1perf-intel-pt(1) 2================ 3 4NAME 5---- 6perf-intel-pt - Support for Intel Processor Trace within perf tools 7 8SYNOPSIS 9-------- 10[verse] 11'perf record' -e intel_pt// 12 13DESCRIPTION 14----------- 15 16Intel Processor Trace (Intel PT) is an extension of Intel Architecture that 17collects information about software execution such as control flow, execution 18modes and timings and formats it into highly compressed binary packets. 19Technical details are documented in the Intel 64 and IA-32 Architectures 20Software Developer Manuals, Chapter 36 Intel Processor Trace. 21 22Intel PT is first supported in Intel Core M and 5th generation Intel Core 23processors that are based on the Intel micro-architecture code name Broadwell. 24 25Trace data is collected by 'perf record' and stored within the perf.data file. 26See below for options to 'perf record'. 27 28Trace data must be 'decoded' which involves walking the object code and matching 29the trace data packets. For example a TNT packet only tells whether a 30conditional branch was taken or not taken, so to make use of that packet the 31decoder must know precisely which instruction was being executed. 32 33Decoding is done on-the-fly. The decoder outputs samples in the same format as 34samples output by perf hardware events, for example as though the "instructions" 35or "branches" events had been recorded. Presently 3 tools support this: 36'perf script', 'perf report' and 'perf inject'. See below for more information 37on using those tools. 38 39The main distinguishing feature of Intel PT is that the decoder can determine 40the exact flow of software execution. Intel PT can be used to understand why 41and how did software get to a certain point, or behave a certain way. The 42software does not have to be recompiled, so Intel PT works with debug or release 43builds, however the executed images are needed - which makes use in JIT-compiled 44environments, or with self-modified code, a challenge. Also symbols need to be 45provided to make sense of addresses. 46 47A limitation of Intel PT is that it produces huge amounts of trace data 48(hundreds of megabytes per second per core) which takes a long time to decode, 49for example two or three orders of magnitude longer than it took to collect. 50Another limitation is the performance impact of tracing, something that will 51vary depending on the use-case and architecture. 52 53 54Quickstart 55---------- 56 57It is important to start small. That is because it is easy to capture vastly 58more data than can possibly be processed. 59 60The simplest thing to do with Intel PT is userspace profiling of small programs. 61Data is captured with 'perf record' e.g. to trace 'ls' userspace-only: 62 63 perf record -e intel_pt//u ls 64 65And profiled with 'perf report' e.g. 66 67 perf report 68 69To also trace kernel space presents a problem, namely kernel self-modifying 70code. A fairly good kernel image is available in /proc/kcore but to get an 71accurate image a copy of /proc/kcore needs to be made under the same conditions 72as the data capture. 'perf record' can make a copy of /proc/kcore if the option 73--kcore is used, but access to /proc/kcore is restricted e.g. 74 75 sudo perf record -o pt_ls --kcore -e intel_pt// -- ls 76 77which will create a directory named 'pt_ls' and put the perf.data file (named 78simply 'data') and copies of /proc/kcore, /proc/kallsyms and /proc/modules into 79it. The other tools understand the directory format, so to use 'perf report' 80becomes: 81 82 sudo perf report -i pt_ls 83 84Because samples are synthesized after-the-fact, the sampling period can be 85selected for reporting. e.g. sample every microsecond 86 87 sudo perf report pt_ls --itrace=i1usge 88 89See the sections below for more information about the --itrace option. 90 91Beware the smaller the period, the more samples that are produced, and the 92longer it takes to process them. 93 94Also note that the coarseness of Intel PT timing information will start to 95distort the statistical value of the sampling as the sampling period becomes 96smaller. 97 98To represent software control flow, "branches" samples are produced. By default 99a branch sample is synthesized for every single branch. To get an idea what 100data is available you can use the 'perf script' tool with all itrace sampling 101options, which will list all the samples. 102 103 perf record -e intel_pt//u ls 104 perf script --itrace=iybxwpe 105 106An interesting field that is not printed by default is 'flags' which can be 107displayed as follows: 108 109 perf script --itrace=iybxwpe -F+flags 110 111The flags are "bcrosyiABExghDt" which stand for branch, call, return, conditional, 112system, asynchronous, interrupt, transaction abort, trace begin, trace end, 113in transaction, VM-entry, VM-exit, interrupt disabled, and interrupt disable 114toggle respectively. 115 116perf script also supports higher level ways to dump instruction traces: 117 118 perf script --insn-trace=disasm 119 120or to use the xed disassembler, which requires installing the xed tool 121(see XED below): 122 123 perf script --insn-trace --xed 124 125Dumping all instructions in a long trace can be fairly slow. It is usually better 126to start with higher level decoding, like 127 128 perf script --call-trace 129 130or 131 132 perf script --call-ret-trace 133 134and then select a time range of interest. The time range can then be examined 135in detail with 136 137 perf script --time starttime,stoptime --insn-trace=disasm 138 139While examining the trace it's also useful to filter on specific CPUs using 140the -C option 141 142 perf script --time starttime,stoptime --insn-trace=disasm -C 1 143 144Dump all instructions in time range on CPU 1. 145 146Another interesting field that is not printed by default is 'ipc' which can be 147displayed as follows: 148 149 perf script --itrace=be -F+ipc 150 151There are two ways that instructions-per-cycle (IPC) can be calculated depending 152on the recording. 153 154If the 'cyc' config term (see <<_config_terms,config terms>> section below) was used, then IPC 155and cycle events are calculated using the cycle count from CYC packets, otherwise 156MTC packets are used - refer to the 'mtc' config term. When MTC is used, however, 157the values are less accurate because the timing is less accurate. 158 159Because Intel PT does not update the cycle count on every branch or instruction, 160the values will often be zero. When there are values, they will be the number 161of instructions and number of cycles since the last update, and thus represent 162the average IPC cycle count since the last IPC for that event type. 163Note IPC for "branches" events is calculated separately from IPC for "instructions" 164events. 165 166Even with the 'cyc' config term, it is possible to produce IPC information for 167every change of timestamp, but at the expense of accuracy. That is selected by 168specifying the itrace 'A' option. Due to the granularity of timestamps, the 169actual number of cycles increases even though the cycles reported does not. 170The number of instructions is known, but if IPC is reported, cycles can be too 171low and so IPC is too high. Note that inaccuracy decreases as the period of 172sampling increases i.e. if the number of cycles is too low by a small amount, 173that becomes less significant if the number of cycles is large. It may also be 174useful to use the 'A' option in conjunction with dlfilter-show-cycles.so to 175provide higher granularity cycle information. 176 177Also note that the IPC instruction count may or may not include the current 178instruction. If the cycle count is associated with an asynchronous branch 179(e.g. page fault or interrupt), then the instruction count does not include the 180current instruction, otherwise it does. That is consistent with whether or not 181that instruction has retired when the cycle count is updated. 182 183Another note, in the case of "branches" events, non-taken branches are not 184presently sampled, so IPC values for them do not appear e.g. a CYC packet with a 185TNT packet that starts with a non-taken branch. To see every possible IPC 186value, "instructions" events can be used e.g. --itrace=i0ns 187 188While it is possible to create scripts to analyze the data, an alternative 189approach is available to export the data to a sqlite or postgresql database. 190Refer to script export-to-sqlite.py or export-to-postgresql.py for more details, 191and to script exported-sql-viewer.py for an example of using the database. 192 193There is also script intel-pt-events.py which provides an example of how to 194unpack the raw data for power events and PTWRITE. The script also displays 195branches, and supports 2 additional modes selected by option: 196 197 - --insn-trace - instruction trace 198 - --src-trace - source trace 199 200The intel-pt-events.py script also has options: 201 202 - --all-switch-events - display all switch events, not only the last consecutive. 203 - --interleave [<n>] - interleave sample output for the same timestamp so that 204 no more than n samples for a CPU are displayed in a row. 'n' defaults to 4. 205 Note this only affects the order of output, and only when the timestamp is the 206 same. 207 208As mentioned above, it is easy to capture too much data. One way to limit the 209data captured is to use 'snapshot' mode which is explained further below. 210Refer to 'new snapshot option' and 'Intel PT modes of operation' further below. 211 212Another problem that will be experienced is decoder errors. They can be caused 213by inability to access the executed image, self-modified or JIT-ed code, or the 214inability to match side-band information (such as context switches and mmaps) 215which results in the decoder not knowing what code was executed. 216 217There is also the problem of perf not being able to copy the data fast enough, 218resulting in data lost because the buffer was full. See 'Buffer handling' below 219for more details. 220 221 222perf record 223----------- 224 225new event 226~~~~~~~~~ 227 228The Intel PT kernel driver creates a new PMU for Intel PT. PMU events are 229selected by providing the PMU name followed by the "config" separated by slashes. 230An enhancement has been made to allow default "config" e.g. the option 231 232 -e intel_pt// 233 234will use a default config value. Currently that is the same as 235 236 -e intel_pt/tsc,noretcomp=0/ 237 238which is the same as 239 240 -e intel_pt/tsc=1,noretcomp=0/ 241 242Note there are other config terms - see section <<_config_terms,config terms>> further below. 243 244The config terms are listed in /sys/devices/intel_pt/format. They are bit 245fields within the config member of the struct perf_event_attr which is 246passed to the kernel by the perf_event_open system call. They correspond to bit 247fields in the IA32_RTIT_CTL MSR. Here is a list of them and their definitions: 248 249 $ grep -H . /sys/bus/event_source/devices/intel_pt/format/* 250 /sys/bus/event_source/devices/intel_pt/format/cyc:config:1 251 /sys/bus/event_source/devices/intel_pt/format/cyc_thresh:config:19-22 252 /sys/bus/event_source/devices/intel_pt/format/mtc:config:9 253 /sys/bus/event_source/devices/intel_pt/format/mtc_period:config:14-17 254 /sys/bus/event_source/devices/intel_pt/format/noretcomp:config:11 255 /sys/bus/event_source/devices/intel_pt/format/psb_period:config:24-27 256 /sys/bus/event_source/devices/intel_pt/format/tsc:config:10 257 258Note that the default config must be overridden for each term i.e. 259 260 -e intel_pt/noretcomp=0/ 261 262is the same as: 263 264 -e intel_pt/tsc=1,noretcomp=0/ 265 266So, to disable TSC packets use: 267 268 -e intel_pt/tsc=0/ 269 270It is also possible to specify the config value explicitly: 271 272 -e intel_pt/config=0x400/ 273 274Note that, as with all events, the event is suffixed with event modifiers: 275 276 u userspace 277 k kernel 278 h hypervisor 279 G guest 280 H host 281 p precise ip 282 283'h', 'G' and 'H' are for virtualization which are not used by Intel PT. 284'p' is also not relevant to Intel PT. So only options 'u' and 'k' are 285meaningful for Intel PT. 286 287perf_event_attr is displayed if the -vv option is used e.g. 288 289 ------------------------------------------------------------ 290 perf_event_attr: 291 type 6 292 size 112 293 config 0x400 294 { sample_period, sample_freq } 1 295 sample_type IP|TID|TIME|CPU|IDENTIFIER 296 read_format ID 297 disabled 1 298 inherit 1 299 exclude_kernel 1 300 exclude_hv 1 301 enable_on_exec 1 302 sample_id_all 1 303 ------------------------------------------------------------ 304 sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8 305 sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8 306 sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8 307 sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8 308 ------------------------------------------------------------ 309 310 311config terms 312~~~~~~~~~~~~ 313 314Config terms are parameters specified with the -e intel_pt// event option, 315for example: 316 317 -e intel_pt/cyc/ 318 319which selects cycle accurate mode. Each config term can have a value which 320defaults to 1, so the above is the same as: 321 322 -e intel_pt/cyc=1/ 323 324Some terms are set by default, so must be set to 0 to turn them off. For 325example, to turn off branch tracing: 326 327 -e intel_pt/branch=0/ 328 329Multiple config terms are separated by commas, for example: 330 331 -e intel_pt/cyc,mtc_period=9/ 332 333There are also common config terms, see linkperf:perf-record[1] documentation. 334 335Intel PT config terms are described below. 336 337*tsc*:: 338Always supported. Produces TSC timestamp packets to provide 339timing information. In some cases it is possible to decode 340without timing information, for example a per-thread context 341that does not overlap executable memory maps. 342+ 343The default config selects tsc (i.e. tsc=1). 344 345*noretcomp*:: 346Always supported. Disables "return compression" so a TIP packet 347is produced when a function returns. Causes more packets to be 348produced but might make decoding more reliable. 349+ 350The default config does not select noretcomp (i.e. noretcomp=0). 351 352*psb_period*:: 353Allows the frequency of PSB packets to be specified. 354+ 355The PSB packet is a synchronization packet that provides a 356starting point for decoding or recovery from errors. 357+ 358Support for psb_period is indicated by: 359+ 360 /sys/bus/event_source/devices/intel_pt/caps/psb_cyc 361+ 362which contains "1" if the feature is supported and "0" 363otherwise. 364+ 365Valid values are given by: 366+ 367 /sys/bus/event_source/devices/intel_pt/caps/psb_periods 368+ 369which contains a hexadecimal value, the bits of which represent 370valid values e.g. bit 2 set means value 2 is valid. 371+ 372The psb_period value is converted to the approximate number of 373trace bytes between PSB packets as: 374+ 375 2 ^ (value + 11) 376+ 377e.g. value 3 means 16KiB bytes between PSBs 378+ 379If an invalid value is entered, the error message 380will give a list of valid values e.g. 381+ 382 $ perf record -e intel_pt/psb_period=15/u uname 383 Invalid psb_period for intel_pt. Valid values are: 0-5 384+ 385If MTC packets are selected, the default config selects a value 386of 3 (i.e. psb_period=3) or the nearest lower value that is 387supported (0 is always supported). Otherwise the default is 0. 388+ 389If decoding is expected to be reliable and the buffer is large 390then a large PSB period can be used. 391+ 392Because a TSC packet is produced with PSB, the PSB period can 393also affect the granularity to timing information in the absence 394of MTC or CYC. 395 396*mtc*:: 397Produces MTC timing packets. 398+ 399MTC packets provide finer grain timestamp information than TSC 400packets. MTC packets record time using the hardware crystal 401clock (CTC) which is related to TSC packets using a TMA packet. 402+ 403Support for this feature is indicated by: 404+ 405 /sys/bus/event_source/devices/intel_pt/caps/mtc 406+ 407which contains "1" if the feature is supported and 408"0" otherwise. 409+ 410The frequency of MTC packets can also be specified - see 411mtc_period below. 412 413*mtc_period*:: 414Specifies how frequently MTC packets are produced - see mtc 415above for how to determine if MTC packets are supported. 416+ 417Valid values are given by: 418+ 419 /sys/bus/event_source/devices/intel_pt/caps/mtc_periods 420+ 421which contains a hexadecimal value, the bits of which represent 422valid values e.g. bit 2 set means value 2 is valid. 423+ 424The mtc_period value is converted to the MTC frequency as: 425 426 CTC-frequency / (2 ^ value) 427+ 428e.g. value 3 means one eighth of CTC-frequency 429+ 430Where CTC is the hardware crystal clock, the frequency of which 431can be related to TSC via values provided in cpuid leaf 0x15. 432+ 433If an invalid value is entered, the error message 434will give a list of valid values e.g. 435+ 436 $ perf record -e intel_pt/mtc_period=15/u uname 437 Invalid mtc_period for intel_pt. Valid values are: 0,3,6,9 438+ 439The default value is 3 or the nearest lower value 440that is supported (0 is always supported). 441 442*cyc*:: 443Produces CYC timing packets. 444+ 445CYC packets provide even finer grain timestamp information than 446MTC and TSC packets. A CYC packet contains the number of CPU 447cycles since the last CYC packet. Unlike MTC and TSC packets, 448CYC packets are only sent when another packet is also sent. 449+ 450Support for this feature is indicated by: 451+ 452 /sys/bus/event_source/devices/intel_pt/caps/psb_cyc 453+ 454which contains "1" if the feature is supported and 455"0" otherwise. 456+ 457The number of CYC packets produced can be reduced by specifying 458a threshold - see cyc_thresh below. 459 460*cyc_thresh*:: 461Specifies how frequently CYC packets are produced - see cyc 462above for how to determine if CYC packets are supported. 463+ 464Valid cyc_thresh values are given by: 465+ 466 /sys/bus/event_source/devices/intel_pt/caps/cycle_thresholds 467+ 468which contains a hexadecimal value, the bits of which represent 469valid values e.g. bit 2 set means value 2 is valid. 470+ 471The cyc_thresh value represents the minimum number of CPU cycles 472that must have passed before a CYC packet can be sent. The 473number of CPU cycles is: 474+ 475 2 ^ (value - 1) 476+ 477e.g. value 4 means 8 CPU cycles must pass before a CYC packet 478can be sent. Note a CYC packet is still only sent when another 479packet is sent, not at, e.g. every 8 CPU cycles. 480+ 481If an invalid value is entered, the error message 482will give a list of valid values e.g. 483+ 484 $ perf record -e intel_pt/cyc,cyc_thresh=15/u uname 485 Invalid cyc_thresh for intel_pt. Valid values are: 0-12 486+ 487CYC packets are not requested by default. 488 489*pt*:: 490Specifies pass-through which enables the 'branch' config term. 491+ 492The default config selects 'pt' if it is available, so a user will 493never need to specify this term. 494 495*branch*:: 496Enable branch tracing. Branch tracing is enabled by default so to 497disable branch tracing use 'branch=0'. 498+ 499The default config selects 'branch' if it is available. 500 501*ptw*:: 502Enable PTWRITE packets which are produced when a ptwrite instruction 503is executed. 504+ 505Support for this feature is indicated by: 506+ 507 /sys/bus/event_source/devices/intel_pt/caps/ptwrite 508+ 509which contains "1" if the feature is supported and 510"0" otherwise. 511+ 512As an alternative, refer to "Emulated PTWRITE" further below. 513 514*fup_on_ptw*:: 515Enable a FUP packet to follow the PTWRITE packet. The FUP packet 516provides the address of the ptwrite instruction. In the absence of 517fup_on_ptw, the decoder will use the address of the previous branch 518if branch tracing is enabled, otherwise the address will be zero. 519Note that fup_on_ptw will work even when branch tracing is disabled. 520 521*pwr_evt*:: 522Enable power events. The power events provide information about 523changes to the CPU C-state. 524+ 525Support for this feature is indicated by: 526+ 527 /sys/bus/event_source/devices/intel_pt/caps/power_event_trace 528+ 529which contains "1" if the feature is supported and 530"0" otherwise. 531 532*event*:: 533Enable Event Trace. The events provide information about asynchronous 534events. 535+ 536Support for this feature is indicated by: 537+ 538 /sys/bus/event_source/devices/intel_pt/caps/event_trace 539+ 540which contains "1" if the feature is supported and 541"0" otherwise. 542 543*notnt*:: 544Disable TNT packets. Without TNT packets, it is not possible to walk 545executable code to reconstruct control flow, however FUP, TIP, TIP.PGE 546and TIP.PGD packets still indicate asynchronous control flow, and (if 547return compression is disabled - see noretcomp) return statements. 548The advantage of eliminating TNT packets is reducing the size of the 549trace and corresponding tracing overhead. 550+ 551Support for this feature is indicated by: 552+ 553 /sys/bus/event_source/devices/intel_pt/caps/tnt_disable 554+ 555which contains "1" if the feature is supported and 556"0" otherwise. 557 558*aux-action=start-paused*:: 559Start tracing paused, refer to the section <<_pause_or_resume_tracing,Pause or Resume Tracing>> 560 561 562config terms on other events 563~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 564 565Some Intel PT features work with other events, features such as AUX area sampling 566and PEBS-via-PT. In those cases, the other events can have config terms below: 567 568*aux-sample-size*:: 569 Used to set the AUX area sample size, refer to the section 570 <<_aux_area_sampling_option,AUX area sampling option>> 571 572*aux-output*:: 573 Used to select PEBS-via-PT, refer to the 574 section <<_pebs_via_intel_pt,PEBS via Intel PT>> 575 576*aux-action*:: 577 Used to pause or resume tracing, refer to the section 578 <<_pause_or_resume_tracing,Pause or Resume Tracing>> 579 580AUX area sampling option 581~~~~~~~~~~~~~~~~~~~~~~~~ 582 583To select Intel PT "sampling" the AUX area sampling option can be used: 584 585 --aux-sample 586 587Optionally it can be followed by the sample size in bytes e.g. 588 589 --aux-sample=8192 590 591In addition, the Intel PT event to sample must be defined e.g. 592 593 -e intel_pt//u 594 595Samples on other events will be created containing Intel PT data e.g. the 596following will create Intel PT samples on the branch-misses event, note the 597events must be grouped using {}: 598 599 perf record --aux-sample -e '{intel_pt//u,branch-misses:u}' 600 601An alternative to '--aux-sample' is to add the config term 'aux-sample-size' to 602events. In this case, the grouping is implied e.g. 603 604 perf record -e intel_pt//u -e branch-misses/aux-sample-size=8192/u 605 606is the same as: 607 608 perf record -e '{intel_pt//u,branch-misses/aux-sample-size=8192/u}' 609 610but allows for also using an address filter e.g.: 611 612 perf record -e intel_pt//u --filter 'filter * @/bin/ls' -e branch-misses/aux-sample-size=8192/u -- ls 613 614It is important to select a sample size that is big enough to contain at least 615one PSB packet. If not a warning will be displayed: 616 617 Intel PT sample size (%zu) may be too small for PSB period (%zu) 618 619The calculation used for that is: if sample_size <= psb_period + 256 display the 620warning. When sampling is used, psb_period defaults to 0 (2KiB). 621 622The default sample size is 4KiB. 623 624The sample size is passed in aux_sample_size in struct perf_event_attr. The 625sample size is limited by the maximum event size which is 64KiB. It is 626difficult to know how big the event might be without the trace sample attached, 627but the tool validates that the sample size is not greater than 60KiB. 628 629 630new snapshot option 631~~~~~~~~~~~~~~~~~~~ 632 633The difference between full trace and snapshot from the kernel's perspective is 634that in full trace we don't overwrite trace data that the user hasn't collected 635yet (and indicated that by advancing aux_tail), whereas in snapshot mode we let 636the trace run and overwrite older data in the buffer so that whenever something 637interesting happens, we can stop it and grab a snapshot of what was going on 638around that interesting moment. 639 640To select snapshot mode a new option has been added: 641 642 -S 643 644Optionally it can be followed by the snapshot size e.g. 645 646 -S0x100000 647 648The default snapshot size is the auxtrace mmap size. If neither auxtrace mmap size 649nor snapshot size is specified, then the default is 4MiB for privileged users 650(or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users. 651If an unprivileged user does not specify mmap pages, the mmap pages will be 652reduced as described in the <<_new_auxtrace_mmap_size_option,new auxtrace mmap size option>> 653section below. 654 655The snapshot size is displayed if the option -vv is used e.g. 656 657 Intel PT snapshot size: %zu 658 659 660new auxtrace mmap size option 661~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 662 663Intel PT buffer size is specified by an addition to the -m option e.g. 664 665 -m,16 666 667selects a buffer size of 16 pages i.e. 64KiB. 668 669Note that the existing functionality of -m is unchanged. The auxtrace mmap size 670is specified by the optional addition of a comma and the value. 671 672The default auxtrace mmap size for Intel PT is 4MiB/page_size for privileged users 673(or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users. 674If an unprivileged user does not specify mmap pages, the mmap pages will be 675reduced from the default 512KiB/page_size to 256KiB/page_size, otherwise the 676user is likely to get an error as they exceed their mlock limit (Max locked 677memory as shown in /proc/self/limits). Note that perf does not count the first 678512KiB (actually /proc/sys/kernel/perf_event_mlock_kb minus 1 page) per cpu 679against the mlock limit so an unprivileged user is allowed 512KiB per cpu plus 680their mlock limit (which defaults to 64KiB but is not multiplied by the number 681of cpus). 682 683In full-trace mode, powers of two are allowed for buffer size, with a minimum 684size of 2 pages. In snapshot mode or sampling mode, it is the same but the 685minimum size is 1 page. 686 687The mmap size and auxtrace mmap size are displayed if the -vv option is used e.g. 688 689 mmap length 528384 690 auxtrace mmap length 4198400 691 692 693Intel PT modes of operation 694~~~~~~~~~~~~~~~~~~~~~~~~~~~ 695 696Intel PT can be used in 3 modes: 697 full-trace mode 698 sample mode 699 snapshot mode 700 701Full-trace mode traces continuously e.g. 702 703 perf record -e intel_pt//u uname 704 705Sample mode attaches a Intel PT sample to other events e.g. 706 707 perf record --aux-sample -e intel_pt//u -e branch-misses:u 708 709Snapshot mode captures the available data when a signal is sent or "snapshot" 710control command is issued. e.g. using a signal 711 712 perf record -v -e intel_pt//u -S ./loopy 1000000000 & 713 [1] 11435 714 kill -USR2 11435 715 Recording AUX area tracing snapshot 716 717Note that the signal sent is SIGUSR2. 718Note that "Recording AUX area tracing snapshot" is displayed because the -v 719option is used. 720 721The advantage of using "snapshot" control command is that the access is 722controlled by access to a FIFO e.g. 723 724 $ mkfifo perf.control 725 $ mkfifo perf.ack 726 $ cat perf.ack & 727 [1] 15235 728 $ sudo ~/bin/perf record --control fifo:perf.control,perf.ack -S -e intel_pt//u -- sleep 60 & 729 [2] 15243 730 $ ps -e | grep perf 731 15244 pts/1 00:00:00 perf 732 $ kill -USR2 15244 733 bash: kill: (15244) - Operation not permitted 734 $ echo snapshot > perf.control 735 ack 736 737The 3 Intel PT modes of operation cannot be used together. 738 739 740Buffer handling 741~~~~~~~~~~~~~~~ 742 743There may be buffer limitations (i.e. single ToPa entry) which means that actual 744buffer sizes are limited to powers of 2 up to 4MiB (MAX_PAGE_ORDER). In order to 745provide other sizes, and in particular an arbitrarily large size, multiple 746buffers are logically concatenated. However an interrupt must be used to switch 747between buffers. That has two potential problems: 748 a) the interrupt may not be handled in time so that the current buffer 749 becomes full and some trace data is lost. 750 b) the interrupts may slow the system and affect the performance 751 results. 752 753If trace data is lost, the driver sets 'truncated' in the PERF_RECORD_AUX event 754which the tools report as an error. 755 756In full-trace mode, the driver waits for data to be copied out before allowing 757the (logical) buffer to wrap-around. If data is not copied out quickly enough, 758again 'truncated' is set in the PERF_RECORD_AUX event. If the driver has to 759wait, the intel_pt event gets disabled. Because it is difficult to know when 760that happens, perf tools always re-enable the intel_pt event after copying out 761data. 762 763 764Intel PT and build ids 765~~~~~~~~~~~~~~~~~~~~~~ 766 767By default "perf record" post-processes the event stream to find all build ids 768for executables for all addresses sampled. Deliberately, Intel PT is not 769decoded for that purpose (it would take too long). Instead the build ids for 770all executables encountered (due to mmap, comm or task events) are included 771in the perf.data file. 772 773To see buildids included in the perf.data file use the command: 774 775 perf buildid-list 776 777If the perf.data file contains Intel PT data, that is the same as: 778 779 perf buildid-list --with-hits 780 781 782Snapshot mode and event disabling 783~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 784 785In order to make a snapshot, the intel_pt event is disabled using an IOCTL, 786namely PERF_EVENT_IOC_DISABLE. However doing that can also disable the 787collection of side-band information. In order to prevent that, a dummy 788software event has been introduced that permits tracking events (like mmaps) to 789continue to be recorded while intel_pt is disabled. That is important to ensure 790there is complete side-band information to allow the decoding of subsequent 791snapshots. 792 793A test has been created for that. To find the test: 794 795 perf test list 796 ... 797 23: Test using a dummy software event to keep tracking 798 799To run the test: 800 801 perf test 23 802 23: Test using a dummy software event to keep tracking : Ok 803 804 805perf record modes (nothing new here) 806~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 807 808perf record essentially operates in one of three modes: 809 per thread 810 per cpu 811 workload only 812 813"per thread" mode is selected by -t or by --per-thread (with -p or -u or just a 814workload). 815"per cpu" is selected by -C or -a. 816"workload only" mode is selected by not using the other options but providing a 817command to run (i.e. the workload). 818 819In per-thread mode an exact list of threads is traced. There is no inheritance. 820Each thread has its own event buffer. 821 822In per-cpu mode all processes (or processes from the selected cgroup i.e. -G 823option, or processes selected with -p or -u) are traced. Each cpu has its own 824buffer. Inheritance is allowed. 825 826In workload-only mode, the workload is traced but with per-cpu buffers. 827Inheritance is allowed. Note that you can now trace a workload in per-thread 828mode by using the --per-thread option. 829 830 831Privileged vs non-privileged users 832~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 833 834Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users 835have memory limits imposed upon them. That affects what buffer sizes they can 836have as outlined above. 837 838The v4.2 kernel introduced support for a context switch metadata event, 839PERF_RECORD_SWITCH, which allows unprivileged users to see when their processes 840are scheduled out and in, just not by whom, which is left for the 841PERF_RECORD_SWITCH_CPU_WIDE, that is only accessible in system wide context, 842which in turn requires CAP_PERFMON or CAP_SYS_ADMIN. 843 844Please see the 45ac1403f564 ("perf: Add PERF_RECORD_SWITCH to indicate context 845switches") commit, that introduces these metadata events for further info. 846 847When working with kernels < v4.2, the following considerations must be taken, 848as the sched:sched_switch tracepoints will be used to receive such information: 849 850Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users are 851not permitted to use tracepoints which means there is insufficient side-band 852information to decode Intel PT in per-cpu mode, and potentially workload-only 853mode too if the workload creates new processes. 854 855Note also, that to use tracepoints, read-access to debugfs is required. So if 856debugfs is not mounted or the user does not have read-access, it will again not 857be possible to decode Intel PT in per-cpu mode. 858 859 860sched_switch tracepoint 861~~~~~~~~~~~~~~~~~~~~~~~ 862 863The sched_switch tracepoint is used to provide side-band data for Intel PT 864decoding in kernels where the PERF_RECORD_SWITCH metadata event isn't 865available. 866 867The sched_switch events are automatically added. e.g. the second event shown 868below: 869 870 $ perf record -vv -e intel_pt//u uname 871 ------------------------------------------------------------ 872 perf_event_attr: 873 type 6 874 size 112 875 config 0x400 876 { sample_period, sample_freq } 1 877 sample_type IP|TID|TIME|CPU|IDENTIFIER 878 read_format ID 879 disabled 1 880 inherit 1 881 exclude_kernel 1 882 exclude_hv 1 883 enable_on_exec 1 884 sample_id_all 1 885 ------------------------------------------------------------ 886 sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8 887 sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8 888 sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8 889 sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8 890 ------------------------------------------------------------ 891 perf_event_attr: 892 type 2 893 size 112 894 config 0x108 895 { sample_period, sample_freq } 1 896 sample_type IP|TID|TIME|CPU|PERIOD|RAW|IDENTIFIER 897 read_format ID 898 inherit 1 899 sample_id_all 1 900 exclude_guest 1 901 ------------------------------------------------------------ 902 sys_perf_event_open: pid -1 cpu 0 group_fd -1 flags 0x8 903 sys_perf_event_open: pid -1 cpu 1 group_fd -1 flags 0x8 904 sys_perf_event_open: pid -1 cpu 2 group_fd -1 flags 0x8 905 sys_perf_event_open: pid -1 cpu 3 group_fd -1 flags 0x8 906 ------------------------------------------------------------ 907 perf_event_attr: 908 type 1 909 size 112 910 config 0x9 911 { sample_period, sample_freq } 1 912 sample_type IP|TID|TIME|IDENTIFIER 913 read_format ID 914 disabled 1 915 inherit 1 916 exclude_kernel 1 917 exclude_hv 1 918 mmap 1 919 comm 1 920 enable_on_exec 1 921 task 1 922 sample_id_all 1 923 mmap2 1 924 comm_exec 1 925 ------------------------------------------------------------ 926 sys_perf_event_open: pid 31104 cpu 0 group_fd -1 flags 0x8 927 sys_perf_event_open: pid 31104 cpu 1 group_fd -1 flags 0x8 928 sys_perf_event_open: pid 31104 cpu 2 group_fd -1 flags 0x8 929 sys_perf_event_open: pid 31104 cpu 3 group_fd -1 flags 0x8 930 mmap size 528384B 931 AUX area mmap length 4194304 932 perf event ring buffer mmapped per cpu 933 Synthesizing auxtrace information 934 Linux 935 [ perf record: Woken up 1 times to write data ] 936 [ perf record: Captured and wrote 0.042 MB perf.data ] 937 938Note, the sched_switch event is only added if the user is permitted to use it 939and only in per-cpu mode. 940 941Note also, the sched_switch event is only added if TSC packets are requested. 942That is because, in the absence of timing information, the sched_switch events 943cannot be matched against the Intel PT trace. 944 945 946perf script 947----------- 948 949By default, perf script will decode trace data found in the perf.data file. 950This can be further controlled by new option --itrace. 951 952 953New --itrace option 954~~~~~~~~~~~~~~~~~~~ 955 956Having no option is the same as 957 958 --itrace 959 960which, in turn, is the same as 961 962 --itrace=cepwxy 963 964The letters are: 965 966 i synthesize "instructions" events 967 y synthesize "cycles" events 968 b synthesize "branches" events 969 x synthesize "transactions" events 970 w synthesize "ptwrite" events 971 p synthesize "power" events (incl. PSB events) 972 c synthesize branches events (calls only) 973 r synthesize branches events (returns only) 974 o synthesize PEBS-via-PT events 975 I synthesize Event Trace events 976 e synthesize tracing error events 977 d create a debug log 978 g synthesize a call chain (use with i or x) 979 G synthesize a call chain on existing event records 980 l synthesize last branch entries (use with i or x) 981 L synthesize last branch entries on existing event records 982 s skip initial number of events 983 q quicker (less detailed) decoding 984 A approximate IPC 985 Z prefer to ignore timestamps (so-called "timeless" decoding) 986 987"Instructions" events look like they were recorded by "perf record -e 988instructions". 989 990"Cycles" events look like they were recorded by "perf record -e cycles" 991(ie., the default). Note that even with CYC packets enabled and no sampling, 992these are not fully accurate, since CYC packets are not emitted for each 993instruction, only when some other event (like an indirect branch, or a 994TNT packet representing multiple branches) happens causes a packet to 995be emitted. Thus, it is more effective for attributing cycles to functions 996(and possibly basic blocks) than to individual instructions, although it 997is not even perfect for functions (although it becomes better if the noretcomp 998option is active). 999 1000"Branches" events look like they were recorded by "perf record -e branches". "c" 1001and "r" can be combined to get calls and returns. 1002 1003"Transactions" events correspond to the start or end of transactions. The 1004'flags' field can be used in perf script to determine whether the event is a 1005transaction start, commit or abort. 1006 1007Note that "instructions", "cycles", "branches" and "transactions" events 1008depend on code flow packets which can be disabled by using the config term 1009"branch=0". Refer to the <<_config_terms,config terms>> section above. 1010 1011"ptwrite" events record the payload of the ptwrite instruction and whether 1012"fup_on_ptw" was used. "ptwrite" events depend on PTWRITE packets which are 1013recorded only if the "ptw" config term was used. Refer to the <<_config_terms,config terms>> 1014section above. perf script "synth" field displays "ptwrite" information like 1015this: "ip: 0 payload: 0x123456789abcdef0" where "ip" is 1 if "fup_on_ptw" was 1016used. 1017 1018"Power" events correspond to power event packets and CBR (core-to-bus ratio) 1019packets. While CBR packets are always recorded when tracing is enabled, power 1020event packets are recorded only if the "pwr_evt" config term was used. Refer to 1021the <<_config_terms,config terms>> section above. The power events record information about 1022C-state changes, whereas CBR is indicative of CPU frequency. perf script 1023"event,synth" fields display information like this: 1024 1025 cbr: cbr: 22 freq: 2189 MHz (200%) 1026 mwait: hints: 0x60 extensions: 0x1 1027 pwre: hw: 0 cstate: 2 sub-cstate: 0 1028 exstop: ip: 1 1029 pwrx: deepest cstate: 2 last cstate: 2 wake reason: 0x4 1030 1031Where: 1032 1033 "cbr" includes the frequency and the percentage of maximum non-turbo 1034 "mwait" shows mwait hints and extensions 1035 "pwre" shows C-state transitions (to a C-state deeper than C0) and 1036 whether initiated by hardware 1037 "exstop" indicates execution stopped and whether the IP was recorded 1038 exactly, 1039 "pwrx" indicates return to C0 1040 1041For more details refer to the Intel 64 and IA-32 Architectures Software 1042Developer Manuals. 1043 1044PSB events show when a PSB+ occurred and also the byte-offset in the trace. 1045Emitting a PSB+ can cause a CPU a slight delay. When doing timing analysis 1046of code with Intel PT, it is useful to know if a timing bubble was caused 1047by Intel PT or not. 1048 1049Error events show where the decoder lost the trace. Error events 1050are quite important. Users must know if what they are seeing is a complete 1051picture or not. The "e" option may be followed by flags which affect what errors 1052will or will not be reported. Each flag must be preceded by either '+' or '-'. 1053The flags supported by Intel PT are: 1054 1055 -o Suppress overflow errors 1056 -l Suppress trace data lost errors 1057 1058For example, for errors but not overflow or data lost errors: 1059 1060 --itrace=e-o-l 1061 1062The "d" option will cause the creation of a file "intel_pt.log" containing all 1063decoded packets and instructions. Note that this option slows down the decoder 1064and that the resulting file may be very large. The "d" option may be followed 1065by flags which affect what debug messages will or will not be logged. Each flag 1066must be preceded by either '+' or '-'. The flags support by Intel PT are: 1067 1068 -a Suppress logging of perf events 1069 +a Log all perf events 1070 +e Output only on decoding errors (size configurable) 1071 +o Output to stdout instead of "intel_pt.log" 1072 1073By default, logged perf events are filtered by any specified time ranges, but 1074flag +a overrides that. The +e flag can be useful for analyzing errors. By 1075default, the log size in that case is 16384 bytes, but can be altered by 1076linkperf:perf-config[1] e.g. perf config itrace.debug-log-buffer-size=30000 1077 1078In addition, the period of the "instructions" event can be specified. e.g. 1079 1080 --itrace=i10us 1081 1082sets the period to 10us i.e. one instruction sample is synthesized for each 10 1083microseconds of trace. Alternatives to "us" are "ms" (milliseconds), 1084"ns" (nanoseconds), "t" (TSC ticks) or "i" (instructions). 1085 1086"ms", "us" and "ns" are converted to TSC ticks. 1087 1088The timing information included with Intel PT does not give the time of every 1089instruction. Consequently, for the purpose of sampling, the decoder estimates 1090the time since the last timing packet based on 1 tick per instruction. The time 1091on the sample is *not* adjusted and reflects the last known value of TSC. 1092 1093For Intel PT, the default period is 100us. 1094 1095Setting it to a zero period means "as often as possible". 1096 1097In the case of Intel PT that is the same as a period of 1 and a unit of 1098'instructions' (i.e. --itrace=i1i). 1099 1100Also the call chain size (default 16, max. 1024) for instructions or 1101transactions events can be specified. e.g. 1102 1103 --itrace=ig32 1104 --itrace=xg32 1105 1106Also the number of last branch entries (default 64, max. 1024) for instructions or 1107transactions events can be specified. e.g. 1108 1109 --itrace=il10 1110 --itrace=xl10 1111 1112Note that last branch entries are cleared for each sample, so there is no overlap 1113from one sample to the next. 1114 1115The G and L options are designed in particular for sample mode, and work much 1116like g and l but add call chain and branch stack to the other selected events 1117instead of synthesized events. For example, to record branch-misses events for 1118'ls' and then add a call chain derived from the Intel PT trace: 1119 1120 perf record --aux-sample -e '{intel_pt//u,branch-misses:u}' -- ls 1121 perf report --itrace=Ge 1122 1123Although in fact G is a default for perf report, so that is the same as just: 1124 1125 perf report 1126 1127One caveat with the G and L options is that they work poorly with "Large PEBS". 1128Large PEBS means PEBS records will be accumulated by hardware and the written 1129into the event buffer in one go. That reduces interrupts, but can give very 1130late timestamps. Because the Intel PT trace is synchronized by timestamps, 1131the PEBS events do not match the trace. Currently, Large PEBS is used only in 1132certain circumstances: 1133 - hardware supports it 1134 - PEBS is used 1135 - event period is specified, instead of frequency 1136 - the sample type is limited to the following flags: 1137 PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_ADDR | 1138 PERF_SAMPLE_ID | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID | 1139 PERF_SAMPLE_DATA_SRC | PERF_SAMPLE_IDENTIFIER | 1140 PERF_SAMPLE_TRANSACTION | PERF_SAMPLE_PHYS_ADDR | 1141 PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER | 1142 PERF_SAMPLE_PERIOD (and sometimes) | PERF_SAMPLE_TIME 1143Because Intel PT sample mode uses a different sample type to the list above, 1144Large PEBS is not used with Intel PT sample mode. To avoid Large PEBS in other 1145cases, avoid specifying the event period i.e. avoid the 'perf record' -c option, 1146--count option, or 'period' config term. 1147 1148To disable trace decoding entirely, use the option --no-itrace. 1149 1150It is also possible to skip events generated (instructions, branches, transactions) 1151at the beginning. This is useful to ignore initialization code. 1152 1153 --itrace=i0nss1000000 1154 1155skips the first million instructions. 1156 1157The q option changes the way the trace is decoded. The decoding is much faster 1158but much less detailed. Specifically, with the q option, the decoder does not 1159decode TNT packets, and does not walk object code, but gets the ip from FUP and 1160TIP packets. The q option can be used with the b and i options but the period 1161is not used. The q option decodes more quickly, but is useful only if the 1162control flow of interest is represented or indicated by FUP, TIP, TIP.PGE, or 1163TIP.PGD packets (refer below). However the q option could be used to find time 1164ranges that could then be decoded fully using the --time option. 1165 1166What will *not* be decoded with the (single) q option: 1167 1168 - direct calls and jmps 1169 - conditional branches 1170 - non-branch instructions 1171 1172What *will* be decoded with the (single) q option: 1173 1174 - asynchronous branches such as interrupts 1175 - indirect branches 1176 - function return target address *if* the noretcomp config term (refer 1177 <<_config_terms,config terms>> section) was used 1178 - start of (control-flow) tracing 1179 - end of (control-flow) tracing, if it is not out of context 1180 - power events, ptwrite, transaction start and abort 1181 - instruction pointer associated with PSB packets 1182 1183Note the q option does not specify what events will be synthesized e.g. the p 1184option must be used also to show power events. 1185 1186Repeating the q option (double-q i.e. qq) results in even faster decoding and even 1187less detail. The decoder decodes only extended PSB (PSB+) packets, getting the 1188instruction pointer if there is a FUP packet within PSB+ (i.e. between PSB and 1189PSBEND). Note PSB packets occur regularly in the trace based on the psb_period 1190config term (refer <<_config_terms,config terms>> section). There will be a FUP packet if the 1191PSB+ occurs while control flow is being traced. 1192 1193What will *not* be decoded with the qq option: 1194 1195 - everything except instruction pointer associated with PSB packets 1196 1197What *will* be decoded with the qq option: 1198 1199 - instruction pointer associated with PSB packets 1200 1201The Z option is equivalent to having recorded a trace without TSC 1202(i.e. config term tsc=0). It can be useful to avoid timestamp issues when 1203decoding a trace of a virtual machine. 1204 1205 1206dlfilter-show-cycles.so 1207~~~~~~~~~~~~~~~~~~~~~~~ 1208 1209Cycles can be displayed using dlfilter-show-cycles.so in which case the itrace A 1210option can be useful to provide higher granularity cycle information: 1211 1212 perf script --itrace=A --call-trace --dlfilter dlfilter-show-cycles.so 1213 1214To see a list of dlfilters: 1215 1216 perf script -v --list-dlfilters 1217 1218See also linkperf:perf-dlfilters[1] 1219 1220 1221dump option 1222~~~~~~~~~~~ 1223 1224perf script has an option (-D) to "dump" the events i.e. display the binary 1225data. 1226 1227When -D is used, Intel PT packets are displayed. The packet decoder does not 1228pay attention to PSB packets, but just decodes the bytes - so the packets seen 1229by the actual decoder may not be identical in places where the data is corrupt. 1230One example of that would be when the buffer-switching interrupt has been too 1231slow, and the buffer has been filled completely. In that case, the last packet 1232in the buffer might be truncated and immediately followed by a PSB as the trace 1233continues in the next buffer. 1234 1235To disable the display of Intel PT packets, combine the -D option with 1236--no-itrace. 1237 1238 1239perf report 1240----------- 1241 1242By default, perf report will decode trace data found in the perf.data file. 1243This can be further controlled by new option --itrace exactly the same as 1244perf script, with the exception that the default is --itrace=igxe. 1245 1246 1247perf inject 1248----------- 1249 1250perf inject also accepts the --itrace option in which case tracing data is 1251removed and replaced with the synthesized events. e.g. 1252 1253 perf inject --itrace -i perf.data -o perf.data.new 1254 1255Below is an example of using Intel PT with autofdo. It requires autofdo 1256(https://github.com/google/autofdo) and gcc version 5. The bubble 1257sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial) 1258amended to take the number of elements as a parameter. 1259 1260 $ gcc-5 -O3 sort.c -o sort_optimized 1261 $ ./sort_optimized 30000 1262 Bubble sorting array of 30000 elements 1263 2254 ms 1264 1265 $ cat ~/.perfconfig 1266 [intel-pt] 1267 mispred-all = on 1268 1269 $ perf record -e intel_pt//u ./sort 3000 1270 Bubble sorting array of 3000 elements 1271 58 ms 1272 [ perf record: Woken up 2 times to write data ] 1273 [ perf record: Captured and wrote 3.939 MB perf.data ] 1274 $ perf inject -i perf.data -o inj --itrace=i100usle --strip 1275 $ ./create_gcov --binary=./sort --profile=inj --gcov=sort.gcov -gcov_version=1 1276 $ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo 1277 $ ./sort_autofdo 30000 1278 Bubble sorting array of 30000 elements 1279 2155 ms 1280 1281Note there is currently no advantage to using Intel PT instead of LBR, but 1282that may change in the future if greater use is made of the data. 1283 1284 1285PEBS via Intel PT 1286----------------- 1287 1288Some hardware has the feature to redirect PEBS records to the Intel PT trace. 1289Recording is selected by using the aux-output config term e.g. 1290 1291 perf record -c 10000 -e '{intel_pt/branch=0/,cycles/aux-output/ppp}' uname 1292 1293Originally, software only supported redirecting at most one PEBS event because it 1294was not able to differentiate one event from another. To overcome that, more recent 1295kernels and perf tools add support for the PERF_RECORD_AUX_OUTPUT_HW_ID side-band event. 1296To check for the presence of that event in a PEBS-via-PT trace: 1297 1298 perf script -D --no-itrace | grep PERF_RECORD_AUX_OUTPUT_HW_ID 1299 1300To display PEBS events from the Intel PT trace, use the itrace 'o' option e.g. 1301 1302 perf script --itrace=oe 1303 1304XED 1305--- 1306 1307include::build-xed.txt[] 1308 1309 1310Tracing Virtual Machines (kernel only) 1311-------------------------------------- 1312 1313Currently, kernel tracing is supported with either "timeless" decoding 1314(i.e. no TSC timestamps) or VM Time Correlation. VM Time Correlation is an extra step 1315using 'perf inject' and requires unchanging VMX TSC Offset and no VMX TSC Scaling. 1316 1317Other limitations and caveats 1318 1319 VMX controls may suppress packets needed for decoding resulting in decoding errors 1320 VMX controls may block the perf NMI to the host potentially resulting in lost trace data 1321 Guest kernel self-modifying code (e.g. jump labels or JIT-compiled eBPF) will result in decoding errors 1322 Guest thread information is unknown 1323 Guest VCPU is unknown but may be able to be inferred from the host thread 1324 Callchains are not supported 1325 1326Example using "timeless" decoding 1327 1328Start VM 1329 1330 $ sudo virsh start kubuntu20.04 1331 Domain kubuntu20.04 started 1332 1333Mount the guest file system. Note sshfs needs -o direct_io to enable reading of proc files. root access is needed to read /proc/kcore. 1334 1335 $ mkdir vm0 1336 $ sshfs -o direct_io root@vm0:/ vm0 1337 1338Copy the guest /proc/kallsyms, /proc/modules and /proc/kcore 1339 1340 $ perf buildid-cache -v --kcore vm0/proc/kcore 1341 kcore added to build-id cache directory /home/user/.debug/[kernel.kcore]/9600f316a53a0f54278885e8d9710538ec5f6a08/2021021807494306 1342 $ KALLSYMS=/home/user/.debug/[kernel.kcore]/9600f316a53a0f54278885e8d9710538ec5f6a08/2021021807494306/kallsyms 1343 1344Find the VM process 1345 1346 $ ps -eLl | grep 'KVM\|PID' 1347 F S UID PID PPID LWP C PRI NI ADDR SZ WCHAN TTY TIME CMD 1348 3 S 64055 1430 1 1440 1 80 0 - 1921718 - ? 00:02:47 CPU 0/KVM 1349 3 S 64055 1430 1 1441 1 80 0 - 1921718 - ? 00:02:41 CPU 1/KVM 1350 3 S 64055 1430 1 1442 1 80 0 - 1921718 - ? 00:02:38 CPU 2/KVM 1351 3 S 64055 1430 1 1443 2 80 0 - 1921718 - ? 00:03:18 CPU 3/KVM 1352 1353Start an open-ended perf record, tracing the VM process, do something on the VM, and then ctrl-C to stop. 1354TSC is not supported and tsc=0 must be specified. That means mtc is useless, so add mtc=0. 1355However, IPC can still be determined, hence cyc=1 can be added. 1356Only kernel decoding is supported, so 'k' must be specified. 1357Intel PT traces both the host and the guest so --guest and --host need to be specified. 1358Without timestamps, --per-thread must be specified to distinguish threads. 1359 1360 $ sudo perf kvm --guest --host --guestkallsyms $KALLSYMS record --kcore -e intel_pt/tsc=0,mtc=0,cyc=1/k -p 1430 --per-thread 1361 ^C 1362 [ perf record: Woken up 1 times to write data ] 1363 [ perf record: Captured and wrote 5.829 MB ] 1364 1365perf script can be used to provide an instruction trace 1366 1367 $ perf script --guestkallsyms $KALLSYMS --insn-trace=disasm -F+ipc | grep -C10 vmresume | head -21 1368 CPU 0/KVM 1440 ffffffff82133cdd __vmx_vcpu_run+0x3d ([kernel.kallsyms]) movq 0x48(%rax), %r9 1369 CPU 0/KVM 1440 ffffffff82133ce1 __vmx_vcpu_run+0x41 ([kernel.kallsyms]) movq 0x50(%rax), %r10 1370 CPU 0/KVM 1440 ffffffff82133ce5 __vmx_vcpu_run+0x45 ([kernel.kallsyms]) movq 0x58(%rax), %r11 1371 CPU 0/KVM 1440 ffffffff82133ce9 __vmx_vcpu_run+0x49 ([kernel.kallsyms]) movq 0x60(%rax), %r12 1372 CPU 0/KVM 1440 ffffffff82133ced __vmx_vcpu_run+0x4d ([kernel.kallsyms]) movq 0x68(%rax), %r13 1373 CPU 0/KVM 1440 ffffffff82133cf1 __vmx_vcpu_run+0x51 ([kernel.kallsyms]) movq 0x70(%rax), %r14 1374 CPU 0/KVM 1440 ffffffff82133cf5 __vmx_vcpu_run+0x55 ([kernel.kallsyms]) movq 0x78(%rax), %r15 1375 CPU 0/KVM 1440 ffffffff82133cf9 __vmx_vcpu_run+0x59 ([kernel.kallsyms]) movq (%rax), %rax 1376 CPU 0/KVM 1440 ffffffff82133cfc __vmx_vcpu_run+0x5c ([kernel.kallsyms]) callq 0xffffffff82133c40 1377 CPU 0/KVM 1440 ffffffff82133c40 vmx_vmenter+0x0 ([kernel.kallsyms]) jz 0xffffffff82133c46 1378 CPU 0/KVM 1440 ffffffff82133c42 vmx_vmenter+0x2 ([kernel.kallsyms]) vmresume IPC: 0.11 (50/445) 1379 :1440 1440 ffffffffbb678b06 native_write_msr+0x6 ([guest.kernel.kallsyms]) nopl %eax, (%rax,%rax,1) 1380 :1440 1440 ffffffffbb678b0b native_write_msr+0xb ([guest.kernel.kallsyms]) retq IPC: 0.04 (2/41) 1381 :1440 1440 ffffffffbb666646 lapic_next_deadline+0x26 ([guest.kernel.kallsyms]) data16 nop 1382 :1440 1440 ffffffffbb666648 lapic_next_deadline+0x28 ([guest.kernel.kallsyms]) xor %eax, %eax 1383 :1440 1440 ffffffffbb66664a lapic_next_deadline+0x2a ([guest.kernel.kallsyms]) popq %rbp 1384 :1440 1440 ffffffffbb66664b lapic_next_deadline+0x2b ([guest.kernel.kallsyms]) retq IPC: 0.16 (4/25) 1385 :1440 1440 ffffffffbb74607f clockevents_program_event+0x8f ([guest.kernel.kallsyms]) test %eax, %eax 1386 :1440 1440 ffffffffbb746081 clockevents_program_event+0x91 ([guest.kernel.kallsyms]) jz 0xffffffffbb74603c IPC: 0.06 (2/30) 1387 :1440 1440 ffffffffbb74603c clockevents_program_event+0x4c ([guest.kernel.kallsyms]) popq %rbx 1388 :1440 1440 ffffffffbb74603d clockevents_program_event+0x4d ([guest.kernel.kallsyms]) popq %r12 1389 1390Example using VM Time Correlation 1391 1392Start VM 1393 1394 $ sudo virsh start kubuntu20.04 1395 Domain kubuntu20.04 started 1396 1397Mount the guest file system. Note sshfs needs -o direct_io to enable reading of proc files. root access is needed to read /proc/kcore. 1398 1399 $ mkdir -p vm0 1400 $ sshfs -o direct_io root@vm0:/ vm0 1401 1402Copy the guest /proc/kallsyms, /proc/modules and /proc/kcore 1403 1404 $ perf buildid-cache -v --kcore vm0/proc/kcore 1405 same kcore found in /home/user/.debug/[kernel.kcore]/cc9c55a98c5e4ec0aeda69302554aabed5cd6491/2021021312450777 1406 $ KALLSYMS=/home/user/.debug/\[kernel.kcore\]/cc9c55a98c5e4ec0aeda69302554aabed5cd6491/2021021312450777/kallsyms 1407 1408Find the VM process 1409 1410 $ ps -eLl | grep 'KVM\|PID' 1411 F S UID PID PPID LWP C PRI NI ADDR SZ WCHAN TTY TIME CMD 1412 3 S 64055 16998 1 17005 13 80 0 - 1818189 - ? 00:00:16 CPU 0/KVM 1413 3 S 64055 16998 1 17006 4 80 0 - 1818189 - ? 00:00:05 CPU 1/KVM 1414 3 S 64055 16998 1 17007 3 80 0 - 1818189 - ? 00:00:04 CPU 2/KVM 1415 3 S 64055 16998 1 17008 4 80 0 - 1818189 - ? 00:00:05 CPU 3/KVM 1416 1417Start an open-ended perf record, tracing the VM process, do something on the VM, and then ctrl-C to stop. 1418IPC can be determined, hence cyc=1 can be added. 1419Only kernel decoding is supported, so 'k' must be specified. 1420Intel PT traces both the host and the guest so --guest and --host need to be specified. 1421 1422 $ sudo perf kvm --guest --host --guestkallsyms $KALLSYMS record --kcore -e intel_pt/cyc=1/k -p 16998 1423 ^C[ perf record: Woken up 1 times to write data ] 1424 [ perf record: Captured and wrote 9.041 MB perf.data.kvm ] 1425 1426Now 'perf inject' can be used to determine the VMX TCS Offset. Note, Intel PT TSC packets are 1427only 7-bytes, so the TSC Offset might differ from the actual value in the 8th byte. That will 1428have no effect i.e. the resulting timestamps will be correct anyway. 1429 1430 $ perf inject -i perf.data.kvm --vm-time-correlation=dry-run 1431 ERROR: Unknown TSC Offset for VMCS 0x1bff6a 1432 VMCS: 0x1bff6a TSC Offset 0xffffe42722c64c41 1433 ERROR: Unknown TSC Offset for VMCS 0x1cbc08 1434 VMCS: 0x1cbc08 TSC Offset 0xffffe42722c64c41 1435 ERROR: Unknown TSC Offset for VMCS 0x1c3ce8 1436 VMCS: 0x1c3ce8 TSC Offset 0xffffe42722c64c41 1437 ERROR: Unknown TSC Offset for VMCS 0x1cbce9 1438 VMCS: 0x1cbce9 TSC Offset 0xffffe42722c64c41 1439 1440Each virtual CPU has a different Virtual Machine Control Structure (VMCS) 1441shown above with the calculated TSC Offset. For an unchanging TSC Offset 1442they should all be the same for the same virtual machine. 1443 1444Now that the TSC Offset is known, it can be provided to 'perf inject' 1445 1446 $ perf inject -i perf.data.kvm --vm-time-correlation="dry-run 0xffffe42722c64c41" 1447 1448Note the options for 'perf inject' --vm-time-correlation are: 1449 1450 [ dry-run ] [ <TSC Offset> [ : <VMCS> [ , <VMCS> ]... ] ]... 1451 1452So it is possible to specify different TSC Offsets for different VMCS. 1453The option "dry-run" will cause the file to be processed but without updating it. 1454Note it is also possible to get a intel_pt.log file by adding option --itrace=d 1455 1456There were no errors so, do it for real 1457 1458 $ perf inject -i perf.data.kvm --vm-time-correlation=0xffffe42722c64c41 --force 1459 1460'perf script' can be used to see if there are any decoder errors 1461 1462 $ perf script -i perf.data.kvm --guestkallsyms $KALLSYMS --itrace=e-o 1463 1464There were none. 1465 1466'perf script' can be used to provide an instruction trace showing timestamps 1467 1468 $ perf script -i perf.data.kvm --guestkallsyms $KALLSYMS --insn-trace=disasm -F+ipc | grep -C10 vmresume | head -21 1469 CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133cdd __vmx_vcpu_run+0x3d ([kernel.kallsyms]) movq 0x48(%rax), %r9 1470 CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133ce1 __vmx_vcpu_run+0x41 ([kernel.kallsyms]) movq 0x50(%rax), %r10 1471 CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133ce5 __vmx_vcpu_run+0x45 ([kernel.kallsyms]) movq 0x58(%rax), %r11 1472 CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133ce9 __vmx_vcpu_run+0x49 ([kernel.kallsyms]) movq 0x60(%rax), %r12 1473 CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133ced __vmx_vcpu_run+0x4d ([kernel.kallsyms]) movq 0x68(%rax), %r13 1474 CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133cf1 __vmx_vcpu_run+0x51 ([kernel.kallsyms]) movq 0x70(%rax), %r14 1475 CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133cf5 __vmx_vcpu_run+0x55 ([kernel.kallsyms]) movq 0x78(%rax), %r15 1476 CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133cf9 __vmx_vcpu_run+0x59 ([kernel.kallsyms]) movq (%rax), %rax 1477 CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133cfc __vmx_vcpu_run+0x5c ([kernel.kallsyms]) callq 0xffffffff82133c40 1478 CPU 1/KVM 17006 [001] 11500.262865593: ffffffff82133c40 vmx_vmenter+0x0 ([kernel.kallsyms]) jz 0xffffffff82133c46 1479 CPU 1/KVM 17006 [001] 11500.262866075: ffffffff82133c42 vmx_vmenter+0x2 ([kernel.kallsyms]) vmresume IPC: 0.05 (40/769) 1480 :17006 17006 [001] 11500.262869216: ffffffff82200cb0 asm_sysvec_apic_timer_interrupt+0x0 ([guest.kernel.kallsyms]) clac 1481 :17006 17006 [001] 11500.262869216: ffffffff82200cb3 asm_sysvec_apic_timer_interrupt+0x3 ([guest.kernel.kallsyms]) pushq $0xffffffffffffffff 1482 :17006 17006 [001] 11500.262869216: ffffffff82200cb5 asm_sysvec_apic_timer_interrupt+0x5 ([guest.kernel.kallsyms]) callq 0xffffffff82201160 1483 :17006 17006 [001] 11500.262869216: ffffffff82201160 error_entry+0x0 ([guest.kernel.kallsyms]) cld 1484 :17006 17006 [001] 11500.262869216: ffffffff82201161 error_entry+0x1 ([guest.kernel.kallsyms]) pushq %rsi 1485 :17006 17006 [001] 11500.262869216: ffffffff82201162 error_entry+0x2 ([guest.kernel.kallsyms]) movq 0x8(%rsp), %rsi 1486 :17006 17006 [001] 11500.262869216: ffffffff82201167 error_entry+0x7 ([guest.kernel.kallsyms]) movq %rdi, 0x8(%rsp) 1487 :17006 17006 [001] 11500.262869216: ffffffff8220116c error_entry+0xc ([guest.kernel.kallsyms]) pushq %rdx 1488 :17006 17006 [001] 11500.262869216: ffffffff8220116d error_entry+0xd ([guest.kernel.kallsyms]) pushq %rcx 1489 :17006 17006 [001] 11500.262869216: ffffffff8220116e error_entry+0xe ([guest.kernel.kallsyms]) pushq %rax 1490 1491 1492Tracing Virtual Machines (including user space) 1493----------------------------------------------- 1494 1495It is possible to use perf record to record sideband events within a virtual machine, so that an Intel PT trace on the host can be decoded. 1496Sideband events from the guest perf.data file can be injected into the host perf.data file using perf inject. 1497 1498Here is an example of the steps needed: 1499 1500On the guest machine: 1501 1502Check that no-kvmclock kernel command line option was used to boot: 1503 1504Note, this is essential to enable time correlation between host and guest machines. 1505 1506 $ cat /proc/cmdline 1507 BOOT_IMAGE=/boot/vmlinuz-5.10.0-16-amd64 root=UUID=cb49c910-e573-47e0-bce7-79e293df8e1d ro no-kvmclock 1508 1509There is no BPF support at present so, if possible, disable JIT compiling: 1510 1511 $ echo 0 | sudo tee /proc/sys/net/core/bpf_jit_enable 1512 0 1513 1514Start perf record to collect sideband events: 1515 1516 $ sudo perf record -o guest-sideband-testing-guest-perf.data --sample-identifier --buildid-all --switch-events --kcore -a -e dummy 1517 1518On the host machine: 1519 1520Start perf record to collect Intel PT trace: 1521 1522Note, the host trace will get very big, very fast, so the steps from starting to stopping the host trace really need to be done so that they happen in the shortest time possible. 1523 1524 $ sudo perf record -o guest-sideband-testing-host-perf.data -m,64M --kcore -a -e intel_pt/cyc/ 1525 1526On the guest machine: 1527 1528Run a small test case, just 'uname' in this example: 1529 1530 $ uname 1531 Linux 1532 1533On the host machine: 1534 1535Stop the Intel PT trace: 1536 1537 ^C 1538 [ perf record: Woken up 1 times to write data ] 1539 [ perf record: Captured and wrote 76.122 MB guest-sideband-testing-host-perf.data ] 1540 1541On the guest machine: 1542 1543Stop the Intel PT trace: 1544 1545 ^C 1546 [ perf record: Woken up 1 times to write data ] 1547 [ perf record: Captured and wrote 1.247 MB guest-sideband-testing-guest-perf.data ] 1548 1549And then copy guest-sideband-testing-guest-perf.data to the host (not shown here). 1550 1551On the host machine: 1552 1553With the 2 perf.data recordings, and with their ownership changed to the user. 1554 1555Identify the TSC Offset: 1556 1557 $ perf inject -i guest-sideband-testing-host-perf.data --vm-time-correlation=dry-run 1558 VMCS: 0x103fc6 TSC Offset 0xfffffa6ae070cb20 1559 VMCS: 0x103ff2 TSC Offset 0xfffffa6ae070cb20 1560 VMCS: 0x10fdaa TSC Offset 0xfffffa6ae070cb20 1561 VMCS: 0x24d57c TSC Offset 0xfffffa6ae070cb20 1562 1563Correct Intel PT TSC timestamps for the guest machine: 1564 1565 $ perf inject -i guest-sideband-testing-host-perf.data --vm-time-correlation=0xfffffa6ae070cb20 --force 1566 1567Identify the guest machine PID: 1568 1569 $ perf script -i guest-sideband-testing-host-perf.data --no-itrace --show-task-events | grep KVM 1570 CPU 0/KVM 0 [000] 0.000000: PERF_RECORD_COMM: CPU 0/KVM:13376/13381 1571 CPU 1/KVM 0 [000] 0.000000: PERF_RECORD_COMM: CPU 1/KVM:13376/13382 1572 CPU 2/KVM 0 [000] 0.000000: PERF_RECORD_COMM: CPU 2/KVM:13376/13383 1573 CPU 3/KVM 0 [000] 0.000000: PERF_RECORD_COMM: CPU 3/KVM:13376/13384 1574 1575Note, the QEMU option -name debug-threads=on is needed so that thread names 1576can be used to determine which thread is running which VCPU as above. libvirt seems to use this by default. 1577 1578Create a guestmount, assuming the guest machine is 'vm_to_test': 1579 1580 $ mkdir -p ~/guestmount/13376 1581 $ sshfs -o direct_io vm_to_test:/ ~/guestmount/13376 1582 1583Inject the guest perf.data file into the host perf.data file: 1584 1585Note, due to the guestmount option, guest object files and debug files will be copied into the build ID cache from the guest machine, with the notable exception of VDSO. 1586If needed, VDSO can be copied manually in a fashion similar to that used by the perf-archive script. 1587 1588 $ perf inject -i guest-sideband-testing-host-perf.data -o inj --guestmount ~/guestmount --guest-data=guest-sideband-testing-guest-perf.data,13376,0xfffffa6ae070cb20 1589 1590Show an excerpt from the result. In this case the CPU and time range have been to chosen to show interaction between guest and host when 'uname' is starting to run on the guest machine: 1591 1592Notes: 1593 1594 - the CPU displayed, [002] in this case, is always the host CPU 1595 - events happening in the virtual machine start with VM:13376 VCPU:003, which shows the hypervisor PID 13376 and the VCPU number 1596 - only calls and errors are displayed i.e. --itrace=ce 1597 - branches entering and exiting the virtual machine are split, and show as 2 branches to/from "0 [unknown] ([unknown])" 1598 1599 $ perf script -i inj --itrace=ce -F+machine_pid,+vcpu,+addr,+pid,+tid,-period --ns --time 7919.408803365,7919.408804631 -C 2 1600 CPU 3/KVM 13376/13384 [002] 7919.408803365: branches: ffffffffc0f8ebe0 vmx_vcpu_enter_exit+0xc0 ([kernel.kallsyms]) => ffffffffc0f8edc0 __vmx_vcpu_run+0x0 ([kernel.kallsyms]) 1601 CPU 3/KVM 13376/13384 [002] 7919.408803365: branches: ffffffffc0f8edd5 __vmx_vcpu_run+0x15 ([kernel.kallsyms]) => ffffffffc0f8eca0 vmx_update_host_rsp+0x0 ([kernel.kallsyms]) 1602 CPU 3/KVM 13376/13384 [002] 7919.408803365: branches: ffffffffc0f8ee1b __vmx_vcpu_run+0x5b ([kernel.kallsyms]) => ffffffffc0f8ed60 vmx_vmenter+0x0 ([kernel.kallsyms]) 1603 CPU 3/KVM 13376/13384 [002] 7919.408803461: branches: ffffffffc0f8ed62 vmx_vmenter+0x2 ([kernel.kallsyms]) => 0 [unknown] ([unknown]) 1604 VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408803461: branches: 0 [unknown] ([unknown]) => 7f851c9b5a5c init_cacheinfo+0x3ac (/usr/lib/x86_64-linux-gnu/libc-2.31.so) 1605 VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408803567: branches: 7f851c9b5a5a init_cacheinfo+0x3aa (/usr/lib/x86_64-linux-gnu/libc-2.31.so) => 0 [unknown] ([unknown]) 1606 CPU 3/KVM 13376/13384 [002] 7919.408803567: branches: 0 [unknown] ([unknown]) => ffffffffc0f8ed80 vmx_vmexit+0x0 ([kernel.kallsyms]) 1607 CPU 3/KVM 13376/13384 [002] 7919.408803596: branches: ffffffffc0f6619a vmx_vcpu_run+0x26a ([kernel.kallsyms]) => ffffffffb2255c60 x86_virt_spec_ctrl+0x0 ([kernel.kallsyms]) 1608 CPU 3/KVM 13376/13384 [002] 7919.408803801: branches: ffffffffc0f66445 vmx_vcpu_run+0x515 ([kernel.kallsyms]) => ffffffffb2290b30 native_write_msr+0x0 ([kernel.kallsyms]) 1609 CPU 3/KVM 13376/13384 [002] 7919.408803850: branches: ffffffffc0f661f8 vmx_vcpu_run+0x2c8 ([kernel.kallsyms]) => ffffffffc1092300 kvm_load_host_xsave_state+0x0 ([kernel.kallsyms]) 1610 CPU 3/KVM 13376/13384 [002] 7919.408803850: branches: ffffffffc1092327 kvm_load_host_xsave_state+0x27 ([kernel.kallsyms]) => ffffffffc1092220 kvm_load_host_xsave_state.part.0+0x0 ([kernel.kallsyms]) 1611 CPU 3/KVM 13376/13384 [002] 7919.408803862: branches: ffffffffc0f662cf vmx_vcpu_run+0x39f ([kernel.kallsyms]) => ffffffffc0f63f90 vmx_recover_nmi_blocking+0x0 ([kernel.kallsyms]) 1612 CPU 3/KVM 13376/13384 [002] 7919.408803862: branches: ffffffffc0f662e9 vmx_vcpu_run+0x3b9 ([kernel.kallsyms]) => ffffffffc0f619a0 __vmx_complete_interrupts+0x0 ([kernel.kallsyms]) 1613 CPU 3/KVM 13376/13384 [002] 7919.408803872: branches: ffffffffc109cfb2 vcpu_enter_guest+0x752 ([kernel.kallsyms]) => ffffffffc0f5f570 vmx_handle_exit_irqoff+0x0 ([kernel.kallsyms]) 1614 CPU 3/KVM 13376/13384 [002] 7919.408803881: branches: ffffffffc109d028 vcpu_enter_guest+0x7c8 ([kernel.kallsyms]) => ffffffffb234f900 __srcu_read_lock+0x0 ([kernel.kallsyms]) 1615 CPU 3/KVM 13376/13384 [002] 7919.408803897: branches: ffffffffc109d06f vcpu_enter_guest+0x80f ([kernel.kallsyms]) => ffffffffc0f72e30 vmx_handle_exit+0x0 ([kernel.kallsyms]) 1616 CPU 3/KVM 13376/13384 [002] 7919.408803897: branches: ffffffffc0f72e3d vmx_handle_exit+0xd ([kernel.kallsyms]) => ffffffffc0f727c0 __vmx_handle_exit+0x0 ([kernel.kallsyms]) 1617 CPU 3/KVM 13376/13384 [002] 7919.408803897: branches: ffffffffc0f72b15 __vmx_handle_exit+0x355 ([kernel.kallsyms]) => ffffffffc0f60ae0 vmx_flush_pml_buffer+0x0 ([kernel.kallsyms]) 1618 CPU 3/KVM 13376/13384 [002] 7919.408803903: branches: ffffffffc0f72994 __vmx_handle_exit+0x1d4 ([kernel.kallsyms]) => ffffffffc10b7090 kvm_emulate_cpuid+0x0 ([kernel.kallsyms]) 1619 CPU 3/KVM 13376/13384 [002] 7919.408803903: branches: ffffffffc10b70f1 kvm_emulate_cpuid+0x61 ([kernel.kallsyms]) => ffffffffc10b6e10 kvm_cpuid+0x0 ([kernel.kallsyms]) 1620 CPU 3/KVM 13376/13384 [002] 7919.408803941: branches: ffffffffc10b7125 kvm_emulate_cpuid+0x95 ([kernel.kallsyms]) => ffffffffc1093110 kvm_skip_emulated_instruction+0x0 ([kernel.kallsyms]) 1621 CPU 3/KVM 13376/13384 [002] 7919.408803941: branches: ffffffffc109311f kvm_skip_emulated_instruction+0xf ([kernel.kallsyms]) => ffffffffc0f5e180 vmx_get_rflags+0x0 ([kernel.kallsyms]) 1622 CPU 3/KVM 13376/13384 [002] 7919.408803951: branches: ffffffffc109312a kvm_skip_emulated_instruction+0x1a ([kernel.kallsyms]) => ffffffffc0f5fd30 vmx_skip_emulated_instruction+0x0 ([kernel.kallsyms]) 1623 CPU 3/KVM 13376/13384 [002] 7919.408803951: branches: ffffffffc0f5fd79 vmx_skip_emulated_instruction+0x49 ([kernel.kallsyms]) => ffffffffc0f5fb50 skip_emulated_instruction+0x0 ([kernel.kallsyms]) 1624 CPU 3/KVM 13376/13384 [002] 7919.408803956: branches: ffffffffc0f5fc68 skip_emulated_instruction+0x118 ([kernel.kallsyms]) => ffffffffc0f6a940 vmx_cache_reg+0x0 ([kernel.kallsyms]) 1625 CPU 3/KVM 13376/13384 [002] 7919.408803964: branches: ffffffffc0f5fc11 skip_emulated_instruction+0xc1 ([kernel.kallsyms]) => ffffffffc0f5f9e0 vmx_set_interrupt_shadow+0x0 ([kernel.kallsyms]) 1626 CPU 3/KVM 13376/13384 [002] 7919.408803980: branches: ffffffffc109f8b1 vcpu_run+0x71 ([kernel.kallsyms]) => ffffffffc10ad2f0 kvm_cpu_has_pending_timer+0x0 ([kernel.kallsyms]) 1627 CPU 3/KVM 13376/13384 [002] 7919.408803980: branches: ffffffffc10ad2fb kvm_cpu_has_pending_timer+0xb ([kernel.kallsyms]) => ffffffffc10b0490 apic_has_pending_timer+0x0 ([kernel.kallsyms]) 1628 CPU 3/KVM 13376/13384 [002] 7919.408803991: branches: ffffffffc109f899 vcpu_run+0x59 ([kernel.kallsyms]) => ffffffffc109c860 vcpu_enter_guest+0x0 ([kernel.kallsyms]) 1629 CPU 3/KVM 13376/13384 [002] 7919.408803993: branches: ffffffffc109cd4c vcpu_enter_guest+0x4ec ([kernel.kallsyms]) => ffffffffc0f69140 vmx_prepare_switch_to_guest+0x0 ([kernel.kallsyms]) 1630 CPU 3/KVM 13376/13384 [002] 7919.408803996: branches: ffffffffc109cd7d vcpu_enter_guest+0x51d ([kernel.kallsyms]) => ffffffffb234f930 __srcu_read_unlock+0x0 ([kernel.kallsyms]) 1631 CPU 3/KVM 13376/13384 [002] 7919.408803996: branches: ffffffffc109cd9c vcpu_enter_guest+0x53c ([kernel.kallsyms]) => ffffffffc0f609b0 vmx_sync_pir_to_irr+0x0 ([kernel.kallsyms]) 1632 CPU 3/KVM 13376/13384 [002] 7919.408803996: branches: ffffffffc0f60a6d vmx_sync_pir_to_irr+0xbd ([kernel.kallsyms]) => ffffffffc10adc20 kvm_lapic_find_highest_irr+0x0 ([kernel.kallsyms]) 1633 CPU 3/KVM 13376/13384 [002] 7919.408804010: branches: ffffffffc0f60abd vmx_sync_pir_to_irr+0x10d ([kernel.kallsyms]) => ffffffffc0f60820 vmx_set_rvi+0x0 ([kernel.kallsyms]) 1634 CPU 3/KVM 13376/13384 [002] 7919.408804019: branches: ffffffffc109ceca vcpu_enter_guest+0x66a ([kernel.kallsyms]) => ffffffffb2249840 fpregs_assert_state_consistent+0x0 ([kernel.kallsyms]) 1635 CPU 3/KVM 13376/13384 [002] 7919.408804021: branches: ffffffffc109cf10 vcpu_enter_guest+0x6b0 ([kernel.kallsyms]) => ffffffffc0f65f30 vmx_vcpu_run+0x0 ([kernel.kallsyms]) 1636 CPU 3/KVM 13376/13384 [002] 7919.408804024: branches: ffffffffc0f6603b vmx_vcpu_run+0x10b ([kernel.kallsyms]) => ffffffffb229bed0 __get_current_cr3_fast+0x0 ([kernel.kallsyms]) 1637 CPU 3/KVM 13376/13384 [002] 7919.408804024: branches: ffffffffc0f66055 vmx_vcpu_run+0x125 ([kernel.kallsyms]) => ffffffffb2253050 cr4_read_shadow+0x0 ([kernel.kallsyms]) 1638 CPU 3/KVM 13376/13384 [002] 7919.408804030: branches: ffffffffc0f6608d vmx_vcpu_run+0x15d ([kernel.kallsyms]) => ffffffffc10921e0 kvm_load_guest_xsave_state+0x0 ([kernel.kallsyms]) 1639 CPU 3/KVM 13376/13384 [002] 7919.408804030: branches: ffffffffc1092207 kvm_load_guest_xsave_state+0x27 ([kernel.kallsyms]) => ffffffffc1092110 kvm_load_guest_xsave_state.part.0+0x0 ([kernel.kallsyms]) 1640 CPU 3/KVM 13376/13384 [002] 7919.408804032: branches: ffffffffc0f660c6 vmx_vcpu_run+0x196 ([kernel.kallsyms]) => ffffffffb22061a0 perf_guest_get_msrs+0x0 ([kernel.kallsyms]) 1641 CPU 3/KVM 13376/13384 [002] 7919.408804032: branches: ffffffffb22061a9 perf_guest_get_msrs+0x9 ([kernel.kallsyms]) => ffffffffb220cda0 intel_guest_get_msrs+0x0 ([kernel.kallsyms]) 1642 CPU 3/KVM 13376/13384 [002] 7919.408804039: branches: ffffffffc0f66109 vmx_vcpu_run+0x1d9 ([kernel.kallsyms]) => ffffffffc0f652c0 clear_atomic_switch_msr+0x0 ([kernel.kallsyms]) 1643 CPU 3/KVM 13376/13384 [002] 7919.408804040: branches: ffffffffc0f66119 vmx_vcpu_run+0x1e9 ([kernel.kallsyms]) => ffffffffc0f73f60 intel_pmu_lbr_is_enabled+0x0 ([kernel.kallsyms]) 1644 CPU 3/KVM 13376/13384 [002] 7919.408804042: branches: ffffffffc0f73f81 intel_pmu_lbr_is_enabled+0x21 ([kernel.kallsyms]) => ffffffffc10b68e0 kvm_find_cpuid_entry+0x0 ([kernel.kallsyms]) 1645 CPU 3/KVM 13376/13384 [002] 7919.408804045: branches: ffffffffc0f66454 vmx_vcpu_run+0x524 ([kernel.kallsyms]) => ffffffffc0f61ff0 vmx_update_hv_timer+0x0 ([kernel.kallsyms]) 1646 CPU 3/KVM 13376/13384 [002] 7919.408804057: branches: ffffffffc0f66142 vmx_vcpu_run+0x212 ([kernel.kallsyms]) => ffffffffc10af100 kvm_wait_lapic_expire+0x0 ([kernel.kallsyms]) 1647 CPU 3/KVM 13376/13384 [002] 7919.408804057: branches: ffffffffc0f66156 vmx_vcpu_run+0x226 ([kernel.kallsyms]) => ffffffffb2255c60 x86_virt_spec_ctrl+0x0 ([kernel.kallsyms]) 1648 CPU 3/KVM 13376/13384 [002] 7919.408804057: branches: ffffffffc0f66161 vmx_vcpu_run+0x231 ([kernel.kallsyms]) => ffffffffc0f8eb20 vmx_vcpu_enter_exit+0x0 ([kernel.kallsyms]) 1649 CPU 3/KVM 13376/13384 [002] 7919.408804057: branches: ffffffffc0f8eb44 vmx_vcpu_enter_exit+0x24 ([kernel.kallsyms]) => ffffffffb2353e10 rcu_note_context_switch+0x0 ([kernel.kallsyms]) 1650 CPU 3/KVM 13376/13384 [002] 7919.408804057: branches: ffffffffb2353e1c rcu_note_context_switch+0xc ([kernel.kallsyms]) => ffffffffb2353db0 rcu_qs+0x0 ([kernel.kallsyms]) 1651 CPU 3/KVM 13376/13384 [002] 7919.408804066: branches: ffffffffc0f8ebe0 vmx_vcpu_enter_exit+0xc0 ([kernel.kallsyms]) => ffffffffc0f8edc0 __vmx_vcpu_run+0x0 ([kernel.kallsyms]) 1652 CPU 3/KVM 13376/13384 [002] 7919.408804066: branches: ffffffffc0f8edd5 __vmx_vcpu_run+0x15 ([kernel.kallsyms]) => ffffffffc0f8eca0 vmx_update_host_rsp+0x0 ([kernel.kallsyms]) 1653 CPU 3/KVM 13376/13384 [002] 7919.408804066: branches: ffffffffc0f8ee1b __vmx_vcpu_run+0x5b ([kernel.kallsyms]) => ffffffffc0f8ed60 vmx_vmenter+0x0 ([kernel.kallsyms]) 1654 CPU 3/KVM 13376/13384 [002] 7919.408804162: branches: ffffffffc0f8ed62 vmx_vmenter+0x2 ([kernel.kallsyms]) => 0 [unknown] ([unknown]) 1655 VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804162: branches: 0 [unknown] ([unknown]) => 7f851c9b5a5c init_cacheinfo+0x3ac (/usr/lib/x86_64-linux-gnu/libc-2.31.so) 1656 VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804273: branches: 7f851cb7c0e4 _dl_init+0x74 (/usr/lib/x86_64-linux-gnu/ld-2.31.so) => 7f851cb7bf50 call_init.part.0+0x0 (/usr/lib/x86_64-linux-gnu/ld-2.31.so) 1657 VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804526: branches: 55e0c00136f0 _start+0x0 (/usr/bin/uname) => ffffffff83200ac0 asm_exc_page_fault+0x0 ([kernel.kallsyms]) 1658 VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804526: branches: ffffffff83200ac3 asm_exc_page_fault+0x3 ([kernel.kallsyms]) => ffffffff83201290 error_entry+0x0 ([kernel.kallsyms]) 1659 VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804534: branches: ffffffff832012fa error_entry+0x6a ([kernel.kallsyms]) => ffffffff830b59a0 sync_regs+0x0 ([kernel.kallsyms]) 1660 VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804631: branches: ffffffff83200ad9 asm_exc_page_fault+0x19 ([kernel.kallsyms]) => ffffffff830b8210 exc_page_fault+0x0 ([kernel.kallsyms]) 1661 VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804631: branches: ffffffff830b82a4 exc_page_fault+0x94 ([kernel.kallsyms]) => ffffffff830b80e0 __kvm_handle_async_pf+0x0 ([kernel.kallsyms]) 1662 VM:13376 VCPU:003 uname 3404/3404 [002] 7919.408804631: branches: ffffffff830b80ed __kvm_handle_async_pf+0xd ([kernel.kallsyms]) => ffffffff830b80c0 kvm_read_and_reset_apf_flags+0x0 ([kernel.kallsyms]) 1663 1664 1665Tracing Virtual Machines - Guest Code 1666------------------------------------- 1667 1668A common case for KVM test programs is that the test program acts as the 1669hypervisor, creating, running and destroying the virtual machine, and 1670providing the guest object code from its own object code. In this case, 1671the VM is not running an OS, but only the functions loaded into it by the 1672hypervisor test program, and conveniently, loaded at the same virtual 1673addresses. To support that, option "--guest-code" has been added to perf script 1674and perf kvm report. 1675 1676Here is an example tracing a test program from the kernel's KVM selftests: 1677 1678 # perf record --kcore -e intel_pt/cyc/ -- tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test 1679 [ perf record: Woken up 1 times to write data ] 1680 [ perf record: Captured and wrote 0.280 MB perf.data ] 1681 # perf script --guest-code --itrace=bep --ns -F-period,+addr,+flags 1682 [SNIP] 1683 tsc_msrs_test 18436 [007] 10897.962087733: branches: call ffffffffc13b2ff5 __vmx_vcpu_run+0x15 (vmlinux) => ffffffffc13b2f50 vmx_update_host_rsp+0x0 (vmlinux) 1684 tsc_msrs_test 18436 [007] 10897.962087733: branches: return ffffffffc13b2f5d vmx_update_host_rsp+0xd (vmlinux) => ffffffffc13b2ffa __vmx_vcpu_run+0x1a (vmlinux) 1685 tsc_msrs_test 18436 [007] 10897.962087733: branches: call ffffffffc13b303b __vmx_vcpu_run+0x5b (vmlinux) => ffffffffc13b2f80 vmx_vmenter+0x0 (vmlinux) 1686 tsc_msrs_test 18436 [007] 10897.962087836: branches: vmentry ffffffffc13b2f82 vmx_vmenter+0x2 (vmlinux) => 0 [unknown] ([unknown]) 1687 [guest/18436] 18436 [007] 10897.962087836: branches: vmentry 0 [unknown] ([unknown]) => 402c81 guest_code+0x131 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) 1688 [guest/18436] 18436 [007] 10897.962087836: branches: call 402c81 guest_code+0x131 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) => 40dba0 ucall+0x0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) 1689 [guest/18436] 18436 [007] 10897.962088248: branches: vmexit 40dba0 ucall+0x0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) => 0 [unknown] ([unknown]) 1690 tsc_msrs_test 18436 [007] 10897.962088248: branches: vmexit 0 [unknown] ([unknown]) => ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux) 1691 tsc_msrs_test 18436 [007] 10897.962088248: branches: jmp ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux) => ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux) 1692 tsc_msrs_test 18436 [007] 10897.962088256: branches: return ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux) => ffffffffc13b3040 __vmx_vcpu_run+0x60 (vmlinux) 1693 tsc_msrs_test 18436 [007] 10897.962088270: branches: return ffffffffc13b30b6 __vmx_vcpu_run+0xd6 (vmlinux) => ffffffffc13b2f2e vmx_vcpu_enter_exit+0x4e (vmlinux) 1694 [SNIP] 1695 tsc_msrs_test 18436 [007] 10897.962089321: branches: call ffffffffc13b2ff5 __vmx_vcpu_run+0x15 (vmlinux) => ffffffffc13b2f50 vmx_update_host_rsp+0x0 (vmlinux) 1696 tsc_msrs_test 18436 [007] 10897.962089321: branches: return ffffffffc13b2f5d vmx_update_host_rsp+0xd (vmlinux) => ffffffffc13b2ffa __vmx_vcpu_run+0x1a (vmlinux) 1697 tsc_msrs_test 18436 [007] 10897.962089321: branches: call ffffffffc13b303b __vmx_vcpu_run+0x5b (vmlinux) => ffffffffc13b2f80 vmx_vmenter+0x0 (vmlinux) 1698 tsc_msrs_test 18436 [007] 10897.962089424: branches: vmentry ffffffffc13b2f82 vmx_vmenter+0x2 (vmlinux) => 0 [unknown] ([unknown]) 1699 [guest/18436] 18436 [007] 10897.962089424: branches: vmentry 0 [unknown] ([unknown]) => 40dba0 ucall+0x0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) 1700 [guest/18436] 18436 [007] 10897.962089701: branches: jmp 40dc1b ucall+0x7b (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) => 40dc39 ucall+0x99 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) 1701 [guest/18436] 18436 [007] 10897.962089701: branches: jcc 40dc3c ucall+0x9c (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) => 40dc20 ucall+0x80 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) 1702 [guest/18436] 18436 [007] 10897.962089701: branches: jcc 40dc3c ucall+0x9c (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) => 40dc20 ucall+0x80 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) 1703 [guest/18436] 18436 [007] 10897.962089701: branches: jcc 40dc37 ucall+0x97 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) => 40dc50 ucall+0xb0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) 1704 [guest/18436] 18436 [007] 10897.962089878: branches: vmexit 40dc55 ucall+0xb5 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) => 0 [unknown] ([unknown]) 1705 tsc_msrs_test 18436 [007] 10897.962089878: branches: vmexit 0 [unknown] ([unknown]) => ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux) 1706 tsc_msrs_test 18436 [007] 10897.962089878: branches: jmp ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux) => ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux) 1707 tsc_msrs_test 18436 [007] 10897.962089887: branches: return ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux) => ffffffffc13b3040 __vmx_vcpu_run+0x60 (vmlinux) 1708 tsc_msrs_test 18436 [007] 10897.962089901: branches: return ffffffffc13b30b6 __vmx_vcpu_run+0xd6 (vmlinux) => ffffffffc13b2f2e vmx_vcpu_enter_exit+0x4e (vmlinux) 1709 [SNIP] 1710 1711 # perf kvm --guest-code --guest --host report -i perf.data --stdio | head -20 1712 1713 # To display the perf.data header info, please use --header/--header-only options. 1714 # 1715 # 1716 # Total Lost Samples: 0 1717 # 1718 # Samples: 12 of event 'instructions' 1719 # Event count (approx.): 2274583 1720 # 1721 # Children Self Command Shared Object Symbol 1722 # ........ ........ ............. .................... ........................................... 1723 # 1724 54.70% 0.00% tsc_msrs_test [kernel.vmlinux] [k] entry_SYSCALL_64_after_hwframe 1725 | 1726 ---entry_SYSCALL_64_after_hwframe 1727 do_syscall_64 1728 | 1729 |--29.44%--syscall_exit_to_user_mode 1730 | exit_to_user_mode_prepare 1731 | task_work_run 1732 | __fput 1733 1734 1735Event Trace 1736----------- 1737 1738Event Trace records information about asynchronous events, for example interrupts, 1739faults, VM exits and entries. The information is recorded in CFE and EVD packets, 1740and also the Interrupt Flag is recorded on the MODE.Exec packet. The CFE packet 1741contains a type field to identify one of the following: 1742 1743 1 INTR interrupt, fault, exception, NMI 1744 2 IRET interrupt return 1745 3 SMI system management interrupt 1746 4 RSM resume from system management mode 1747 5 SIPI startup interprocessor interrupt 1748 6 INIT INIT signal 1749 7 VMENTRY VM-Entry 1750 8 VMEXIT VM-Entry 1751 9 VMEXIT_INTR VM-Exit due to interrupt 1752 10 SHUTDOWN Shutdown 1753 1754For more details, refer to the Intel 64 and IA-32 Architectures Software 1755Developer Manuals (version 076 or later). 1756 1757The capability to do Event Trace is indicated by the 1758/sys/bus/event_source/devices/intel_pt/caps/event_trace file. 1759 1760Event trace is selected for recording using the "event" config term. e.g. 1761 1762 perf record -e intel_pt/event/u uname 1763 1764Event trace events are output using the --itrace I option. e.g. 1765 1766 perf script --itrace=Ie 1767 1768perf script displays events containing CFE type, vector and event data, 1769in the form: 1770 1771 evt: hw int (t) cfe: INTR IP: 1 vector: 3 PFA: 0x8877665544332211 1772 1773The IP flag indicates if the event binds to an IP, which includes any case where 1774flow control packet generation is enabled, as well as when CFE packet IP bit is 1775set. 1776 1777perf script displays events containing changes to the Interrupt Flag in the form: 1778 1779 iflag: t IFLAG: 1->0 via branch 1780 1781where "via branch" indicates a branch (interrupt or return from interrupt) and 1782"non branch" indicates an instruction such as CFI, STI or POPF). 1783 1784In addition, the current state of the interrupt flag is indicated by the presence 1785or absence of the "D" (interrupt disabled) perf script flag. If the interrupt 1786flag is changed, then the "t" flag is also included i.e. 1787 1788 no flag, interrupts enabled IF=1 1789 t interrupts become disabled IF=1 -> IF=0 1790 D interrupts are disabled IF=0 1791 Dt interrupts become enabled IF=0 -> IF=1 1792 1793The intel-pt-events.py script illustrates how to access Event Trace information 1794using a Python script. 1795 1796 1797TNT Disable 1798----------- 1799 1800TNT packets are disabled using the "notnt" config term. e.g. 1801 1802 perf record -e intel_pt/notnt/u uname 1803 1804In that case the --itrace q option is forced because walking executable code 1805to reconstruct the control flow is not possible. 1806 1807 1808Emulated PTWRITE 1809---------------- 1810 1811Later perf tools support a method to emulate the ptwrite instruction, which 1812can be useful if hardware does not support the ptwrite instruction. 1813 1814Instead of using the ptwrite instruction, a function is used which produces 1815a trace that encodes the payload data into TNT packets. Here is an example 1816of the function: 1817 1818 #include <stdint.h> 1819 1820 void perf_emulate_ptwrite(uint64_t x) 1821 __attribute__((externally_visible, noipa, no_instrument_function, naked)); 1822 1823 #define PERF_EMULATE_PTWRITE_8_BITS \ 1824 "1: shl %rax\n" \ 1825 " jc 1f\n" \ 1826 "1: shl %rax\n" \ 1827 " jc 1f\n" \ 1828 "1: shl %rax\n" \ 1829 " jc 1f\n" \ 1830 "1: shl %rax\n" \ 1831 " jc 1f\n" \ 1832 "1: shl %rax\n" \ 1833 " jc 1f\n" \ 1834 "1: shl %rax\n" \ 1835 " jc 1f\n" \ 1836 "1: shl %rax\n" \ 1837 " jc 1f\n" \ 1838 "1: shl %rax\n" \ 1839 " jc 1f\n" 1840 1841 /* Undefined instruction */ 1842 #define PERF_EMULATE_PTWRITE_UD2 ".byte 0x0f, 0x0b\n" 1843 1844 #define PERF_EMULATE_PTWRITE_MAGIC PERF_EMULATE_PTWRITE_UD2 ".ascii \"perf,ptwrite \"\n" 1845 1846 void perf_emulate_ptwrite(uint64_t x __attribute__ ((__unused__))) 1847 { 1848 /* Assumes SysV ABI : x passed in rdi */ 1849 __asm__ volatile ( 1850 "jmp 1f\n" 1851 PERF_EMULATE_PTWRITE_MAGIC 1852 "1: mov %rdi, %rax\n" 1853 PERF_EMULATE_PTWRITE_8_BITS 1854 PERF_EMULATE_PTWRITE_8_BITS 1855 PERF_EMULATE_PTWRITE_8_BITS 1856 PERF_EMULATE_PTWRITE_8_BITS 1857 PERF_EMULATE_PTWRITE_8_BITS 1858 PERF_EMULATE_PTWRITE_8_BITS 1859 PERF_EMULATE_PTWRITE_8_BITS 1860 PERF_EMULATE_PTWRITE_8_BITS 1861 "1: ret\n" 1862 ); 1863 } 1864 1865For example, a test program with the function above: 1866 1867 #include <stdio.h> 1868 #include <stdint.h> 1869 #include <stdlib.h> 1870 1871 #include "perf_emulate_ptwrite.h" 1872 1873 int main(int argc, char *argv[]) 1874 { 1875 uint64_t x = 0; 1876 1877 if (argc > 1) 1878 x = strtoull(argv[1], NULL, 0); 1879 perf_emulate_ptwrite(x); 1880 return 0; 1881 } 1882 1883Can be compiled and traced: 1884 1885 $ gcc -Wall -Wextra -O3 -g -o eg_ptw eg_ptw.c 1886 $ perf record -e intel_pt//u ./eg_ptw 0x1234567890abcdef 1887 [ perf record: Woken up 1 times to write data ] 1888 [ perf record: Captured and wrote 0.017 MB perf.data ] 1889 $ perf script --itrace=ew 1890 eg_ptw 19875 [007] 8061.235912: ptwrite: IP: 0 payload: 0x1234567890abcdef 55701249a196 perf_emulate_ptwrite+0x16 (/home/user/eg_ptw) 1891 $ 1892 1893 1894Pipe mode 1895--------- 1896Pipe mode is a problem for Intel PT and possibly other auxtrace users. 1897It's not recommended to use a pipe as data output with Intel PT because 1898of the following reason. 1899 1900Essentially the auxtrace buffers do not behave like the regular perf 1901event buffers. That is because the head and tail are updated by 1902software, but in the auxtrace case the data is written by hardware. 1903So the head and tail do not get updated as data is written. 1904 1905In the Intel PT case, the head and tail are updated only when the trace 1906is disabled by software, for example: 1907 - full-trace, system wide : when buffer passes watermark 1908 - full-trace, not system-wide : when buffer passes watermark or 1909 context switches 1910 - snapshot mode : as above but also when a snapshot is made 1911 - sample mode : as above but also when a sample is made 1912 1913That means finished-round ordering doesn't work. An auxtrace buffer 1914can turn up that has data that extends back in time, possibly to the 1915very beginning of tracing. 1916 1917For a perf.data file, that problem is solved by going through the trace 1918and queuing up the auxtrace buffers in advance. 1919 1920For pipe mode, the order of events and timestamps can presumably 1921be messed up. 1922 1923 1924Pause or Resume Tracing 1925----------------------- 1926 1927With newer Kernels, it is possible to use other selected events to pause 1928or resume Intel PT tracing. This is configured by using the "aux-action" 1929config term: 1930 1931"aux-action=pause" is used with events that are to pause Intel PT tracing. 1932 1933"aux-action=resume" is used with events that are to resume Intel PT tracing. 1934 1935"aux-action=start-paused" is used with the Intel PT event to start in a 1936paused state. 1937 1938For example, to trace only the uname system call (sys_newuname) when running the 1939command line utility uname: 1940 1941 $ perf record --kcore -e intel_pt/aux-action=start-paused/k,syscalls:sys_enter_newuname/aux-action=resume/,syscalls:sys_exit_newuname/aux-action=pause/ uname 1942 Linux 1943 [ perf record: Woken up 1 times to write data ] 1944 [ perf record: Captured and wrote 0.043 MB perf.data ] 1945 $ perf script --call-trace 1946 uname 30805 [000] 24001.058782799: name: 0x7ffc9c1865b0 1947 uname 30805 [000] 24001.058784424: psb offs: 0 1948 uname 30805 [000] 24001.058784424: cbr: 39 freq: 3904 MHz (139%) 1949 uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) debug_smp_processor_id 1950 uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) __x64_sys_newuname 1951 uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) down_read 1952 uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) __cond_resched 1953 uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) preempt_count_add 1954 uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) in_lock_functions 1955 uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) preempt_count_sub 1956 uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) up_read 1957 uname 30805 [000] 24001.058784629: ([kernel.kallsyms]) preempt_count_add 1958 uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) in_lock_functions 1959 uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) preempt_count_sub 1960 uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) _copy_to_user 1961 uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) syscall_exit_to_user_mode 1962 uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) syscall_exit_work 1963 uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) perf_syscall_exit 1964 uname 30805 [000] 24001.058784838: ([kernel.kallsyms]) debug_smp_processor_id 1965 uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_trace_buf_alloc 1966 uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_swevent_get_recursion_context 1967 uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) debug_smp_processor_id 1968 uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) debug_smp_processor_id 1969 uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_tp_event 1970 uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_trace_buf_update 1971 uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) tracing_gen_ctx_irq_test 1972 uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_swevent_event 1973 uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __perf_event_account_interrupt 1974 uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __this_cpu_preempt_check 1975 uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_event_output_forward 1976 uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) perf_event_aux_pause 1977 uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) ring_buffer_get 1978 uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __rcu_read_lock 1979 uname 30805 [000] 24001.058785046: ([kernel.kallsyms]) __rcu_read_unlock 1980 uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) pt_event_stop 1981 uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) debug_smp_processor_id 1982 uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) debug_smp_processor_id 1983 uname 30805 [000] 24001.058785254: ([kernel.kallsyms]) native_write_msr 1984 uname 30805 [000] 24001.058785463: ([kernel.kallsyms]) native_write_msr 1985 uname 30805 [000] 24001.058785639: 0x0 1986 1987The example above uses tracepoints, but any kind of sampled event can be used. 1988 1989For example: 1990 1991 Tracing between arch_cpu_idle_enter() and arch_cpu_idle_exit() using breakpoint events: 1992 1993 $ sudo cat /proc/kallsyms | sort | grep ' arch_cpu_idle_enter\| arch_cpu_idle_exit' 1994 ffffffffb605bf60 T arch_cpu_idle_enter 1995 ffffffffb614d8a0 W arch_cpu_idle_exit 1996 $ sudo perf record --kcore -a -e intel_pt/aux-action=start-paused/k -e mem:0xffffffffb605bf60:x/aux-action=resume/ -e mem:0xffffffffb614d8a0:x/aux-action=pause/ -- sleep 1 1997 [ perf record: Woken up 1 times to write data ] 1998 [ perf record: Captured and wrote 1.387 MB perf.data ] 1999 2000 Tracing __alloc_pages() using kprobes: 2001 2002 $ sudo perf probe --add '__alloc_pages order' 2003 Added new event: probe:__alloc_pages (on __alloc_pages with order) 2004 $ sudo perf probe --add __alloc_pages%return 2005 Added new event: probe:__alloc_pages__return (on __alloc_pages%return) 2006 $ sudo perf record --kcore -aR -e intel_pt/aux-action=start-paused/k -e probe:__alloc_pages/aux-action=resume/ -e probe:__alloc_pages__return/aux-action=pause/ -- sleep 1 2007 [ perf record: Woken up 1 times to write data ] 2008 [ perf record: Captured and wrote 1.490 MB perf.data ] 2009 2010 Tracing starting at main() using a uprobe event: 2011 2012 $ sudo perf probe -x /usr/bin/uname main 2013 Added new event: probe_uname:main (on main in /usr/bin/uname) 2014 $ sudo perf record -e intel_pt/-aux-action=start-paused/u -e probe_uname:main/aux-action=resume/ -- uname 2015 Linux 2016 [ perf record: Woken up 1 times to write data ] 2017 [ perf record: Captured and wrote 0.031 MB perf.data ] 2018 2019 Tracing occasionally using cycles events with different periods: 2020 2021 $ perf record --kcore -a -m,64M -e intel_pt/aux-action=start-paused/k -e cycles/aux-action=pause,period=1000000/Pk -e cycles/aux-action=resume,period=10500000/Pk -- firefox 2022 [ perf record: Woken up 19 times to write data ] 2023 [ perf record: Captured and wrote 16.561 MB perf.data ] 2024 2025 2026EXAMPLE 2027------- 2028 2029Examples can be found on perf wiki page "Perf tools support for Intel® Processor Trace": 2030 2031https://perf.wiki.kernel.org/index.php/Perf_tools_support_for_Intel%C2%AE_Processor_Trace 2032 2033 2034SEE ALSO 2035-------- 2036 2037linkperf:perf-record[1], linkperf:perf-script[1], linkperf:perf-report[1], 2038linkperf:perf-inject[1] 2039