xref: /aosp_15_r20/external/ComputeLibrary/src/core/NEON/kernels/arm_conv/pooling/pooling_depthfirst.hpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2021-2022 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #pragma once
26 
27 #include "depthfirst_driver.hpp"
28 #include "src/core/NEON/kernels/arm_conv/addressing.hpp"
29 #include "utils.hpp"
30 #if !defined(_WIN64) && !defined(__OpenBSD__)
31 #include <alloca.h>
32 #endif /* !defined(_WIN64) && !defined(__OpenBSD__) */
33 #include <limits>
34 
35 namespace arm_conv {
36 namespace pooling {
37 
38 template <typename TInput, typename TOutput>
39 class DepthfirstStrategy : public IDepthfirstStrategy
40 {
41   unsigned int input_rows, input_cols, output_rows, output_cols;
42 
43   public:
DepthfirstStrategy(unsigned int window_rows,unsigned int window_cols,unsigned int stride_rows,unsigned int stride_cols,unsigned int output_rows,unsigned int output_cols)44   DepthfirstStrategy(unsigned int window_rows, unsigned int window_cols,
45                      unsigned int stride_rows, unsigned int stride_cols,
46                      unsigned int output_rows, unsigned int output_cols)
47   : input_rows(output_rows + (window_rows - 1) * stride_rows),
48     input_cols(output_cols + (window_cols - 1) * stride_cols),
49     output_rows(output_rows), output_cols(output_cols)
50   {
51   }
52 
get_input_rows() const53   unsigned int get_input_rows() const override { return input_rows; }
get_input_cols() const54   unsigned int get_input_cols() const override { return input_cols; }
get_output_rows() const55   unsigned int get_output_rows() const override { return output_rows; }
get_output_cols() const56   unsigned int get_output_cols() const override { return output_cols; }
57 
58   typedef void (*KernelType)(
59     unsigned int n_channels,
60     const TInput *const *,
61     TOutput *const *,
62     bool exclude_padding,
63     unsigned int pad_left,
64     unsigned int pad_top,
65     unsigned int pad_right,
66     unsigned int pad_bottom
67   );
68   virtual KernelType get_kernel(void) const = 0;
69 };
70 
71 
72 struct WorkingSpace
73 {
74   void *input_buffer;
75   void *output_buffer;
76 };
77 
78 
79 template <typename TInput, typename TOutput=TInput, class OutputStage=Nothing>
80 class PoolingDepthfirst : public DepthfirstDriver<TInput, TOutput>
81 {
sizeof_input_buffer(void) const82   size_t sizeof_input_buffer(void) const
83   {
84     return sizeof(TInput) * this->m_args.n_channels;
85   }
86 
sizeof_output_buffer(void) const87   size_t sizeof_output_buffer(void) const
88   {
89     return sizeof(TOutput) * this->m_args.n_channels;
90   }
91 
92   protected:
93   /* Compute the amount of working space required for a single thread. */
get_working_size_per_thread(unsigned int n_channels) const94   size_t get_working_size_per_thread(unsigned int n_channels) const override
95   {
96     return sizeof(WorkingSpace) + n_channels * (sizeof(TInput) + sizeof(TOutput));
97   }
98 
99   /* Initialise the working space for a thread. */
initialise_working_space(void * raw_ws,unsigned int n_channels) const100   void initialise_working_space(void *raw_ws, unsigned int n_channels) const override
101   {
102     auto ws = reinterpret_cast<WorkingSpace *>(raw_ws);
103     ws->input_buffer = ws + 1;
104     ws->output_buffer = reinterpret_cast<TInput *>(ws + 1) + n_channels;
105 
106     // Fill the input buffer with an appropriate value
107     TInput fill_val = 0;
108     if (this->m_args.pool_type == PoolingType::MAX)
109     {
110       using limits = std::numeric_limits<TInput>;
111       if (limits::has_infinity)
112       {
113         fill_val = -limits::infinity();
114       }
115       else
116       {
117         fill_val = limits::min();
118       }
119     }
120 
121     auto ptr = reinterpret_cast<TInput *>(ws->input_buffer);
122     for (; n_channels; n_channels--)
123     {
124       *(ptr++) = fill_val;
125     }
126   }
127 
128   /* Compute a portion of the output tensor with padding. */
compute_tile_padded(unsigned int output_i,unsigned int output_j,unsigned int channel_start,unsigned int channel_end,const TensorSpec<const TInput * > & input,const TensorSpec<TOutput * > & output,void * working_space) const129   void compute_tile_padded(
130     unsigned int output_i, unsigned int output_j,
131     unsigned int channel_start, unsigned int channel_end,
132     const TensorSpec<const TInput *> &input,
133     const TensorSpec<TOutput *> &output,
134     void *working_space
135   ) const override
136   {
137     const auto kern = reinterpret_cast<const DepthfirstStrategy<TInput, TOutput> *>(
138       this->m_strat.get())->get_kernel();
139 
140     // Get the working space, and some space on the stack for pointer arrays
141     auto ws = reinterpret_cast<WorkingSpace *>(working_space);
142     auto inptr_array = reinterpret_cast<const TInput **>(alloca(
143         sizeof(TInput *) * this->m_strat->get_input_rows() * this->m_strat->get_input_cols()));
144     auto outptr_array = reinterpret_cast<TOutput **>(alloca(
145         sizeof(TOutput *) * this->m_strat->get_output_rows() * this->m_strat->get_output_cols()));
146 
147     // Prepare the input pointers
148     const int ii = static_cast<int>(output_i * this->m_args.pool_stride.rows) - this->m_args.padding.top;
149     const auto input_pad_top = static_cast<unsigned int>(ii < 0 ? -ii : 0);
150     const auto input_i = static_cast<unsigned int>(ii < 0 ? 0 : ii);
151 
152     const unsigned int end_ii = ii + this->m_strat->get_input_rows();
153     const auto input_pad_bottom = end_ii < this->m_args.input_rows ? 0 : end_ii - this->m_args.input_rows;
154 
155     const int ij = static_cast<int>(output_j * this->m_args.pool_stride.cols) - this->m_args.padding.left;
156     const auto input_pad_left = static_cast<unsigned int>(ij < 0 ? -ij : 0);
157     const auto input_j = static_cast<unsigned int>(ij < 0 ? 0 : ij);
158 
159     const unsigned int end_ij = ij + this->m_strat->get_input_cols();
160     const auto input_pad_right = end_ij < this->m_args.input_cols ? 0 : end_ij - this->m_args.input_cols;
161 
162     fill_pointer_array<const TInput>(
163       inptr_array, this->m_strat->get_input_rows(), this->m_strat->get_input_cols(),
164       input.base + input_i*input.ld_row + input_j*input.ld_col + channel_start,
165       input.ld_row, input.ld_col,
166       reinterpret_cast<const TInput *>(ws->input_buffer),
167       input_pad_top, this->m_args.input_rows - input_i,
168       input_pad_left, this->m_args.input_cols - input_j
169     );
170 
171     // Prepare the output pointers
172     fill_pointer_array(
173       outptr_array, this->m_strat->get_output_rows(), this->m_strat->get_output_cols(),
174       output.base + output_i*output.ld_row + output_j*output.ld_col + channel_start,
175       output.ld_row, output.ld_col,
176       reinterpret_cast<TOutput *>(ws->output_buffer),
177       0, this->m_args.output_rows - output_i, // Top padding, # valid rows
178       0, this->m_args.output_cols - output_j  // Left padding, # valid columns
179     );
180 
181     // Call the kernel
182     kern(
183       channel_end - channel_start, inptr_array, outptr_array,
184       this->m_args.exclude_padding,
185       input_pad_left, input_pad_top,
186       input_pad_right, input_pad_bottom
187     );
188   }
189 
190   // Compute a portion of the work with only top/bottom padding.
compute_row_padded_tile_row(const unsigned int output_i,unsigned int output_j,unsigned int n_tile_cols,const unsigned int channel_start,const unsigned int channel_end,const TensorSpec<const TInput * > & input,const TensorSpec<TOutput * > & output,void * working_space) const191   void compute_row_padded_tile_row(
192     const unsigned int output_i, unsigned int output_j, unsigned int n_tile_cols,
193     const unsigned int channel_start, const unsigned int channel_end,
194     const TensorSpec<const TInput *> &input,
195     const TensorSpec<TOutput *> &output,
196     void *working_space
197   ) const override
198   {
199     const auto kern = reinterpret_cast<const DepthfirstStrategy<TInput, TOutput> *>(
200       this->m_strat.get())->get_kernel();
201 
202     // Get the working space, and some space on the stack for pointer arrays
203     auto ws = reinterpret_cast<WorkingSpace *>(working_space);
204     auto inptr_array = reinterpret_cast<const TInput **>(alloca(
205         sizeof(TInput *) * this->m_strat->get_input_rows() * this->m_strat->get_input_cols()));
206     auto outptr_array = reinterpret_cast<TOutput **>(alloca(
207         sizeof(TOutput *) * this->m_strat->get_output_rows() * this->m_strat->get_output_cols()));
208 
209     // Prepare the initial input pointers
210     const int ii = static_cast<int>(output_i * this->m_args.pool_stride.rows) - this->m_args.padding.top;
211     const auto input_pad_top = static_cast<unsigned int>(ii < 0 ? -ii : 0);
212     const auto input_i = static_cast<unsigned int>(ii < 0 ? 0 : ii);
213 
214     const unsigned int end_ii = ii + this->m_strat->get_input_rows();
215     const auto input_pad_bottom = end_ii < this->m_args.input_rows ? 0 : end_ii - this->m_args.input_rows;
216 
217     const int ij = static_cast<int>(output_j * this->m_args.pool_stride.cols) - this->m_args.padding.left;
218     const auto input_j = static_cast<unsigned int>(ij < 0 ? 0 : ij);
219 
220     const auto end_oi = output_i + this->m_strat->get_output_cols();
221     const auto output_pad_bottom = end_oi < this->m_args.output_rows ? 0 : end_oi - this->m_args.output_rows;
222 
223     fill_pointer_array<const TInput>(
224       inptr_array, this->m_strat->get_input_rows(), this->m_strat->get_input_cols(),
225       input.base + input_i*input.ld_row + input_j*input.ld_col + channel_start,
226       input.ld_row, input.ld_col,
227       reinterpret_cast<const TInput *>(ws->input_buffer),
228       input_pad_top, this->m_args.input_rows - input_i,
229       0, this->m_args.input_cols - input_j
230     );
231 
232     // Prepare the initial output pointers
233     fill_pointer_array(
234       outptr_array, this->m_strat->get_output_rows(), this->m_strat->get_output_cols(),
235       output.base + output_i*output.ld_row + output_j*output.ld_col + channel_start,
236       output.ld_row, output.ld_col,
237       reinterpret_cast<TOutput *>(ws->output_buffer),
238       0, this->m_args.output_rows - output_i, // Top padding, # valid rows
239       0, this->m_args.output_cols - output_j  // Left padding, # valid columns
240     );
241 
242     // Call the kernel
243     for (; n_tile_cols; n_tile_cols--)
244     {
245       kern(
246         channel_end - channel_start, inptr_array, outptr_array,
247         this->m_args.exclude_padding,
248         0, input_pad_top,
249         0, input_pad_bottom
250       );
251 
252       // Progress the input and output pointer arrays
253       const auto input_col_stride = input.ld_col * this->m_strat->get_output_cols() * this->m_args.pool_stride.cols;
254       for (
255         auto n = input_pad_top * this->m_strat->get_input_cols();
256         n < (this->m_strat->get_input_rows() - input_pad_bottom) * this->m_strat->get_input_cols();
257         n++
258       )
259       {
260         inptr_array[n] += input_col_stride;
261       }
262 
263       const auto output_col_stride = output.ld_col * this->m_strat->get_output_cols();
264       for (
265         auto n = 0u;
266         n < (this->m_strat->get_output_rows() - output_pad_bottom) * this->m_strat->get_output_cols();
267         n++
268       )
269       {
270         outptr_array[n] += output_col_stride;
271       }
272     }
273   }
274 
275   public:
PoolingDepthfirst(const DepthfirstStrategy<TInput,TOutput> * strat,const PoolingArgs & args,const OutputStage & os={})276   PoolingDepthfirst(const DepthfirstStrategy<TInput, TOutput> *strat,
277                     const PoolingArgs &args, const OutputStage &os = {})
278   : DepthfirstDriver<TInput, TOutput>(strat, args)
279   {
280     ARM_COMPUTE_UNUSED(os);
281   }
282 };
283 
284 }  // namespace pooling
285 }  // namespace arm_conv
286