffer used by the encoder; here to avoid allocation. 32 next *encoderState // for free list 33} 34 35// encBuffer is an extremely simple, fast implementation of a write-only byte buffer. 36// It never returns a non-nil error, but Write returns an error value so it matches io.Writer. 37type encBuffer struct { 38 data []byte 39 scratch [64]byte 40} 41 42var encBufferPool = sync.Pool{ 43 New: func() any { 44 e := new(encBuffer) 45 e.data = e.scratch[0:0] 46 return e 47 }, 48} 49 50func (e *encBuffer) writeByte(c byte) { 51 e.data = append(e.data, c) 52} 53 54func (e *encBuffer) Write(p []byte) (int, error) { 55 e.data = append(e.data, p...) 56 return len(p), nil 57} 58 59func (e *encBuffer) WriteString(s string) { 60 e.data = append(e.data, s...) 61} 62 63func (e *encBuffer) Len() int { 64 return len(e.data) 65} 66 67func (e *encBuffer) Bytes() []byte { 68 return e.data 69} 70 71func (e *encBuffer) Reset() { 72 if len(e.data) >= tooBig { 73 e.data = e.scratch[0:0] 74 } else { 75 e.data = e.data[0:0] 76 } 77} 78 79func (enc *Encoder) newEncoderState(b *encBuffer) *encoderState { 80 e := enc.freeList 81 if e == nil { 82 e = new(encoderState) 83 e.enc = enc 84 } else { 85 enc.freeList = e.next 86 } 87 e.sendZero = false 88 e.fieldnum = 0 89 e.b = b 90 if len(b.data) == 0 { 91 b.data = b.scratch[0:0] 92 } 93 return e 94} 95 96func (enc *Encoder) freeEncoderState(e *encoderState) { 97 e.next = enc.freeList 98 enc.freeList = e 99} 100 101// Unsigned integers have a two-state encoding. If the number is less 102// than 128 (0 through 0x7F), its value is written directly. 103// Otherwise the value is written in big-endian byte order preceded 104// by the byte length, negated. 105 106// encodeUint writes an encoded unsigned integer to state.b. 107func (state *encoderState) encodeUint(x uint64) { 108 if x <= 0x7F { 109 state.b.writeByte(uint8(x)) 110 return 111 } 112 113 binary.BigEndian.PutUint64(state.buf[1:], x) 114 bc := bits.LeadingZeros64(x) >> 3 // 8 - bytelen(x) 115 state.buf[bc] = uint8(bc - uint64Size) // and then we subtract 8 to get -bytelen(x) 116 117 state.b.Write(state.buf[bc : uint64Size+1]) 118} 119 120// encodeInt writes an encoded signed integer to state.w. 121// The low bit of the encoding says whether to bit complement the (other bits of the) 122// uint to recover the int. 123func (state *encoderState) encodeInt(i int64) { 124 var x uint64 125 if i < 0 { 126 x = uint64(^i<<1) | 1 127 } else { 128 x = uint64(i << 1) 129 } 130 state.encodeUint(x) 131} 132 133// encOp is the signature of an encoding operator for a given type. 134type encOp func(i *encInstr, state *encoderState, v reflect.Value) 135 136// The 'instructions' of the encoding machine 137type encInstr struct { 138 op encOp 139 field int // field number in input 140 index []int // struct index 141 indir int // how many pointer indirections to reach the value in the struct 142} 143 144// update emits a field number and updates the state to record its value for delta encoding. 145// If the instruction pointer is nil, it does nothing 146func (state *encoderState) update(instr *encInstr) { 147 if instr != nil { 148 state.encodeUint(uint64(instr.field - state.fieldnum)) 149 state.fieldnum = instr.field 150 } 151} 152 153// Each encoder for a composite is responsible for handling any 154// indirections associated with the elements of the data structure. 155// If any pointer so reached is nil, no bytes are written. If the 156// data item is zero, no bytes are written. Single values - ints, 157// strings etc. - are indirected before calling their encoders. 158// Otherwise, the output (for a scalar) is the field number, as an 159// encoded integer, followed by the field data in its appropriate 160// format. 161 162// encIndirect dereferences pv indir times and returns the result. 163func encIndirect(pv reflect.Value, indir int) reflect.Value { 164 for ; indir > 0; indir-- { 165 if pv.IsNil() { 166 break 167 } 168 pv = pv.Elem() 169 } 170 return pv 171} 172 173// encBool encodes the bool referenced by v as an unsigned 0 or 1. 174func encBool(i *encInstr, state *encoderState, v reflect.Value) { 175 b := v.Bool() 176 if b || state.sendZero { 177 state.update(i) 178 if b { 179 state.encodeUint(1) 180 } else { 181 state.encodeUint(0) 182 } 183 } 184} 185 186// encInt encodes the signed integer (int int8 int16 int32 int64) referenced by v. 187func encInt(i *encInstr, state *encoderState, v reflect.Value) { 188 value := v.Int() 189 if value != 0 || state.sendZero { 190 state.update(i) 191 state.encodeInt(value) 192 } 193} 194 195// encUint encodes the unsigned integer (uint uint8 uint16 uint32 uint64 uintptr) referenced by v. 196func encUint(i *encInstr, state *encoderState, v reflect.Value) { 197 value := v.Uint() 198 if value != 0 || state.sendZero { 199 state.update(i) 200 state.encodeUint(value) 201 } 202} 203 204// floatBits returns a uint64 holding the bits of a floating-point number. 205// Floating-point numbers are transmitted as uint64s holding the bits 206// of the underlying representation. They are sent byte-reversed, with 207// the exponent end coming out first, so integer floating point numbers 208// (for example) transmit more compactly. This routine does the 209// swizzling. 210func floatBits(f float64) uint64 { 211 u := math.Float64bits(f) 212 return bits.ReverseBytes64(u) 213} 214 215// encFloat encodes the floating point value (float32 float64) referenced by v. 216func encFloat(i *encInstr, state *encoderState, v reflect.Value) { 217 f := v.Float() 218 if f != 0 || state.sendZero { 219 bits := floatBits(f) 220 state.update(i) 221 state.encodeUint(bits) 222 } 223} 224 225// encComplex encodes the complex value (complex64 complex128) referenced by v. 226// Complex numbers are just a pair of floating-point numbers, real part first. 227func encComplex(i *encInstr, state *encoderState, v reflect.Value) { 228 c := v.Complex() 229 if c != 0+0i || state.sendZero { 230 rpart := floatBits(real(c)) 231 ipart := floatBits(imag(c)) 232 state.update(i) 233 state.encodeUint(rpart) 234 state.encodeUint(ipart) 235 } 236} 237 238// encUint8Array encodes the byte array referenced by v. 239// Byte arrays are encoded as an unsigned count followed by the raw bytes. 240func encUint8Array(i *encInstr, state *encoderState, v reflect.Value) { 241 b := v.Bytes() 242 if len(b) > 0 || state.sendZero { 243 state.update(i) 244 state.encodeUint(uint64(len(b))) 245 state.b.Write(b) 246 } 247} 248 249// encString encodes the string referenced by v. 250// Strings are encoded as an unsigned count followed by the raw bytes. 251func encString(i *encInstr, state *encoderState, v reflect.Value) { 252 s := v.String() 253 if len(s) > 0 || state.sendZero { 254 state.update(i) 255 state.encodeUint(uint64(len(s))) 256 state.b.WriteString(s) 257 } 258} 259 260// encStructTerminator encodes the end of an encoded struct 261// as delta field number of 0. 262func encStructTerminator(i *encInstr, state *encoderState, v reflect.Value) { 263 state.encodeUint(0) 264} 265 266// Execution engine 267 268// encEngine an array of instructions indexed by field number of the encoding 269// data, typically a struct. It is executed top to bottom, walking the struct. 270type encEngine struct { 271 instr []encInstr 272} 273 274const singletonField = 0 275 276// valid reports whether the value is valid and a non-nil pointer. 277// (Slices, maps, and chans take care of themselves.) 278func valid(v reflect.Value) bool { 279 switch v.Kind() { 280 case reflect.Invalid: 281 return false 282 case reflect.Pointer: 283 return !v.IsNil() 284 } 285 return true 286} 287 288// encodeSingle encodes a single top-level non-struct value. 289func (enc *Encoder) encodeSingle(b *encBuffer, engine *encEngine, value reflect.Value) { 290 state := enc.newEncoderState(b) 291 defer enc.freeEncoderState(state) 292 state.fieldnum = singletonField 293 // There is no surrounding struct to frame the transmission, so we must 294 // generate data even if the item is zero. To do this, set sendZero. 295 state.sendZero = true 296 instr := &engine.instr[singletonField] 297 if instr.indir > 0 { 298 value = encIndirect(value, instr.indir) 299 } 300 if valid(value) { 301 instr.op(instr, state, value) 302 } 303} 304 305// encodeStruct encodes a single struct value. 306func (enc *Encoder) encodeStruct(b *encBuffer, engine *encEngine, value reflect.Value) { 307 if !valid(value) { 308 return 309 } 310 state := enc.newEncoderState(b) 311 defer enc.freeEncoderState(state) 312 state.fieldnum = -1 313 for i := 0; i < len(engine.instr); i++ { 314 instr := &engine.instr[i] 315 if i >= value.NumField() { 316 // encStructTerminator 317 instr.op(instr, state, reflect.Value{}) 318 break 319 } 320 field := value.FieldByIndex(instr.index) 321 if instr.indir > 0 { 322 field = encIndirect(field, instr.indir) 323 // TODO: Is field guaranteed valid? If so we could avoid this check. 324 if !valid(field) { 325 continue 326 } 327 } 328 instr.op(instr, state, field) 329 } 330} 331 332// encodeArray encodes an array. 333func (enc *Encoder) encodeArray(b *encBuffer, value reflect.Value, op encOp, elemIndir int, length int, helper encHelper) { 334 state := enc.newEncoderState(b) 335 defer enc.freeEncoderState(state) 336 state.fieldnum = -1 337 state.sendZero = true 338 state.encodeUint(uint64(length)) 339 if helper != nil && helper(state, value) { 340 return 341 } 342 for i := 0; i < length; i++ { 343 elem := value.Index(i) 344 if elemIndir > 0 { 345 elem = encIndirect(elem, elemIndir) 346 // TODO: Is elem guaranteed valid? If so we could avoid this check. 347 if !valid(elem) { 348 errorf("encodeArray: nil element") 349 } 350 } 351 op(nil, state, elem) 352 } 353} 354 355// encodeReflectValue is a helper for maps. It encodes the value v. 356func encodeReflectValue(state *encoderState, v reflect.Value, op encOp, indir int) { 357 for i := 0; i < indir && v.IsValid(); i++ { 358 v = reflect.Indirect(v) 359 } 360 if !v.IsValid() { 361 errorf("encodeReflectValue: nil element") 362 } 363 op(nil, state, v) 364} 365 366// encodeMap encodes a map as unsigned count followed by key:value pairs. 367func (enc *Encoder) encodeMap(b *encBuffer, mv reflect.Value, keyOp, elemOp encOp, keyIndir, elemIndir int) { 368 state := enc.newEncoderState(b) 369 state.fieldnum = -1 370 state.sendZero = true 371 state.encodeUint(uint64(mv.Len())) 372 mi := mv.MapRange() 373 for mi.Next() { 374 encodeReflectValue(state, mi.Key(), keyOp, keyIndir) 375 encodeReflectValue(state, mi.Value(), elemOp, elemIndir) 376 } 377 enc.freeEncoderState(state) 378} 379 380// encodeInterface encodes the interface value iv. 381// To send an interface, we send a string identifying the concrete type, followed 382// by the type identifier (which might require defining that type right now), followed 383// by the concrete value. A nil value gets sent as the empty string for the name, 384// followed by no value. 385func (enc *Encoder) encodeInterface(b *encBuffer, iv reflect.Value) { 386 // Gobs can encode nil interface values but not typed interface 387 // values holding nil pointers, since nil pointers point to no value. 388 elem := iv.Elem() 389 if elem.Kind() == reflect.Pointer && elem.IsNil() { 390 errorf("gob: cannot encode nil pointer of type %s inside interface", iv.Elem().Type()) 391 } 392 state := enc.newEncoderState(b) 393 state.fieldnum = -1 394 state.sendZero = true 395 if iv.IsNil() { 396 state.encodeUint(0) 397 return 398 } 399 400 ut := userType(iv.Elem().Type()) 401 namei, ok := concreteTypeToName.Load(ut.base) 402 if !ok { 403 errorf("type not registered for interface: %s", ut.base) 404 } 405 name := namei.(string) 406 407 // Send the name. 408 state.encodeUint(uint64(len(name))) 409 state.b.WriteString(name) 410 // Define the type id if necessary. 411 enc.sendTypeDescriptor(enc.writer(), state, ut) 412 // Send the type id. 413 enc.sendTypeId(state, ut) 414 // Encode the value into a new buffer. Any nested type definitions 415 // should be written to b, before the encoded value. 416 enc.pushWriter(b) 417 data := encBufferPool.Get().(*encBuffer) 418 data.Write(spaceForLength) 419 enc.encode(data, elem, ut) 420 if enc.err != nil { 421 error_(enc.err) 422 } 423 enc.popWriter() 424 enc.writeMessage(b, data) 425 data.Reset() 426 encBufferPool.Put(data) 427 if enc.err != nil { 428 error_(enc.err) 429 } 430 enc.freeEncoderState(state) 431} 432 433// encodeGobEncoder encodes a value that implements the GobEncoder interface. 434// The data is sent as a byte array. 435func (enc *Encoder) encodeGobEncoder(b *encBuffer, ut *userTypeInfo, v reflect.Value) { 436 // TODO: should we catch panics from the called method? 437 438 var data []byte 439 var err error 440 // We know it's one of these. 441 switch ut.externalEnc { 442 case xGob: 443 data, err = v.Interface().(GobEncoder).GobEncode() 444 case xBinary: 445 data, err = v.Interface().(encoding.BinaryMarshaler).MarshalBinary() 446 case xText: 447 data, err = v.Interface().(encoding.TextMarshaler).MarshalText() 448 } 449 if err != nil { 450 error_(err) 451 } 452 state := enc.newEncoderState(b) 453 state.fieldnum = -1 454 state.encodeUint(uint64(len(data))) 455 state.b.Write(data) 456 enc.freeEncoderState(state) 457} 458 459var encOpTable = [...]encOp{ 460 reflect.Bool: encBool, 461 reflect.Int: encInt, 462 reflect.Int8: encInt, 463 reflect.Int16: encInt, 464 reflect.Int32: encInt, 465 reflect.Int64: encInt, 466 reflect.Uint: encUint, 467 reflect.Uint8: encUint, 468 reflect.Uint16: encUint, 469 reflect.Uint32: encUint, 470 reflect.Uint64: encUint, 471 reflect.Uintptr: encUint, 472 reflect.Float32: encFloat, 473 reflect.Float64: encFloat, 474 reflect.Complex64: encComplex, 475 reflect.Complex128: encComplex, 476 reflect.String: encString, 477} 478 479// encOpFor returns (a pointer to) the encoding op for the base type under rt and 480// the indirection count to reach it. 481func encOpFor(rt reflect.Type, inProgress map[reflect.Type]*encOp, building map[*typeInfo]bool) (*encOp, int) { 482 ut := userType(rt) 483 // If the type implements GobEncoder, we handle it without further processing. 484 if ut.externalEnc != 0 { 485 return gobEncodeOpFor(ut) 486 } 487 // If this type is already in progress, it's a recursive type (e.g. map[string]*T). 488 // Return the pointer to the op we're already building. 489 if opPtr := inProgress[rt]; opPtr != nil { 490 return opPtr, ut.indir 491 } 492 typ := ut.base 493 indir := ut.indir 494 k := typ.Kind() 495 var op encOp 496 if int(k) < len(encOpTable) { 497 op = encOpTable[k] 498 } 499 if op == nil { 500 inProgress[rt] = &op 501 // Special cases 502 switch t := typ; t.Kind() { 503 case reflect.Slice: 504 if t.Elem().Kind() == reflect.Uint8 { 505 op = encUint8Array 506 break 507 } 508 // Slices have a header; we decode it to find the underlying array. 509 elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) 510 helper := encSliceHelper[t.Elem().Kind()] 511 op = func(i *encInstr, state *encoderState, slice reflect.Value) { 512 if !state.sendZero && slice.Len() == 0 { 513 return 514 } 515 state.update(i) 516 state.enc.encodeArray(state.b, slice, *elemOp, elemIndir, slice.Len(), helper) 517 } 518 case reflect.Array: 519 // True arrays have size in the type. 520 elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) 521 helper := encArrayHelper[t.Elem().Kind()] 522 op = func(i *encInstr, state *encoderState, array reflect.Value) { 523 state.update(i) 524 state.enc.encodeArray(state.b, array, *elemOp, elemIndir, array.Len(), helper) 525 } 526 case reflect.Map: 527 keyOp, keyIndir := encOpFor(t.Key(), inProgress, building) 528 elemOp, elemIndir := encOpFor(t.Elem(), inProgress, building) 529 op = func(i *encInstr, state *encoderState, mv reflect.Value) { 530 // We send zero-length (but non-nil) maps because the 531 // receiver might want to use the map. (Maps don't use append.) 532 if !state.sendZero && mv.IsNil() { 533 return 534 } 535 state.update(i) 536 state.enc.encodeMap(state.b, mv, *keyOp, *elemOp, keyIndir, elemIndir) 537 } 538 case reflect.Struct: 539 // Generate a closure that calls out to the engine for the nested type. 540 getEncEngine(userType(typ), building) 541 info := mustGetTypeInfo(typ) 542 op = func(i *encInstr, state *encoderState, sv reflect.Value) { 543 state.update(i) 544 // indirect through info to delay evaluation for recursive structs 545 enc := info.encoder.Load() 546 state.enc.encodeStruct(state.b, enc, sv) 547 } 548 case reflect.Interface: 549 op = func(i *encInstr, state *encoderState, iv reflect.Value) { 550 if !state.sendZero && (!iv.IsValid() || iv.IsNil()) { 551 return 552 } 553 state.update(i) 554 state.enc.encodeInterface(state.b, iv) 555 } 556 } 557 } 558 if op == nil { 559 errorf("can't happen: encode type %s", rt) 560 } 561 return &op, indir 562} 563 564// gobEncodeOpFor returns the op for a type that is known to implement GobEncoder. 565func gobEncodeOpFor(ut *userTypeInfo) (*encOp, int) { 566 rt := ut.user 567 if ut.encIndir == -1 { 568 rt = reflect.PointerTo(rt) 569 } else if ut.encIndir > 0 { 570 for i := int8(0); i < ut.encIndir; i++ { 571 rt = rt.Elem() 572 } 573 } 574 var op encOp 575 op = func(i *encInstr, state *encoderState, v reflect.Value) { 576 if ut.encIndir == -1 { 577 // Need to climb up one level to turn value into pointer. 578 if !v.CanAddr() { 579 errorf("unaddressable value of type %s", rt) 580 } 581 v = v.Addr() 582 } 583 if !state.sendZero && v.IsZero() { 584 return 585 } 586 state.update(i) 587 state.enc.encodeGobEncoder(state.b, ut, v) 588 } 589 return &op, int(ut.encIndir) // encIndir: op will get called with p == address of receiver. 590} 591 592// compileEnc returns the engine to compile the type. 593func compileEnc(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { 594 srt := ut.base 595 engine := new(encEngine) 596 seen := make(map[reflect.Type]*encOp) 597 rt := ut.base 598 if ut.externalEnc != 0 { 599 rt = ut.user 600 } 601 if ut.externalEnc == 0 && srt.Kind() == reflect.Struct { 602 for fieldNum, wireFieldNum := 0, 0; fieldNum < srt.NumField(); fieldNum++ { 603 f := srt.Field(fieldNum) 604 if !isSent(&f) { 605 continue 606 } 607 op, indir := encOpFor(f.Type, seen, building) 608 engine.instr = append(engine.instr, encInstr{*op, wireFieldNum, f.Index, indir}) 609 wireFieldNum++ 610 } 611 if srt.NumField() > 0 && len(engine.instr) == 0 { 612 errorf("type %s has no exported fields", rt) 613 } 614 engine.instr = append(engine.instr, encInstr{encStructTerminator, 0, nil, 0}) 615 } else { 616 engine.instr = make([]encInstr, 1) 617 op, indir := encOpFor(rt, seen, building) 618 engine.instr[0] = encInstr{*op, singletonField, nil, indir} 619 } 620 return engine 621} 622 623// getEncEngine returns the engine to compile the type. 624func getEncEngine(ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { 625 info, err := getTypeInfo(ut) 626 if err != nil { 627 error_(err) 628 } 629 enc := info.encoder.Load() 630 if enc == nil { 631 enc = buildEncEngine(info, ut, building) 632 } 633 return enc 634} 635 636func buildEncEngine(info *typeInfo, ut *userTypeInfo, building map[*typeInfo]bool) *encEngine { 637 // Check for recursive types. 638 if building != nil && building[info] { 639 return nil 640 } 641 info.encInit.Lock() 642 defer info.encInit.Unlock() 643 enc := info.encoder.Load() 644 if enc == nil { 645 if building == nil { 646 building = make(map[*typeInfo]bool) 647 } 648 building[info] = true 649 enc = compileEnc(ut, building) 650 info.encoder.Store(enc) 651 } 652 return enc 653} 654 655func (enc *Encoder) encode(b *encBuffer, value reflect.Value, ut *userTypeInfo) { 656 defer catchError(&enc.err) 657 engine := getEncEngine(ut, nil) 658 indir := ut.indir 659 if ut.externalEnc != 0 { 660 indir = int(ut.encIndir) 661 } 662 for i := 0; i < indir; i++ { 663 value = reflect.Indirect(value) 664 } 665 if ut.externalEnc == 0 && value.Type().Kind() == reflect.Struct { 666 enc.encodeStruct(b, engine, value) 667 } else { 668 enc.encodeSingle(b, engine, value) 669 } 670} 671