1perf-intel-pt(1)
2================
3
4NAME
5----
6perf-intel-pt - Support for Intel Processor Trace within perf tools
7
8SYNOPSIS
9--------
10[verse]
11'perf record' -e intel_pt//
12
13DESCRIPTION
14-----------
15
16Intel Processor Trace (Intel PT) is an extension of Intel Architecture that
17collects information about software execution such as control flow, execution
18modes and timings and formats it into highly compressed binary packets.
19Technical details are documented in the Intel 64 and IA-32 Architectures
20Software Developer Manuals, Chapter 36 Intel Processor Trace.
21
22Intel PT is first supported in Intel Core M and 5th generation Intel Core
23processors that are based on the Intel micro-architecture code name Broadwell.
24
25Trace data is collected by 'perf record' and stored within the perf.data file.
26See below for options to 'perf record'.
27
28Trace data must be 'decoded' which involves walking the object code and matching
29the trace data packets. For example a TNT packet only tells whether a
30conditional branch was taken or not taken, so to make use of that packet the
31decoder must know precisely which instruction was being executed.
32
33Decoding is done on-the-fly.  The decoder outputs samples in the same format as
34samples output by perf hardware events, for example as though the "instructions"
35or "branches" events had been recorded.  Presently 3 tools support this:
36'perf script', 'perf report' and 'perf inject'.  See below for more information
37on using those tools.
38
39The main distinguishing feature of Intel PT is that the decoder can determine
40the exact flow of software execution.  Intel PT can be used to understand why
41and how did software get to a certain point, or behave a certain way.  The
42software does not have to be recompiled, so Intel PT works with debug or release
43builds, however the executed images are needed - which makes use in JIT-compiled
44environments, or with self-modified code, a challenge.  Also symbols need to be
45provided to make sense of addresses.
46
47A limitation of Intel PT is that it produces huge amounts of trace data
48(hundreds of megabytes per second per core) which takes a long time to decode,
49for example two or three orders of magnitude longer than it took to collect.
50Another limitation is the performance impact of tracing, something that will
51vary depending on the use-case and architecture.
52
53
54Quickstart
55----------
56
57It is important to start small.  That is because it is easy to capture vastly
58more data than can possibly be processed.
59
60The simplest thing to do with Intel PT is userspace profiling of small programs.
61Data is captured with 'perf record' e.g. to trace 'ls' userspace-only:
62
63	perf record -e intel_pt//u ls
64
65And profiled with 'perf report' e.g.
66
67	perf report
68
69To also trace kernel space presents a problem, namely kernel self-modifying
70code.  A fairly good kernel image is available in /proc/kcore but to get an
71accurate image a copy of /proc/kcore needs to be made under the same conditions
72as the data capture. 'perf record' can make a copy of /proc/kcore if the option
73--kcore is used, but access to /proc/kcore is restricted e.g.
74
75	sudo perf record -o pt_ls --kcore -e intel_pt// -- ls
76
77which will create a directory named 'pt_ls' and put the perf.data file (named
78simply 'data') and copies of /proc/kcore, /proc/kallsyms and /proc/modules into
79it.  The other tools understand the directory format, so to use 'perf report'
80becomes:
81
82	sudo perf report -i pt_ls
83
84Because samples are synthesized after-the-fact, the sampling period can be
85selected for reporting. e.g. sample every microsecond
86
87	sudo perf report pt_ls --itrace=i1usge
88
89See the sections below for more information about the --itrace option.
90
91Beware the smaller the period, the more samples that are produced, and the
92longer it takes to process them.
93
94Also note that the coarseness of Intel PT timing information will start to
95distort the statistical value of the sampling as the sampling period becomes
96smaller.
97
98To represent software control flow, "branches" samples are produced.  By default
99a branch sample is synthesized for every single branch.  To get an idea what
100data is available you can use the 'perf script' tool with all itrace sampling
101options, which will list all the samples.
102
103	perf record -e intel_pt//u ls
104	perf script --itrace=iybxwpe
105
106An interesting field that is not printed by default is 'flags' which can be
107displayed as follows:
108
109	perf script --itrace=iybxwpe -F+flags
110
111The flags are "bcrosyiABExghDt" which stand for branch, call, return, conditional,
112system, asynchronous, interrupt, transaction abort, trace begin, trace end,
113in transaction, VM-entry, VM-exit, interrupt disabled, and interrupt disable
114toggle respectively.
115
116perf script also supports higher level ways to dump instruction traces:
117
118	perf script --insn-trace=disasm
119
120or to use the xed disassembler, which requires installing the xed tool
121(see XED below):
122
123	perf script --insn-trace --xed
124
125Dumping all instructions in a long trace can be fairly slow. It is usually better
126to start with higher level decoding, like
127
128	perf script --call-trace
129
130or
131
132	perf script --call-ret-trace
133
134and then select a time range of interest. The time range can then be examined
135in detail with
136
137	perf script --time starttime,stoptime --insn-trace=disasm
138
139While examining the trace it's also useful to filter on specific CPUs using
140the -C option
141
142	perf script --time starttime,stoptime --insn-trace=disasm -C 1
143
144Dump all instructions in time range on CPU 1.
145
146Another interesting field that is not printed by default is 'ipc' which can be
147displayed as follows:
148
149	perf script --itrace=be -F+ipc
150
151There are two ways that instructions-per-cycle (IPC) can be calculated depending
152on the recording.
153
154If the 'cyc' config term (see <<_config_terms,config terms>> section below) was used, then IPC
155and cycle events are calculated using the cycle count from CYC packets, otherwise
156MTC packets are used - refer to the 'mtc' config term.  When MTC is used, however,
157the values are less accurate because the timing is less accurate.
158
159Because Intel PT does not update the cycle count on every branch or instruction,
160the values will often be zero.  When there are values, they will be the number
161of instructions and number of cycles since the last update, and thus represent
162the average IPC cycle count since the last IPC for that event type.
163Note IPC for "branches" events is calculated separately from IPC for "instructions"
164events.
165
166Even with the 'cyc' config term, it is possible to produce IPC information for
167every change of timestamp, but at the expense of accuracy.  That is selected by
168specifying the itrace 'A' option.  Due to the granularity of timestamps, the
169actual number of cycles increases even though the cycles reported does not.
170The number of instructions is known, but if IPC is reported, cycles can be too
171low and so IPC is too high.  Note that inaccuracy decreases as the period of
172sampling increases i.e. if the number of cycles is too low by a small amount,
173that becomes less significant if the number of cycles is large.  It may also be
174useful to use the 'A' option in conjunction with dlfilter-show-cycles.so to
175provide higher granularity cycle information.
176
177Also note that the IPC instruction count may or may not include the current
178instruction.  If the cycle count is associated with an asynchronous branch
179(e.g. page fault or interrupt), then the instruction count does not include the
180current instruction, otherwise it does.  That is consistent with whether or not
181that instruction has retired when the cycle count is updated.
182
183Another note, in the case of "branches" events, non-taken branches are not
184presently sampled, so IPC values for them do not appear e.g. a CYC packet with a
185TNT packet that starts with a non-taken branch.  To see every possible IPC
186value, "instructions" events can be used e.g. --itrace=i0ns
187
188While it is possible to create scripts to analyze the data, an alternative
189approach is available to export the data to a sqlite or postgresql database.
190Refer to script export-to-sqlite.py or export-to-postgresql.py for more details,
191and to script exported-sql-viewer.py for an example of using the database.
192
193There is also script intel-pt-events.py which provides an example of how to
194unpack the raw data for power events and PTWRITE. The script also displays
195branches, and supports 2 additional modes selected by option:
196
197 - --insn-trace - instruction trace
198 - --src-trace - source trace
199
200The intel-pt-events.py script also has options:
201
202 - --all-switch-events - display all switch events, not only the last consecutive.
203 - --interleave [<n>] - interleave sample output for the same timestamp so that
204 no more than n samples for a CPU are displayed in a row. 'n' defaults to 4.
205 Note this only affects the order of output, and only when the timestamp is the
206 same.
207
208As mentioned above, it is easy to capture too much data.  One way to limit the
209data captured is to use 'snapshot' mode which is explained further below.
210Refer to 'new snapshot option' and 'Intel PT modes of operation' further below.
211
212Another problem that will be experienced is decoder errors.  They can be caused
213by inability to access the executed image, self-modified or JIT-ed code, or the
214inability to match side-band information (such as context switches and mmaps)
215which results in the decoder not knowing what code was executed.
216
217There is also the problem of perf not being able to copy the data fast enough,
218resulting in data lost because the buffer was full.  See 'Buffer handling' below
219for more details.
220
221
222perf record
223-----------
224
225new event
226~~~~~~~~~
227
228The Intel PT kernel driver creates a new PMU for Intel PT.  PMU events are
229selected by providing the PMU name followed by the "config" separated by slashes.
230An enhancement has been made to allow default "config" e.g. the option
231
232	-e intel_pt//
233
234will use a default config value.  Currently that is the same as
235
236	-e intel_pt/tsc,noretcomp=0/
237
238which is the same as
239
240	-e intel_pt/tsc=1,noretcomp=0/
241
242Note there are other config terms - see section <<_config_terms,config terms>> further below.
243
244The config terms are listed in /sys/devices/intel_pt/format.  They are bit
245fields within the config member of the struct perf_event_attr which is
246passed to the kernel by the perf_event_open system call.  They correspond to bit
247fields in the IA32_RTIT_CTL MSR.  Here is a list of them and their definitions:
248
249	$ grep -H . /sys/bus/event_source/devices/intel_pt/format/*
250	/sys/bus/event_source/devices/intel_pt/format/cyc:config:1
251	/sys/bus/event_source/devices/intel_pt/format/cyc_thresh:config:19-22
252	/sys/bus/event_source/devices/intel_pt/format/mtc:config:9
253	/sys/bus/event_source/devices/intel_pt/format/mtc_period:config:14-17
254	/sys/bus/event_source/devices/intel_pt/format/noretcomp:config:11
255	/sys/bus/event_source/devices/intel_pt/format/psb_period:config:24-27
256	/sys/bus/event_source/devices/intel_pt/format/tsc:config:10
257
258Note that the default config must be overridden for each term i.e.
259
260	-e intel_pt/noretcomp=0/
261
262is the same as:
263
264	-e intel_pt/tsc=1,noretcomp=0/
265
266So, to disable TSC packets use:
267
268	-e intel_pt/tsc=0/
269
270It is also possible to specify the config value explicitly:
271
272	-e intel_pt/config=0x400/
273
274Note that, as with all events, the event is suffixed with event modifiers:
275
276	u	userspace
277	k	kernel
278	h	hypervisor
279	G	guest
280	H	host
281	p	precise ip
282
283'h', 'G' and 'H' are for virtualization which are not used by Intel PT.
284'p' is also not relevant to Intel PT.  So only options 'u' and 'k' are
285meaningful for Intel PT.
286
287perf_event_attr is displayed if the -vv option is used e.g.
288
289	------------------------------------------------------------
290	perf_event_attr:
291	type                             6
292	size                             112
293	config                           0x400
294	{ sample_period, sample_freq }   1
295	sample_type                      IP|TID|TIME|CPU|IDENTIFIER
296	read_format                      ID
297	disabled                         1
298	inherit                          1
299	exclude_kernel                   1
300	exclude_hv                       1
301	enable_on_exec                   1
302	sample_id_all                    1
303	------------------------------------------------------------
304	sys_perf_event_open: pid 31104  cpu 0  group_fd -1  flags 0x8
305	sys_perf_event_open: pid 31104  cpu 1  group_fd -1  flags 0x8
306	sys_perf_event_open: pid 31104  cpu 2  group_fd -1  flags 0x8
307	sys_perf_event_open: pid 31104  cpu 3  group_fd -1  flags 0x8
308	------------------------------------------------------------
309
310
311config terms
312~~~~~~~~~~~~
313
314Config terms are parameters specified with the -e intel_pt// event option,
315for example:
316
317	-e intel_pt/cyc/
318
319which selects cycle accurate mode. Each config term can have a value which
320defaults to 1, so the above is the same as:
321
322	-e intel_pt/cyc=1/
323
324Some terms are set by default, so must be set to 0 to turn them off. For
325example, to turn off branch tracing:
326
327	-e intel_pt/branch=0/
328
329Multiple config terms are separated by commas, for example:
330
331	-e intel_pt/cyc,mtc_period=9/
332
333There are also common config terms, see linkperf:perf-record[1] documentation.
334
335Intel PT config terms are described below.
336
337*tsc*::
338Always supported.  Produces TSC timestamp packets to provide
339timing information.  In some cases it is possible to decode
340without timing information, for example a per-thread context
341that does not overlap executable memory maps.
342+
343The default config selects tsc (i.e. tsc=1).
344
345*noretcomp*::
346Always supported.  Disables "return compression" so a TIP packet
347is produced when a function returns.  Causes more packets to be
348produced but might make decoding more reliable.
349+
350The default config does not select noretcomp (i.e. noretcomp=0).
351
352*psb_period*::
353Allows the frequency of PSB packets to be specified.
354+
355The PSB packet is a synchronization packet that provides a
356starting point for decoding or recovery from errors.
357+
358Support for psb_period is indicated by:
359+
360	/sys/bus/event_source/devices/intel_pt/caps/psb_cyc
361+
362which contains "1" if the feature is supported and "0"
363otherwise.
364+
365Valid values are given by:
366+
367	/sys/bus/event_source/devices/intel_pt/caps/psb_periods
368+
369which contains a hexadecimal value, the bits of which represent
370valid values e.g. bit 2 set means value 2 is valid.
371+
372The psb_period value is converted to the approximate number of
373trace bytes between PSB packets as:
374+
375	2 ^ (value + 11)
376+
377e.g. value 3 means 16KiB bytes between PSBs
378+
379If an invalid value is entered, the error message
380will give a list of valid values e.g.
381+
382	$ perf record -e intel_pt/psb_period=15/u uname
383	Invalid psb_period for intel_pt. Valid values are: 0-5
384+
385If MTC packets are selected, the default config selects a value
386of 3 (i.e. psb_period=3) or the nearest lower value that is
387supported (0 is always supported).  Otherwise the default is 0.
388+
389If decoding is expected to be reliable and the buffer is large
390then a large PSB period can be used.
391+
392Because a TSC packet is produced with PSB, the PSB period can
393also affect the granularity to timing information in the absence
394of MTC or CYC.
395
396*mtc*::
397Produces MTC timing packets.
398+
399MTC packets provide finer grain timestamp information than TSC
400packets.  MTC packets record time using the hardware crystal
401clock (CTC) which is related to TSC packets using a TMA packet.
402+
403Support for this feature is indicated by:
404+
405	/sys/bus/event_source/devices/intel_pt/caps/mtc
406+
407which contains "1" if the feature is supported and
408"0" otherwise.
409+
410The frequency of MTC packets can also be specified - see
411mtc_period below.
412
413*mtc_period*::
414Specifies how frequently MTC packets are produced - see mtc
415above for how to determine if MTC packets are supported.
416+
417Valid values are given by:
418+
419	/sys/bus/event_source/devices/intel_pt/caps/mtc_periods
420+
421which contains a hexadecimal value, the bits of which represent
422valid values e.g. bit 2 set means value 2 is valid.
423+
424The mtc_period value is converted to the MTC frequency as:
425
426	CTC-frequency / (2 ^ value)
427+
428e.g. value 3 means one eighth of CTC-frequency
429+
430Where CTC is the hardware crystal clock, the frequency of which
431can be related to TSC via values provided in cpuid leaf 0x15.
432+
433If an invalid value is entered, the error message
434will give a list of valid values e.g.
435+
436	$ perf record -e intel_pt/mtc_period=15/u uname
437	Invalid mtc_period for intel_pt. Valid values are: 0,3,6,9
438+
439The default value is 3 or the nearest lower value
440that is supported (0 is always supported).
441
442*cyc*::
443Produces CYC timing packets.
444+
445CYC packets provide even finer grain timestamp information than
446MTC and TSC packets.  A CYC packet contains the number of CPU
447cycles since the last CYC packet. Unlike MTC and TSC packets,
448CYC packets are only sent when another packet is also sent.
449+
450Support for this feature is indicated by:
451+
452	/sys/bus/event_source/devices/intel_pt/caps/psb_cyc
453+
454which contains "1" if the feature is supported and
455"0" otherwise.
456+
457The number of CYC packets produced can be reduced by specifying
458a threshold - see cyc_thresh below.
459
460*cyc_thresh*::
461Specifies how frequently CYC packets are produced - see cyc
462above for how to determine if CYC packets are supported.
463+
464Valid cyc_thresh values are given by:
465+
466	/sys/bus/event_source/devices/intel_pt/caps/cycle_thresholds
467+
468which contains a hexadecimal value, the bits of which represent
469valid values e.g. bit 2 set means value 2 is valid.
470+
471The cyc_thresh value represents the minimum number of CPU cycles
472that must have passed before a CYC packet can be sent.  The
473number of CPU cycles is:
474+
475	2 ^ (value - 1)
476+
477e.g. value 4 means 8 CPU cycles must pass before a CYC packet
478can be sent.  Note a CYC packet is still only sent when another
479packet is sent, not at, e.g. every 8 CPU cycles.
480+
481If an invalid value is entered, the error message
482will give a list of valid values e.g.
483+
484	$ perf record -e intel_pt/cyc,cyc_thresh=15/u uname
485	Invalid cyc_thresh for intel_pt. Valid values are: 0-12
486+
487CYC packets are not requested by default.
488
489*pt*::
490Specifies pass-through which enables the 'branch' config term.
491+
492The default config selects 'pt' if it is available, so a user will
493never need to specify this term.
494
495*branch*::
496Enable branch tracing.  Branch tracing is enabled by default so to
497disable branch tracing use 'branch=0'.
498+
499The default config selects 'branch' if it is available.
500
501*ptw*::
502Enable PTWRITE packets which are produced when a ptwrite instruction
503is executed.
504+
505Support for this feature is indicated by:
506+
507	/sys/bus/event_source/devices/intel_pt/caps/ptwrite
508+
509which contains "1" if the feature is supported and
510"0" otherwise.
511+
512As an alternative, refer to "Emulated PTWRITE" further below.
513
514*fup_on_ptw*::
515Enable a FUP packet to follow the PTWRITE packet.  The FUP packet
516provides the address of the ptwrite instruction.  In the absence of
517fup_on_ptw, the decoder will use the address of the previous branch
518if branch tracing is enabled, otherwise the address will be zero.
519Note that fup_on_ptw will work even when branch tracing is disabled.
520
521*pwr_evt*::
522Enable power events.  The power events provide information about
523changes to the CPU C-state.
524+
525Support for this feature is indicated by:
526+
527	/sys/bus/event_source/devices/intel_pt/caps/power_event_trace
528+
529which contains "1" if the feature is supported and
530"0" otherwise.
531
532*event*::
533Enable Event Trace.  The events provide information about asynchronous
534events.
535+
536Support for this feature is indicated by:
537+
538	/sys/bus/event_source/devices/intel_pt/caps/event_trace
539+
540which contains "1" if the feature is supported and
541"0" otherwise.
542
543*notnt*::
544Disable TNT packets.  Without TNT packets, it is not possible to walk
545executable code to reconstruct control flow, however FUP, TIP, TIP.PGE
546and TIP.PGD packets still indicate asynchronous control flow, and (if
547return compression is disabled - see noretcomp) return statements.
548The advantage of eliminating TNT packets is reducing the size of the
549trace and corresponding tracing overhead.
550+
551Support for this feature is indicated by:
552+
553	/sys/bus/event_source/devices/intel_pt/caps/tnt_disable
554+
555which contains "1" if the feature is supported and
556"0" otherwise.
557
558*aux-action=start-paused*::
559Start tracing paused, refer to the section <<_pause_or_resume_tracing,Pause or Resume Tracing>>
560
561
562config terms on other events
563~~~~~~~~~~~~~~~~~~~~~~~~~~~~
564
565Some Intel PT features work with other events, features such as AUX area sampling
566and PEBS-via-PT.  In those cases, the other events can have config terms below:
567
568*aux-sample-size*::
569		Used to set the AUX area sample size, refer to the section
570		<<_aux_area_sampling_option,AUX area sampling option>>
571
572*aux-output*::
573		Used to select PEBS-via-PT, refer to the
574		section <<_pebs_via_intel_pt,PEBS via Intel PT>>
575
576*aux-action*::
577		Used to pause or resume tracing, refer to the section
578		<<_pause_or_resume_tracing,Pause or Resume Tracing>>
579
580AUX area sampling option
581~~~~~~~~~~~~~~~~~~~~~~~~
582
583To select Intel PT "sampling" the AUX area sampling option can be used:
584
585	--aux-sample
586
587Optionally it can be followed by the sample size in bytes e.g.
588
589	--aux-sample=8192
590
591In addition, the Intel PT event to sample must be defined e.g.
592
593	-e intel_pt//u
594
595Samples on other events will be created containing Intel PT data e.g. the
596following will create Intel PT samples on the branch-misses event, note the
597events must be grouped using {}:
598
599	perf record --aux-sample -e '{intel_pt//u,branch-misses:u}'
600
601An alternative to '--aux-sample' is to add the config term 'aux-sample-size' to
602events.  In this case, the grouping is implied e.g.
603
604	perf record -e intel_pt//u -e branch-misses/aux-sample-size=8192/u
605
606is the same as:
607
608	perf record -e '{intel_pt//u,branch-misses/aux-sample-size=8192/u}'
609
610but allows for also using an address filter e.g.:
611
612	perf record -e intel_pt//u --filter 'filter * @/bin/ls' -e branch-misses/aux-sample-size=8192/u -- ls
613
614It is important to select a sample size that is big enough to contain at least
615one PSB packet.  If not a warning will be displayed:
616
617	Intel PT sample size (%zu) may be too small for PSB period (%zu)
618
619The calculation used for that is: if sample_size <= psb_period + 256 display the
620warning.  When sampling is used, psb_period defaults to 0 (2KiB).
621
622The default sample size is 4KiB.
623
624The sample size is passed in aux_sample_size in struct perf_event_attr.  The
625sample size is limited by the maximum event size which is 64KiB.  It is
626difficult to know how big the event might be without the trace sample attached,
627but the tool validates that the sample size is not greater than 60KiB.
628
629
630new snapshot option
631~~~~~~~~~~~~~~~~~~~
632
633The difference between full trace and snapshot from the kernel's perspective is
634that in full trace we don't overwrite trace data that the user hasn't collected
635yet (and indicated that by advancing aux_tail), whereas in snapshot mode we let
636the trace run and overwrite older data in the buffer so that whenever something
637interesting happens, we can stop it and grab a snapshot of what was going on
638around that interesting moment.
639
640To select snapshot mode a new option has been added:
641
642	-S
643
644Optionally it can be followed by the snapshot size e.g.
645
646	-S0x100000
647
648The default snapshot size is the auxtrace mmap size.  If neither auxtrace mmap size
649nor snapshot size is specified, then the default is 4MiB for privileged users
650(or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users.
651If an unprivileged user does not specify mmap pages, the mmap pages will be
652reduced as described in the <<_new_auxtrace_mmap_size_option,new auxtrace mmap size option>>
653section below.
654
655The snapshot size is displayed if the option -vv is used e.g.
656
657	Intel PT snapshot size: %zu
658
659
660new auxtrace mmap size option
661~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
662
663Intel PT buffer size is specified by an addition to the -m option e.g.
664
665	-m,16
666
667selects a buffer size of 16 pages i.e. 64KiB.
668
669Note that the existing functionality of -m is unchanged.  The auxtrace mmap size
670is specified by the optional addition of a comma and the value.
671
672The default auxtrace mmap size for Intel PT is 4MiB/page_size for privileged users
673(or if /proc/sys/kernel/perf_event_paranoid < 0), 128KiB for unprivileged users.
674If an unprivileged user does not specify mmap pages, the mmap pages will be
675reduced from the default 512KiB/page_size to 256KiB/page_size, otherwise the
676user is likely to get an error as they exceed their mlock limit (Max locked
677memory as shown in /proc/self/limits).  Note that perf does not count the first
678512KiB (actually /proc/sys/kernel/perf_event_mlock_kb minus 1 page) per cpu
679against the mlock limit so an unprivileged user is allowed 512KiB per cpu plus
680their mlock limit (which defaults to 64KiB but is not multiplied by the number
681of cpus).
682
683In full-trace mode, powers of two are allowed for buffer size, with a minimum
684size of 2 pages.  In snapshot mode or sampling mode, it is the same but the
685minimum size is 1 page.
686
687The mmap size and auxtrace mmap size are displayed if the -vv option is used e.g.
688
689	mmap length 528384
690	auxtrace mmap length 4198400
691
692
693Intel PT modes of operation
694~~~~~~~~~~~~~~~~~~~~~~~~~~~
695
696Intel PT can be used in 3 modes:
697	full-trace mode
698	sample mode
699	snapshot mode
700
701Full-trace mode traces continuously e.g.
702
703	perf record -e intel_pt//u uname
704
705Sample mode attaches a Intel PT sample to other events e.g.
706
707	perf record --aux-sample -e intel_pt//u -e branch-misses:u
708
709Snapshot mode captures the available data when a signal is sent or "snapshot"
710control command is issued. e.g. using a signal
711
712	perf record -v -e intel_pt//u -S ./loopy 1000000000 &
713	[1] 11435
714	kill -USR2 11435
715	Recording AUX area tracing snapshot
716
717Note that the signal sent is SIGUSR2.
718Note that "Recording AUX area tracing snapshot" is displayed because the -v
719option is used.
720
721The advantage of using "snapshot" control command is that the access is
722controlled by access to a FIFO e.g.
723
724	$ mkfifo perf.control
725	$ mkfifo perf.ack
726	$ cat perf.ack &
727	[1] 15235
728	$ sudo ~/bin/perf record --control fifo:perf.control,perf.ack -S -e intel_pt//u -- sleep 60 &
729	[2] 15243
730	$ ps -e | grep perf
731	15244 pts/1    00:00:00 perf
732	$ kill -USR2 15244
733	bash: kill: (15244) - Operation not permitted
734	$ echo snapshot > perf.control
735	ack
736
737The 3 Intel PT modes of operation cannot be used together.
738
739
740Buffer handling
741~~~~~~~~~~~~~~~
742
743There may be buffer limitations (i.e. single ToPa entry) which means that actual
744buffer sizes are limited to powers of 2 up to 4MiB (MAX_PAGE_ORDER).  In order to
745provide other sizes, and in particular an arbitrarily large size, multiple
746buffers are logically concatenated.  However an interrupt must be used to switch
747between buffers.  That has two potential problems:
748	a) the interrupt may not be handled in time so that the current buffer
749	becomes full and some trace data is lost.
750	b) the interrupts may slow the system and affect the performance
751	results.
752
753If trace data is lost, the driver sets 'truncated' in the PERF_RECORD_AUX event
754which the tools report as an error.
755
756In full-trace mode, the driver waits for data to be copied out before allowing
757the (logical) buffer to wrap-around.  If data is not copied out quickly enough,
758again 'truncated' is set in the PERF_RECORD_AUX event.  If the driver has to
759wait, the intel_pt event gets disabled.  Because it is difficult to know when
760that happens, perf tools always re-enable the intel_pt event after copying out
761data.
762
763
764Intel PT and build ids
765~~~~~~~~~~~~~~~~~~~~~~
766
767By default "perf record" post-processes the event stream to find all build ids
768for executables for all addresses sampled.  Deliberately, Intel PT is not
769decoded for that purpose (it would take too long).  Instead the build ids for
770all executables encountered (due to mmap, comm or task events) are included
771in the perf.data file.
772
773To see buildids included in the perf.data file use the command:
774
775	perf buildid-list
776
777If the perf.data file contains Intel PT data, that is the same as:
778
779	perf buildid-list --with-hits
780
781
782Snapshot mode and event disabling
783~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
784
785In order to make a snapshot, the intel_pt event is disabled using an IOCTL,
786namely PERF_EVENT_IOC_DISABLE.  However doing that can also disable the
787collection of side-band information.  In order to prevent that,  a dummy
788software event has been introduced that permits tracking events (like mmaps) to
789continue to be recorded while intel_pt is disabled.  That is important to ensure
790there is complete side-band information to allow the decoding of subsequent
791snapshots.
792
793A test has been created for that.  To find the test:
794
795	perf test list
796	...
797	23: Test using a dummy software event to keep tracking
798
799To run the test:
800
801	perf test 23
802	23: Test using a dummy software event to keep tracking     : Ok
803
804
805perf record modes (nothing new here)
806~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
807
808perf record essentially operates in one of three modes:
809	per thread
810	per cpu
811	workload only
812
813"per thread" mode is selected by -t or by --per-thread (with -p or -u or just a
814workload).
815"per cpu" is selected by -C or -a.
816"workload only" mode is selected by not using the other options but providing a
817command to run (i.e. the workload).
818
819In per-thread mode an exact list of threads is traced.  There is no inheritance.
820Each thread has its own event buffer.
821
822In per-cpu mode all processes (or processes from the selected cgroup i.e. -G
823option, or processes selected with -p or -u) are traced.  Each cpu has its own
824buffer. Inheritance is allowed.
825
826In workload-only mode, the workload is traced but with per-cpu buffers.
827Inheritance is allowed.  Note that you can now trace a workload in per-thread
828mode by using the --per-thread option.
829
830
831Privileged vs non-privileged users
832~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
833
834Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users
835have memory limits imposed upon them.  That affects what buffer sizes they can
836have as outlined above.
837
838The v4.2 kernel introduced support for a context switch metadata event,
839PERF_RECORD_SWITCH, which allows unprivileged users to see when their processes
840are scheduled out and in, just not by whom, which is left for the
841PERF_RECORD_SWITCH_CPU_WIDE, that is only accessible in system wide context,
842which in turn requires CAP_PERFMON or CAP_SYS_ADMIN.
843
844Please see the 45ac1403f564 ("perf: Add PERF_RECORD_SWITCH to indicate context
845switches") commit, that introduces these metadata events for further info.
846
847When working with kernels < v4.2, the following considerations must be taken,
848as the sched:sched_switch tracepoints will be used to receive such information:
849
850Unless /proc/sys/kernel/perf_event_paranoid is set to -1, unprivileged users are
851not permitted to use tracepoints which means there is insufficient side-band
852information to decode Intel PT in per-cpu mode, and potentially workload-only
853mode too if the workload creates new processes.
854
855Note also, that to use tracepoints, read-access to debugfs is required.  So if
856debugfs is not mounted or the user does not have read-access, it will again not
857be possible to decode Intel PT in per-cpu mode.
858
859
860sched_switch tracepoint
861~~~~~~~~~~~~~~~~~~~~~~~
862
863The sched_switch tracepoint is used to provide side-band data for Intel PT
864decoding in kernels where the PERF_RECORD_SWITCH metadata event isn't
865available.
866
867The sched_switch events are automatically added. e.g. the second event shown
868below:
869
870	$ perf record -vv -e intel_pt//u uname
871	------------------------------------------------------------
872	perf_event_attr:
873	type                             6
874	size                             112
875	config                           0x400
876	{ sample_period, sample_freq }   1
877	sample_type                      IP|TID|TIME|CPU|IDENTIFIER
878	read_format                      ID
879	disabled                         1
880	inherit                          1
881	exclude_kernel                   1
882	exclude_hv                       1
883	enable_on_exec                   1
884	sample_id_all                    1
885	------------------------------------------------------------
886	sys_perf_event_open: pid 31104  cpu 0  group_fd -1  flags 0x8
887	sys_perf_event_open: pid 31104  cpu 1  group_fd -1  flags 0x8
888	sys_perf_event_open: pid 31104  cpu 2  group_fd -1  flags 0x8
889	sys_perf_event_open: pid 31104  cpu 3  group_fd -1  flags 0x8
890	------------------------------------------------------------
891	perf_event_attr:
892	type                             2
893	size                             112
894	config                           0x108
895	{ sample_period, sample_freq }   1
896	sample_type                      IP|TID|TIME|CPU|PERIOD|RAW|IDENTIFIER
897	read_format                      ID
898	inherit                          1
899	sample_id_all                    1
900	exclude_guest                    1
901	------------------------------------------------------------
902	sys_perf_event_open: pid -1  cpu 0  group_fd -1  flags 0x8
903	sys_perf_event_open: pid -1  cpu 1  group_fd -1  flags 0x8
904	sys_perf_event_open: pid -1  cpu 2  group_fd -1  flags 0x8
905	sys_perf_event_open: pid -1  cpu 3  group_fd -1  flags 0x8
906	------------------------------------------------------------
907	perf_event_attr:
908	type                             1
909	size                             112
910	config                           0x9
911	{ sample_period, sample_freq }   1
912	sample_type                      IP|TID|TIME|IDENTIFIER
913	read_format                      ID
914	disabled                         1
915	inherit                          1
916	exclude_kernel                   1
917	exclude_hv                       1
918	mmap                             1
919	comm                             1
920	enable_on_exec                   1
921	task                             1
922	sample_id_all                    1
923	mmap2                            1
924	comm_exec                        1
925	------------------------------------------------------------
926	sys_perf_event_open: pid 31104  cpu 0  group_fd -1  flags 0x8
927	sys_perf_event_open: pid 31104  cpu 1  group_fd -1  flags 0x8
928	sys_perf_event_open: pid 31104  cpu 2  group_fd -1  flags 0x8
929	sys_perf_event_open: pid 31104  cpu 3  group_fd -1  flags 0x8
930	mmap size 528384B
931	AUX area mmap length 4194304
932	perf event ring buffer mmapped per cpu
933	Synthesizing auxtrace information
934	Linux
935	[ perf record: Woken up 1 times to write data ]
936	[ perf record: Captured and wrote 0.042 MB perf.data ]
937
938Note, the sched_switch event is only added if the user is permitted to use it
939and only in per-cpu mode.
940
941Note also, the sched_switch event is only added if TSC packets are requested.
942That is because, in the absence of timing information, the sched_switch events
943cannot be matched against the Intel PT trace.
944
945
946perf script
947-----------
948
949By default, perf script will decode trace data found in the perf.data file.
950This can be further controlled by new option --itrace.
951
952
953New --itrace option
954~~~~~~~~~~~~~~~~~~~
955
956Having no option is the same as
957
958	--itrace
959
960which, in turn, is the same as
961
962	--itrace=cepwxy
963
964The letters are:
965
966	i	synthesize "instructions" events
967	y	synthesize "cycles" events
968	b	synthesize "branches" events
969	x	synthesize "transactions" events
970	w	synthesize "ptwrite" events
971	p	synthesize "power" events (incl. PSB events)
972	c	synthesize branches events (calls only)
973	r	synthesize branches events (returns only)
974	o	synthesize PEBS-via-PT events
975	I	synthesize Event Trace events
976	e	synthesize tracing error events
977	d	create a debug log
978	g	synthesize a call chain (use with i or x)
979	G	synthesize a call chain on existing event records
980	l	synthesize last branch entries (use with i or x)
981	L	synthesize last branch entries on existing event records
982	s	skip initial number of events
983	q	quicker (less detailed) decoding
984	A	approximate IPC
985	Z	prefer to ignore timestamps (so-called "timeless" decoding)
986
987"Instructions" events look like they were recorded by "perf record -e
988instructions".
989
990"Cycles" events look like they were recorded by "perf record -e cycles"
991(ie., the default). Note that even with CYC packets enabled and no sampling,
992these are not fully accurate, since CYC packets are not emitted for each
993instruction, only when some other event (like an indirect branch, or a
994TNT packet representing multiple branches) happens causes a packet to
995be emitted. Thus, it is more effective for attributing cycles to functions
996(and possibly basic blocks) than to individual instructions, although it
997is not even perfect for functions (although it becomes better if the noretcomp
998option is active).
999
1000"Branches" events look like they were recorded by "perf record -e branches". "c"
1001and "r" can be combined to get calls and returns.
1002
1003"Transactions" events correspond to the start or end of transactions. The
1004'flags' field can be used in perf script to determine whether the event is a
1005transaction start, commit or abort.
1006
1007Note that "instructions", "cycles", "branches" and "transactions" events
1008depend on code flow packets which can be disabled by using the config term
1009"branch=0".  Refer to the <<_config_terms,config terms>> section above.
1010
1011"ptwrite" events record the payload of the ptwrite instruction and whether
1012"fup_on_ptw" was used.  "ptwrite" events depend on PTWRITE packets which are
1013recorded only if the "ptw" config term was used.  Refer to the <<_config_terms,config terms>>
1014section above.  perf script "synth" field displays "ptwrite" information like
1015this: "ip: 0 payload: 0x123456789abcdef0"  where "ip" is 1 if "fup_on_ptw" was
1016used.
1017
1018"Power" events correspond to power event packets and CBR (core-to-bus ratio)
1019packets.  While CBR packets are always recorded when tracing is enabled, power
1020event packets are recorded only if the "pwr_evt" config term was used.  Refer to
1021the <<_config_terms,config terms>> section above.  The power events record information about
1022C-state changes, whereas CBR is indicative of CPU frequency.  perf script
1023"event,synth" fields display information like this:
1024
1025	cbr:  cbr: 22 freq: 2189 MHz (200%)
1026	mwait:  hints: 0x60 extensions: 0x1
1027	pwre:  hw: 0 cstate: 2 sub-cstate: 0
1028	exstop:  ip: 1
1029	pwrx:  deepest cstate: 2 last cstate: 2 wake reason: 0x4
1030
1031Where:
1032
1033	"cbr" includes the frequency and the percentage of maximum non-turbo
1034	"mwait" shows mwait hints and extensions
1035	"pwre" shows C-state transitions (to a C-state deeper than C0) and
1036	whether	initiated by hardware
1037	"exstop" indicates execution stopped and whether the IP was recorded
1038	exactly,
1039	"pwrx" indicates return to C0
1040
1041For more details refer to the Intel 64 and IA-32 Architectures Software
1042Developer Manuals.
1043
1044PSB events show when a PSB+ occurred and also the byte-offset in the trace.
1045Emitting a PSB+ can cause a CPU a slight delay. When doing timing analysis
1046of code with Intel PT, it is useful to know if a timing bubble was caused
1047by Intel PT or not.
1048
1049Error events show where the decoder lost the trace.  Error events
1050are quite important.  Users must know if what they are seeing is a complete
1051picture or not. The "e" option may be followed by flags which affect what errors
1052will or will not be reported.  Each flag must be preceded by either '+' or '-'.
1053The flags supported by Intel PT are:
1054
1055		-o	Suppress overflow errors
1056		-l	Suppress trace data lost errors
1057
1058For example, for errors but not overflow or data lost errors:
1059
1060	--itrace=e-o-l
1061
1062The "d" option will cause the creation of a file "intel_pt.log" containing all
1063decoded packets and instructions.  Note that this option slows down the decoder
1064and that the resulting file may be very large.  The "d" option may be followed
1065by flags which affect what debug messages will or will not be logged. Each flag
1066must be preceded by either '+' or '-'. The flags support by Intel PT are:
1067
1068		-a	Suppress logging of perf events
1069		+a	Log all perf events
1070		+e	Output only on decoding errors (size configurable)
1071		+o	Output to stdout instead of "intel_pt.log"
1072
1073By default, logged perf events are filtered by any specified time ranges, but
1074flag +a overrides that.  The +e flag can be useful for analyzing errors.  By
1075default, the log size in that case is 16384 bytes, but can be altered by
1076linkperf:perf-config[1] e.g. perf config itrace.debug-log-buffer-size=30000
1077
1078In addition, the period of the "instructions" event can be specified. e.g.
1079
1080	--itrace=i10us
1081
1082sets the period to 10us i.e. one  instruction sample is synthesized for each 10
1083microseconds of trace.  Alternatives to "us" are "ms" (milliseconds),
1084"ns" (nanoseconds), "t" (TSC ticks) or "i" (instructions).
1085
1086"ms", "us" and "ns" are converted to TSC ticks.
1087
1088The timing information included with Intel PT does not give the time of every
1089instruction.  Consequently, for the purpose of sampling, the decoder estimates
1090the time since the last timing packet based on 1 tick per instruction.  The time
1091on the sample is *not* adjusted and reflects the last known value of TSC.
1092
1093For Intel PT, the default period is 100us.
1094
1095Setting it to a zero period means "as often as possible".
1096
1097In the case of Intel PT that is the same as a period of 1 and a unit of
1098'instructions' (i.e. --itrace=i1i).
1099
1100Also the call chain size (default 16, max. 1024) for instructions or
1101transactions events can be specified. e.g.
1102
1103	--itrace=ig32
1104	--itrace=xg32
1105
1106Also the number of last branch entries (default 64, max. 1024) for instructions or
1107transactions events can be specified. e.g.
1108
1109       --itrace=il10
1110       --itrace=xl10
1111
1112Note that last branch entries are cleared for each sample, so there is no overlap
1113from one sample to the next.
1114
1115The G and L options are designed in particular for sample mode, and work much
1116like g and l but add call chain and branch stack to the other selected events
1117instead of synthesized events. For example, to record branch-misses events for
1118'ls' and then add a call chain derived from the Intel PT trace:
1119
1120	perf record --aux-sample -e '{intel_pt//u,branch-misses:u}' -- ls
1121	perf report --itrace=Ge
1122
1123Although in fact G is a default for perf report, so that is the same as just:
1124
1125	perf report
1126
1127One caveat with the G and L options is that they work poorly with "Large PEBS".
1128Large PEBS means PEBS records will be accumulated by hardware and the written
1129into the event buffer in one go.  That reduces interrupts, but can give very
1130late timestamps.  Because the Intel PT trace is synchronized by timestamps,
1131the PEBS events do not match the trace.  Currently, Large PEBS is used only in
1132certain circumstances:
1133	- hardware supports it
1134	- PEBS is used
1135	- event period is specified, instead of frequency
1136	- the sample type is limited to the following flags:
1137		PERF_SAMPLE_IP | PERF_SAMPLE_TID | PERF_SAMPLE_ADDR |
1138		PERF_SAMPLE_ID | PERF_SAMPLE_CPU | PERF_SAMPLE_STREAM_ID |
1139		PERF_SAMPLE_DATA_SRC | PERF_SAMPLE_IDENTIFIER |
1140		PERF_SAMPLE_TRANSACTION | PERF_SAMPLE_PHYS_ADDR |
1141		PERF_SAMPLE_REGS_INTR | PERF_SAMPLE_REGS_USER |
1142		PERF_SAMPLE_PERIOD (and sometimes) | PERF_SAMPLE_TIME
1143Because Intel PT sample mode uses a different sample type to the list above,
1144Large PEBS is not used with Intel PT sample mode. To avoid Large PEBS in other
1145cases, avoid specifying the event period i.e. avoid the 'perf record' -c option,
1146--count option, or 'period' config term.
1147
1148To disable trace decoding entirely, use the option --no-itrace.
1149
1150It is also possible to skip events generated (instructions, branches, transactions)
1151at the beginning. This is useful to ignore initialization code.
1152
1153	--itrace=i0nss1000000
1154
1155skips the first million instructions.
1156
1157The q option changes the way the trace is decoded.  The decoding is much faster
1158but much less detailed.  Specifically, with the q option, the decoder does not
1159decode TNT packets, and does not walk object code, but gets the ip from FUP and
1160TIP packets.  The q option can be used with the b and i options but the period
1161is not used.  The q option decodes more quickly, but is useful only if the
1162control flow of interest is represented or indicated by FUP, TIP, TIP.PGE, or
1163TIP.PGD packets (refer below).  However the q option could be used to find time
1164ranges that could then be decoded fully using the --time option.
1165
1166What will *not* be decoded with the (single) q option:
1167
1168	- direct calls and jmps
1169	- conditional branches
1170	- non-branch instructions
1171
1172What *will* be decoded with the (single) q option:
1173
1174	- asynchronous branches such as interrupts
1175	- indirect branches
1176	- function return target address *if* the noretcomp config term (refer
1177	<<_config_terms,config terms>> section) was used
1178	- start of (control-flow) tracing
1179	- end of (control-flow) tracing, if it is not out of context
1180	- power events, ptwrite, transaction start and abort
1181	- instruction pointer associated with PSB packets
1182
1183Note the q option does not specify what events will be synthesized e.g. the p
1184option must be used also to show power events.
1185
1186Repeating the q option (double-q i.e. qq) results in even faster decoding and even
1187less detail.  The decoder decodes only extended PSB (PSB+) packets, getting the
1188instruction pointer if there is a FUP packet within PSB+ (i.e. between PSB and
1189PSBEND).  Note PSB packets occur regularly in the trace based on the psb_period
1190config term (refer <<_config_terms,config terms>> section).  There will be a FUP packet if the
1191PSB+ occurs while control flow is being traced.
1192
1193What will *not* be decoded with the qq option:
1194
1195	- everything except instruction pointer associated with PSB packets
1196
1197What *will* be decoded with the qq option:
1198
1199	- instruction pointer associated with PSB packets
1200
1201The Z option is equivalent to having recorded a trace without TSC
1202(i.e. config term tsc=0). It can be useful to avoid timestamp issues when
1203decoding a trace of a virtual machine.
1204
1205
1206dlfilter-show-cycles.so
1207~~~~~~~~~~~~~~~~~~~~~~~
1208
1209Cycles can be displayed using dlfilter-show-cycles.so in which case the itrace A
1210option can be useful to provide higher granularity cycle information:
1211
1212	perf script --itrace=A --call-trace --dlfilter dlfilter-show-cycles.so
1213
1214To see a list of dlfilters:
1215
1216	perf script -v --list-dlfilters
1217
1218See also linkperf:perf-dlfilters[1]
1219
1220
1221dump option
1222~~~~~~~~~~~
1223
1224perf script has an option (-D) to "dump" the events i.e. display the binary
1225data.
1226
1227When -D is used, Intel PT packets are displayed.  The packet decoder does not
1228pay attention to PSB packets, but just decodes the bytes - so the packets seen
1229by the actual decoder may not be identical in places where the data is corrupt.
1230One example of that would be when the buffer-switching interrupt has been too
1231slow, and the buffer has been filled completely.  In that case, the last packet
1232in the buffer might be truncated and immediately followed by a PSB as the trace
1233continues in the next buffer.
1234
1235To disable the display of Intel PT packets, combine the -D option with
1236--no-itrace.
1237
1238
1239perf report
1240-----------
1241
1242By default, perf report will decode trace data found in the perf.data file.
1243This can be further controlled by new option --itrace exactly the same as
1244perf script, with the exception that the default is --itrace=igxe.
1245
1246
1247perf inject
1248-----------
1249
1250perf inject also accepts the --itrace option in which case tracing data is
1251removed and replaced with the synthesized events. e.g.
1252
1253	perf inject --itrace -i perf.data -o perf.data.new
1254
1255Below is an example of using Intel PT with autofdo.  It requires autofdo
1256(https://github.com/google/autofdo) and gcc version 5.  The bubble
1257sort example is from the AutoFDO tutorial (https://gcc.gnu.org/wiki/AutoFDO/Tutorial)
1258amended to take the number of elements as a parameter.
1259
1260	$ gcc-5 -O3 sort.c -o sort_optimized
1261	$ ./sort_optimized 30000
1262	Bubble sorting array of 30000 elements
1263	2254 ms
1264
1265	$ cat ~/.perfconfig
1266	[intel-pt]
1267		mispred-all = on
1268
1269	$ perf record -e intel_pt//u ./sort 3000
1270	Bubble sorting array of 3000 elements
1271	58 ms
1272	[ perf record: Woken up 2 times to write data ]
1273	[ perf record: Captured and wrote 3.939 MB perf.data ]
1274	$ perf inject -i perf.data -o inj --itrace=i100usle --strip
1275	$ ./create_gcov --binary=./sort --profile=inj --gcov=sort.gcov -gcov_version=1
1276	$ gcc-5 -O3 -fauto-profile=sort.gcov sort.c -o sort_autofdo
1277	$ ./sort_autofdo 30000
1278	Bubble sorting array of 30000 elements
1279	2155 ms
1280
1281Note there is currently no advantage to using Intel PT instead of LBR, but
1282that may change in the future if greater use is made of the data.
1283
1284
1285PEBS via Intel PT
1286-----------------
1287
1288Some hardware has the feature to redirect PEBS records to the Intel PT trace.
1289Recording is selected by using the aux-output config term e.g.
1290
1291	perf record -c 10000 -e '{intel_pt/branch=0/,cycles/aux-output/ppp}' uname
1292
1293Originally, software only supported redirecting at most one PEBS event because it
1294was not able to differentiate one event from another. To overcome that, more recent
1295kernels and perf tools add support for the PERF_RECORD_AUX_OUTPUT_HW_ID side-band event.
1296To check for the presence of that event in a PEBS-via-PT trace:
1297
1298	perf script -D --no-itrace | grep PERF_RECORD_AUX_OUTPUT_HW_ID
1299
1300To display PEBS events from the Intel PT trace, use the itrace 'o' option e.g.
1301
1302	perf script --itrace=oe
1303
1304XED
1305---
1306
1307include::build-xed.txt[]
1308
1309
1310Tracing Virtual Machines (kernel only)
1311--------------------------------------
1312
1313Currently, kernel tracing is supported with either "timeless" decoding
1314(i.e. no TSC timestamps) or VM Time Correlation. VM Time Correlation is an extra step
1315using 'perf inject' and requires unchanging VMX TSC Offset and no VMX TSC Scaling.
1316
1317Other limitations and caveats
1318
1319 VMX controls may suppress packets needed for decoding resulting in decoding errors
1320 VMX controls may block the perf NMI to the host potentially resulting in lost trace data
1321 Guest kernel self-modifying code (e.g. jump labels or JIT-compiled eBPF) will result in decoding errors
1322 Guest thread information is unknown
1323 Guest VCPU is unknown but may be able to be inferred from the host thread
1324 Callchains are not supported
1325
1326Example using "timeless" decoding
1327
1328Start VM
1329
1330 $ sudo virsh start kubuntu20.04
1331 Domain kubuntu20.04 started
1332
1333Mount the guest file system.  Note sshfs needs -o direct_io to enable reading of proc files.  root access is needed to read /proc/kcore.
1334
1335 $ mkdir vm0
1336 $ sshfs -o direct_io root@vm0:/ vm0
1337
1338Copy the guest /proc/kallsyms, /proc/modules and /proc/kcore
1339
1340 $ perf buildid-cache -v --kcore vm0/proc/kcore
1341 kcore added to build-id cache directory /home/user/.debug/[kernel.kcore]/9600f316a53a0f54278885e8d9710538ec5f6a08/2021021807494306
1342 $ KALLSYMS=/home/user/.debug/[kernel.kcore]/9600f316a53a0f54278885e8d9710538ec5f6a08/2021021807494306/kallsyms
1343
1344Find the VM process
1345
1346 $ ps -eLl | grep 'KVM\|PID'
1347 F S   UID     PID    PPID     LWP  C PRI  NI ADDR SZ WCHAN  TTY          TIME CMD
1348 3 S 64055    1430       1    1440  1  80   0 - 1921718 -    ?        00:02:47 CPU 0/KVM
1349 3 S 64055    1430       1    1441  1  80   0 - 1921718 -    ?        00:02:41 CPU 1/KVM
1350 3 S 64055    1430       1    1442  1  80   0 - 1921718 -    ?        00:02:38 CPU 2/KVM
1351 3 S 64055    1430       1    1443  2  80   0 - 1921718 -    ?        00:03:18 CPU 3/KVM
1352
1353Start an open-ended perf record, tracing the VM process, do something on the VM, and then ctrl-C to stop.
1354TSC is not supported and tsc=0 must be specified.  That means mtc is useless, so add mtc=0.
1355However, IPC can still be determined, hence cyc=1 can be added.
1356Only kernel decoding is supported, so 'k' must be specified.
1357Intel PT traces both the host and the guest so --guest and --host need to be specified.
1358Without timestamps, --per-thread must be specified to distinguish threads.
1359
1360 $ sudo perf kvm --guest --host --guestkallsyms $KALLSYMS record --kcore -e intel_pt/tsc=0,mtc=0,cyc=1/k -p 1430 --per-thread
1361 ^C
1362 [ perf record: Woken up 1 times to write data ]
1363 [ perf record: Captured and wrote 5.829 MB ]
1364
1365perf script can be used to provide an instruction trace
1366
1367 $ perf script --guestkallsyms $KALLSYMS --insn-trace=disasm -F+ipc | grep -C10 vmresume | head -21
1368       CPU 0/KVM  1440  ffffffff82133cdd __vmx_vcpu_run+0x3d ([kernel.kallsyms])                movq  0x48(%rax), %r9
1369       CPU 0/KVM  1440  ffffffff82133ce1 __vmx_vcpu_run+0x41 ([kernel.kallsyms])                movq  0x50(%rax), %r10
1370       CPU 0/KVM  1440  ffffffff82133ce5 __vmx_vcpu_run+0x45 ([kernel.kallsyms])                movq  0x58(%rax), %r11
1371       CPU 0/KVM  1440  ffffffff82133ce9 __vmx_vcpu_run+0x49 ([kernel.kallsyms])                movq  0x60(%rax), %r12
1372       CPU 0/KVM  1440  ffffffff82133ced __vmx_vcpu_run+0x4d ([kernel.kallsyms])                movq  0x68(%rax), %r13
1373       CPU 0/KVM  1440  ffffffff82133cf1 __vmx_vcpu_run+0x51 ([kernel.kallsyms])                movq  0x70(%rax), %r14
1374       CPU 0/KVM  1440  ffffffff82133cf5 __vmx_vcpu_run+0x55 ([kernel.kallsyms])                movq  0x78(%rax), %r15
1375       CPU 0/KVM  1440  ffffffff82133cf9 __vmx_vcpu_run+0x59 ([kernel.kallsyms])                movq  (%rax), %rax
1376       CPU 0/KVM  1440  ffffffff82133cfc __vmx_vcpu_run+0x5c ([kernel.kallsyms])                callq  0xffffffff82133c40
1377       CPU 0/KVM  1440  ffffffff82133c40 vmx_vmenter+0x0 ([kernel.kallsyms])            jz 0xffffffff82133c46
1378       CPU 0/KVM  1440  ffffffff82133c42 vmx_vmenter+0x2 ([kernel.kallsyms])            vmresume         IPC: 0.11 (50/445)
1379           :1440  1440  ffffffffbb678b06 native_write_msr+0x6 ([guest.kernel.kallsyms])                 nopl  %eax, (%rax,%rax,1)
1380           :1440  1440  ffffffffbb678b0b native_write_msr+0xb ([guest.kernel.kallsyms])                 retq     IPC: 0.04 (2/41)
1381           :1440  1440  ffffffffbb666646 lapic_next_deadline+0x26 ([guest.kernel.kallsyms])             data16 nop
1382           :1440  1440  ffffffffbb666648 lapic_next_deadline+0x28 ([guest.kernel.kallsyms])             xor %eax, %eax
1383           :1440  1440  ffffffffbb66664a lapic_next_deadline+0x2a ([guest.kernel.kallsyms])             popq  %rbp
1384           :1440  1440  ffffffffbb66664b lapic_next_deadline+0x2b ([guest.kernel.kallsyms])             retq     IPC: 0.16 (4/25)
1385           :1440  1440  ffffffffbb74607f clockevents_program_event+0x8f ([guest.kernel.kallsyms])               test %eax, %eax
1386           :1440  1440  ffffffffbb746081 clockevents_program_event+0x91 ([guest.kernel.kallsyms])               jz 0xffffffffbb74603c    IPC: 0.06 (2/30)
1387           :1440  1440  ffffffffbb74603c clockevents_program_event+0x4c ([guest.kernel.kallsyms])               popq  %rbx
1388           :1440  1440  ffffffffbb74603d clockevents_program_event+0x4d ([guest.kernel.kallsyms])               popq  %r12
1389
1390Example using VM Time Correlation
1391
1392Start VM
1393
1394 $ sudo virsh start kubuntu20.04
1395 Domain kubuntu20.04 started
1396
1397Mount the guest file system.  Note sshfs needs -o direct_io to enable reading of proc files.  root access is needed to read /proc/kcore.
1398
1399 $ mkdir -p vm0
1400 $ sshfs -o direct_io root@vm0:/ vm0
1401
1402Copy the guest /proc/kallsyms, /proc/modules and /proc/kcore
1403
1404 $ perf buildid-cache -v --kcore vm0/proc/kcore
1405 same kcore found in /home/user/.debug/[kernel.kcore]/cc9c55a98c5e4ec0aeda69302554aabed5cd6491/2021021312450777
1406 $ KALLSYMS=/home/user/.debug/\[kernel.kcore\]/cc9c55a98c5e4ec0aeda69302554aabed5cd6491/2021021312450777/kallsyms
1407
1408Find the VM process
1409
1410 $ ps -eLl | grep 'KVM\|PID'
1411 F S   UID     PID    PPID     LWP  C PRI  NI ADDR SZ WCHAN  TTY          TIME CMD
1412 3 S 64055   16998       1   17005 13  80   0 - 1818189 -    ?        00:00:16 CPU 0/KVM
1413 3 S 64055   16998       1   17006  4  80   0 - 1818189 -    ?        00:00:05 CPU 1/KVM
1414 3 S 64055   16998       1   17007  3  80   0 - 1818189 -    ?        00:00:04 CPU 2/KVM
1415 3 S 64055   16998       1   17008  4  80   0 - 1818189 -    ?        00:00:05 CPU 3/KVM
1416
1417Start an open-ended perf record, tracing the VM process, do something on the VM, and then ctrl-C to stop.
1418IPC can be determined, hence cyc=1 can be added.
1419Only kernel decoding is supported, so 'k' must be specified.
1420Intel PT traces both the host and the guest so --guest and --host need to be specified.
1421
1422 $ sudo perf kvm --guest --host --guestkallsyms $KALLSYMS record --kcore -e intel_pt/cyc=1/k -p 16998
1423 ^C[ perf record: Woken up 1 times to write data ]
1424 [ perf record: Captured and wrote 9.041 MB perf.data.kvm ]
1425
1426Now 'perf inject' can be used to determine the VMX TCS Offset. Note, Intel PT TSC packets are
1427only 7-bytes, so the TSC Offset might differ from the actual value in the 8th byte. That will
1428have no effect i.e. the resulting timestamps will be correct anyway.
1429
1430 $ perf inject -i perf.data.kvm --vm-time-correlation=dry-run
1431 ERROR: Unknown TSC Offset for VMCS 0x1bff6a
1432 VMCS: 0x1bff6a  TSC Offset 0xffffe42722c64c41
1433 ERROR: Unknown TSC Offset for VMCS 0x1cbc08
1434 VMCS: 0x1cbc08  TSC Offset 0xffffe42722c64c41
1435 ERROR: Unknown TSC Offset for VMCS 0x1c3ce8
1436 VMCS: 0x1c3ce8  TSC Offset 0xffffe42722c64c41
1437 ERROR: Unknown TSC Offset for VMCS 0x1cbce9
1438 VMCS: 0x1cbce9  TSC Offset 0xffffe42722c64c41
1439
1440Each virtual CPU has a different Virtual Machine Control Structure (VMCS)
1441shown above with the calculated TSC Offset. For an unchanging TSC Offset
1442they should all be the same for the same virtual machine.
1443
1444Now that the TSC Offset is known, it can be provided to 'perf inject'
1445
1446 $ perf inject -i perf.data.kvm --vm-time-correlation="dry-run 0xffffe42722c64c41"
1447
1448Note the options for 'perf inject' --vm-time-correlation are:
1449
1450 [ dry-run ] [ <TSC Offset> [ : <VMCS> [ , <VMCS> ]... ]  ]...
1451
1452So it is possible to specify different TSC Offsets for different VMCS.
1453The option "dry-run" will cause the file to be processed but without updating it.
1454Note it is also possible to get a intel_pt.log file by adding option --itrace=d
1455
1456There were no errors so, do it for real
1457
1458 $ perf inject -i perf.data.kvm --vm-time-correlation=0xffffe42722c64c41 --force
1459
1460'perf script' can be used to see if there are any decoder errors
1461
1462 $ perf script -i perf.data.kvm --guestkallsyms $KALLSYMS --itrace=e-o
1463
1464There were none.
1465
1466'perf script' can be used to provide an instruction trace showing timestamps
1467
1468 $ perf script -i perf.data.kvm --guestkallsyms $KALLSYMS --insn-trace=disasm -F+ipc | grep -C10 vmresume | head -21
1469       CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133cdd __vmx_vcpu_run+0x3d ([kernel.kallsyms])                 movq  0x48(%rax), %r9
1470       CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133ce1 __vmx_vcpu_run+0x41 ([kernel.kallsyms])                 movq  0x50(%rax), %r10
1471       CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133ce5 __vmx_vcpu_run+0x45 ([kernel.kallsyms])                 movq  0x58(%rax), %r11
1472       CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133ce9 __vmx_vcpu_run+0x49 ([kernel.kallsyms])                 movq  0x60(%rax), %r12
1473       CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133ced __vmx_vcpu_run+0x4d ([kernel.kallsyms])                 movq  0x68(%rax), %r13
1474       CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133cf1 __vmx_vcpu_run+0x51 ([kernel.kallsyms])                 movq  0x70(%rax), %r14
1475       CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133cf5 __vmx_vcpu_run+0x55 ([kernel.kallsyms])                 movq  0x78(%rax), %r15
1476       CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133cf9 __vmx_vcpu_run+0x59 ([kernel.kallsyms])                 movq  (%rax), %rax
1477       CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133cfc __vmx_vcpu_run+0x5c ([kernel.kallsyms])                 callq  0xffffffff82133c40
1478       CPU 1/KVM 17006 [001] 11500.262865593:  ffffffff82133c40 vmx_vmenter+0x0 ([kernel.kallsyms])             jz 0xffffffff82133c46
1479       CPU 1/KVM 17006 [001] 11500.262866075:  ffffffff82133c42 vmx_vmenter+0x2 ([kernel.kallsyms])             vmresume         IPC: 0.05 (40/769)
1480          :17006 17006 [001] 11500.262869216:  ffffffff82200cb0 asm_sysvec_apic_timer_interrupt+0x0 ([guest.kernel.kallsyms])           clac
1481          :17006 17006 [001] 11500.262869216:  ffffffff82200cb3 asm_sysvec_apic_timer_interrupt+0x3 ([guest.kernel.kallsyms])           pushq  $0xffffffffffffffff
1482          :17006 17006 [001] 11500.262869216:  ffffffff82200cb5 asm_sysvec_apic_timer_interrupt+0x5 ([guest.kernel.kallsyms])           callq  0xffffffff82201160
1483          :17006 17006 [001] 11500.262869216:  ffffffff82201160 error_entry+0x0 ([guest.kernel.kallsyms])               cld
1484          :17006 17006 [001] 11500.262869216:  ffffffff82201161 error_entry+0x1 ([guest.kernel.kallsyms])               pushq  %rsi
1485          :17006 17006 [001] 11500.262869216:  ffffffff82201162 error_entry+0x2 ([guest.kernel.kallsyms])               movq  0x8(%rsp), %rsi
1486          :17006 17006 [001] 11500.262869216:  ffffffff82201167 error_entry+0x7 ([guest.kernel.kallsyms])               movq  %rdi, 0x8(%rsp)
1487          :17006 17006 [001] 11500.262869216:  ffffffff8220116c error_entry+0xc ([guest.kernel.kallsyms])               pushq  %rdx
1488          :17006 17006 [001] 11500.262869216:  ffffffff8220116d error_entry+0xd ([guest.kernel.kallsyms])               pushq  %rcx
1489          :17006 17006 [001] 11500.262869216:  ffffffff8220116e error_entry+0xe ([guest.kernel.kallsyms])               pushq  %rax
1490
1491
1492Tracing Virtual Machines (including user space)
1493-----------------------------------------------
1494
1495It is possible to use perf record to record sideband events within a virtual machine, so that an Intel PT trace on the host can be decoded.
1496Sideband events from the guest perf.data file can be injected into the host perf.data file using perf inject.
1497
1498Here is an example of the steps needed:
1499
1500On the guest machine:
1501
1502Check that no-kvmclock kernel command line option was used to boot:
1503
1504Note, this is essential to enable time correlation between host and guest machines.
1505
1506 $ cat /proc/cmdline
1507 BOOT_IMAGE=/boot/vmlinuz-5.10.0-16-amd64 root=UUID=cb49c910-e573-47e0-bce7-79e293df8e1d ro no-kvmclock
1508
1509There is no BPF support at present so, if possible, disable JIT compiling:
1510
1511 $ echo 0 | sudo tee /proc/sys/net/core/bpf_jit_enable
1512 0
1513
1514Start perf record to collect sideband events:
1515
1516 $ sudo perf record -o guest-sideband-testing-guest-perf.data --sample-identifier --buildid-all --switch-events --kcore -a -e dummy
1517
1518On the host machine:
1519
1520Start perf record to collect Intel PT trace:
1521
1522Note, the host trace will get very big, very fast, so the steps from starting to stopping the host trace really need to be done so that they happen in the shortest time possible.
1523
1524 $ sudo perf record -o guest-sideband-testing-host-perf.data -m,64M --kcore -a -e intel_pt/cyc/
1525
1526On the guest machine:
1527
1528Run a small test case, just 'uname' in this example:
1529
1530 $ uname
1531 Linux
1532
1533On the host machine:
1534
1535Stop the Intel PT trace:
1536
1537 ^C
1538 [ perf record: Woken up 1 times to write data ]
1539 [ perf record: Captured and wrote 76.122 MB guest-sideband-testing-host-perf.data ]
1540
1541On the guest machine:
1542
1543Stop the Intel PT trace:
1544
1545 ^C
1546 [ perf record: Woken up 1 times to write data ]
1547 [ perf record: Captured and wrote 1.247 MB guest-sideband-testing-guest-perf.data ]
1548
1549And then copy guest-sideband-testing-guest-perf.data to the host (not shown here).
1550
1551On the host machine:
1552
1553With the 2 perf.data recordings, and with their ownership changed to the user.
1554
1555Identify the TSC Offset:
1556
1557 $ perf inject -i guest-sideband-testing-host-perf.data --vm-time-correlation=dry-run
1558 VMCS: 0x103fc6  TSC Offset 0xfffffa6ae070cb20
1559 VMCS: 0x103ff2  TSC Offset 0xfffffa6ae070cb20
1560 VMCS: 0x10fdaa  TSC Offset 0xfffffa6ae070cb20
1561 VMCS: 0x24d57c  TSC Offset 0xfffffa6ae070cb20
1562
1563Correct Intel PT TSC timestamps for the guest machine:
1564
1565 $ perf inject -i guest-sideband-testing-host-perf.data --vm-time-correlation=0xfffffa6ae070cb20 --force
1566
1567Identify the guest machine PID:
1568
1569 $ perf script -i guest-sideband-testing-host-perf.data --no-itrace --show-task-events | grep KVM
1570       CPU 0/KVM     0 [000]     0.000000: PERF_RECORD_COMM: CPU 0/KVM:13376/13381
1571       CPU 1/KVM     0 [000]     0.000000: PERF_RECORD_COMM: CPU 1/KVM:13376/13382
1572       CPU 2/KVM     0 [000]     0.000000: PERF_RECORD_COMM: CPU 2/KVM:13376/13383
1573       CPU 3/KVM     0 [000]     0.000000: PERF_RECORD_COMM: CPU 3/KVM:13376/13384
1574
1575Note, the QEMU option -name debug-threads=on is needed so that thread names
1576can be used to determine which thread is running which VCPU as above. libvirt seems to use this by default.
1577
1578Create a guestmount, assuming the guest machine is 'vm_to_test':
1579
1580 $ mkdir -p ~/guestmount/13376
1581 $ sshfs -o direct_io vm_to_test:/ ~/guestmount/13376
1582
1583Inject the guest perf.data file into the host perf.data file:
1584
1585Note, due to the guestmount option, guest object files and debug files will be copied into the build ID cache from the guest machine, with the notable exception of VDSO.
1586If needed, VDSO can be copied manually in a fashion similar to that used by the perf-archive script.
1587
1588 $ perf inject -i guest-sideband-testing-host-perf.data -o inj --guestmount ~/guestmount --guest-data=guest-sideband-testing-guest-perf.data,13376,0xfffffa6ae070cb20
1589
1590Show an excerpt from the result.  In this case the CPU and time range have been to chosen to show interaction between guest and host when 'uname' is starting to run on the guest machine:
1591
1592Notes:
1593
1594	- the CPU displayed, [002] in this case, is always the host CPU
1595	- events happening in the virtual machine start with VM:13376 VCPU:003, which shows the hypervisor PID 13376 and the VCPU number
1596	- only calls and errors are displayed i.e. --itrace=ce
1597	- branches entering and exiting the virtual machine are split, and show as 2 branches to/from "0 [unknown] ([unknown])"
1598
1599 $ perf script -i inj --itrace=ce -F+machine_pid,+vcpu,+addr,+pid,+tid,-period --ns --time 7919.408803365,7919.408804631 -C 2
1600       CPU 3/KVM 13376/13384 [002]  7919.408803365:      branches:  ffffffffc0f8ebe0 vmx_vcpu_enter_exit+0xc0 ([kernel.kallsyms]) => ffffffffc0f8edc0 __vmx_vcpu_run+0x0 ([kernel.kallsyms])
1601       CPU 3/KVM 13376/13384 [002]  7919.408803365:      branches:  ffffffffc0f8edd5 __vmx_vcpu_run+0x15 ([kernel.kallsyms]) => ffffffffc0f8eca0 vmx_update_host_rsp+0x0 ([kernel.kallsyms])
1602       CPU 3/KVM 13376/13384 [002]  7919.408803365:      branches:  ffffffffc0f8ee1b __vmx_vcpu_run+0x5b ([kernel.kallsyms]) => ffffffffc0f8ed60 vmx_vmenter+0x0 ([kernel.kallsyms])
1603       CPU 3/KVM 13376/13384 [002]  7919.408803461:      branches:  ffffffffc0f8ed62 vmx_vmenter+0x2 ([kernel.kallsyms]) =>                0 [unknown] ([unknown])
1604 VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408803461:      branches:                 0 [unknown] ([unknown]) =>     7f851c9b5a5c init_cacheinfo+0x3ac (/usr/lib/x86_64-linux-gnu/libc-2.31.so)
1605 VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408803567:      branches:      7f851c9b5a5a init_cacheinfo+0x3aa (/usr/lib/x86_64-linux-gnu/libc-2.31.so) =>                0 [unknown] ([unknown])
1606       CPU 3/KVM 13376/13384 [002]  7919.408803567:      branches:                 0 [unknown] ([unknown]) => ffffffffc0f8ed80 vmx_vmexit+0x0 ([kernel.kallsyms])
1607       CPU 3/KVM 13376/13384 [002]  7919.408803596:      branches:  ffffffffc0f6619a vmx_vcpu_run+0x26a ([kernel.kallsyms]) => ffffffffb2255c60 x86_virt_spec_ctrl+0x0 ([kernel.kallsyms])
1608       CPU 3/KVM 13376/13384 [002]  7919.408803801:      branches:  ffffffffc0f66445 vmx_vcpu_run+0x515 ([kernel.kallsyms]) => ffffffffb2290b30 native_write_msr+0x0 ([kernel.kallsyms])
1609       CPU 3/KVM 13376/13384 [002]  7919.408803850:      branches:  ffffffffc0f661f8 vmx_vcpu_run+0x2c8 ([kernel.kallsyms]) => ffffffffc1092300 kvm_load_host_xsave_state+0x0 ([kernel.kallsyms])
1610       CPU 3/KVM 13376/13384 [002]  7919.408803850:      branches:  ffffffffc1092327 kvm_load_host_xsave_state+0x27 ([kernel.kallsyms]) => ffffffffc1092220 kvm_load_host_xsave_state.part.0+0x0 ([kernel.kallsyms])
1611       CPU 3/KVM 13376/13384 [002]  7919.408803862:      branches:  ffffffffc0f662cf vmx_vcpu_run+0x39f ([kernel.kallsyms]) => ffffffffc0f63f90 vmx_recover_nmi_blocking+0x0 ([kernel.kallsyms])
1612       CPU 3/KVM 13376/13384 [002]  7919.408803862:      branches:  ffffffffc0f662e9 vmx_vcpu_run+0x3b9 ([kernel.kallsyms]) => ffffffffc0f619a0 __vmx_complete_interrupts+0x0 ([kernel.kallsyms])
1613       CPU 3/KVM 13376/13384 [002]  7919.408803872:      branches:  ffffffffc109cfb2 vcpu_enter_guest+0x752 ([kernel.kallsyms]) => ffffffffc0f5f570 vmx_handle_exit_irqoff+0x0 ([kernel.kallsyms])
1614       CPU 3/KVM 13376/13384 [002]  7919.408803881:      branches:  ffffffffc109d028 vcpu_enter_guest+0x7c8 ([kernel.kallsyms]) => ffffffffb234f900 __srcu_read_lock+0x0 ([kernel.kallsyms])
1615       CPU 3/KVM 13376/13384 [002]  7919.408803897:      branches:  ffffffffc109d06f vcpu_enter_guest+0x80f ([kernel.kallsyms]) => ffffffffc0f72e30 vmx_handle_exit+0x0 ([kernel.kallsyms])
1616       CPU 3/KVM 13376/13384 [002]  7919.408803897:      branches:  ffffffffc0f72e3d vmx_handle_exit+0xd ([kernel.kallsyms]) => ffffffffc0f727c0 __vmx_handle_exit+0x0 ([kernel.kallsyms])
1617       CPU 3/KVM 13376/13384 [002]  7919.408803897:      branches:  ffffffffc0f72b15 __vmx_handle_exit+0x355 ([kernel.kallsyms]) => ffffffffc0f60ae0 vmx_flush_pml_buffer+0x0 ([kernel.kallsyms])
1618       CPU 3/KVM 13376/13384 [002]  7919.408803903:      branches:  ffffffffc0f72994 __vmx_handle_exit+0x1d4 ([kernel.kallsyms]) => ffffffffc10b7090 kvm_emulate_cpuid+0x0 ([kernel.kallsyms])
1619       CPU 3/KVM 13376/13384 [002]  7919.408803903:      branches:  ffffffffc10b70f1 kvm_emulate_cpuid+0x61 ([kernel.kallsyms]) => ffffffffc10b6e10 kvm_cpuid+0x0 ([kernel.kallsyms])
1620       CPU 3/KVM 13376/13384 [002]  7919.408803941:      branches:  ffffffffc10b7125 kvm_emulate_cpuid+0x95 ([kernel.kallsyms]) => ffffffffc1093110 kvm_skip_emulated_instruction+0x0 ([kernel.kallsyms])
1621       CPU 3/KVM 13376/13384 [002]  7919.408803941:      branches:  ffffffffc109311f kvm_skip_emulated_instruction+0xf ([kernel.kallsyms]) => ffffffffc0f5e180 vmx_get_rflags+0x0 ([kernel.kallsyms])
1622       CPU 3/KVM 13376/13384 [002]  7919.408803951:      branches:  ffffffffc109312a kvm_skip_emulated_instruction+0x1a ([kernel.kallsyms]) => ffffffffc0f5fd30 vmx_skip_emulated_instruction+0x0 ([kernel.kallsyms])
1623       CPU 3/KVM 13376/13384 [002]  7919.408803951:      branches:  ffffffffc0f5fd79 vmx_skip_emulated_instruction+0x49 ([kernel.kallsyms]) => ffffffffc0f5fb50 skip_emulated_instruction+0x0 ([kernel.kallsyms])
1624       CPU 3/KVM 13376/13384 [002]  7919.408803956:      branches:  ffffffffc0f5fc68 skip_emulated_instruction+0x118 ([kernel.kallsyms]) => ffffffffc0f6a940 vmx_cache_reg+0x0 ([kernel.kallsyms])
1625       CPU 3/KVM 13376/13384 [002]  7919.408803964:      branches:  ffffffffc0f5fc11 skip_emulated_instruction+0xc1 ([kernel.kallsyms]) => ffffffffc0f5f9e0 vmx_set_interrupt_shadow+0x0 ([kernel.kallsyms])
1626       CPU 3/KVM 13376/13384 [002]  7919.408803980:      branches:  ffffffffc109f8b1 vcpu_run+0x71 ([kernel.kallsyms]) => ffffffffc10ad2f0 kvm_cpu_has_pending_timer+0x0 ([kernel.kallsyms])
1627       CPU 3/KVM 13376/13384 [002]  7919.408803980:      branches:  ffffffffc10ad2fb kvm_cpu_has_pending_timer+0xb ([kernel.kallsyms]) => ffffffffc10b0490 apic_has_pending_timer+0x0 ([kernel.kallsyms])
1628       CPU 3/KVM 13376/13384 [002]  7919.408803991:      branches:  ffffffffc109f899 vcpu_run+0x59 ([kernel.kallsyms]) => ffffffffc109c860 vcpu_enter_guest+0x0 ([kernel.kallsyms])
1629       CPU 3/KVM 13376/13384 [002]  7919.408803993:      branches:  ffffffffc109cd4c vcpu_enter_guest+0x4ec ([kernel.kallsyms]) => ffffffffc0f69140 vmx_prepare_switch_to_guest+0x0 ([kernel.kallsyms])
1630       CPU 3/KVM 13376/13384 [002]  7919.408803996:      branches:  ffffffffc109cd7d vcpu_enter_guest+0x51d ([kernel.kallsyms]) => ffffffffb234f930 __srcu_read_unlock+0x0 ([kernel.kallsyms])
1631       CPU 3/KVM 13376/13384 [002]  7919.408803996:      branches:  ffffffffc109cd9c vcpu_enter_guest+0x53c ([kernel.kallsyms]) => ffffffffc0f609b0 vmx_sync_pir_to_irr+0x0 ([kernel.kallsyms])
1632       CPU 3/KVM 13376/13384 [002]  7919.408803996:      branches:  ffffffffc0f60a6d vmx_sync_pir_to_irr+0xbd ([kernel.kallsyms]) => ffffffffc10adc20 kvm_lapic_find_highest_irr+0x0 ([kernel.kallsyms])
1633       CPU 3/KVM 13376/13384 [002]  7919.408804010:      branches:  ffffffffc0f60abd vmx_sync_pir_to_irr+0x10d ([kernel.kallsyms]) => ffffffffc0f60820 vmx_set_rvi+0x0 ([kernel.kallsyms])
1634       CPU 3/KVM 13376/13384 [002]  7919.408804019:      branches:  ffffffffc109ceca vcpu_enter_guest+0x66a ([kernel.kallsyms]) => ffffffffb2249840 fpregs_assert_state_consistent+0x0 ([kernel.kallsyms])
1635       CPU 3/KVM 13376/13384 [002]  7919.408804021:      branches:  ffffffffc109cf10 vcpu_enter_guest+0x6b0 ([kernel.kallsyms]) => ffffffffc0f65f30 vmx_vcpu_run+0x0 ([kernel.kallsyms])
1636       CPU 3/KVM 13376/13384 [002]  7919.408804024:      branches:  ffffffffc0f6603b vmx_vcpu_run+0x10b ([kernel.kallsyms]) => ffffffffb229bed0 __get_current_cr3_fast+0x0 ([kernel.kallsyms])
1637       CPU 3/KVM 13376/13384 [002]  7919.408804024:      branches:  ffffffffc0f66055 vmx_vcpu_run+0x125 ([kernel.kallsyms]) => ffffffffb2253050 cr4_read_shadow+0x0 ([kernel.kallsyms])
1638       CPU 3/KVM 13376/13384 [002]  7919.408804030:      branches:  ffffffffc0f6608d vmx_vcpu_run+0x15d ([kernel.kallsyms]) => ffffffffc10921e0 kvm_load_guest_xsave_state+0x0 ([kernel.kallsyms])
1639       CPU 3/KVM 13376/13384 [002]  7919.408804030:      branches:  ffffffffc1092207 kvm_load_guest_xsave_state+0x27 ([kernel.kallsyms]) => ffffffffc1092110 kvm_load_guest_xsave_state.part.0+0x0 ([kernel.kallsyms])
1640       CPU 3/KVM 13376/13384 [002]  7919.408804032:      branches:  ffffffffc0f660c6 vmx_vcpu_run+0x196 ([kernel.kallsyms]) => ffffffffb22061a0 perf_guest_get_msrs+0x0 ([kernel.kallsyms])
1641       CPU 3/KVM 13376/13384 [002]  7919.408804032:      branches:  ffffffffb22061a9 perf_guest_get_msrs+0x9 ([kernel.kallsyms]) => ffffffffb220cda0 intel_guest_get_msrs+0x0 ([kernel.kallsyms])
1642       CPU 3/KVM 13376/13384 [002]  7919.408804039:      branches:  ffffffffc0f66109 vmx_vcpu_run+0x1d9 ([kernel.kallsyms]) => ffffffffc0f652c0 clear_atomic_switch_msr+0x0 ([kernel.kallsyms])
1643       CPU 3/KVM 13376/13384 [002]  7919.408804040:      branches:  ffffffffc0f66119 vmx_vcpu_run+0x1e9 ([kernel.kallsyms]) => ffffffffc0f73f60 intel_pmu_lbr_is_enabled+0x0 ([kernel.kallsyms])
1644       CPU 3/KVM 13376/13384 [002]  7919.408804042:      branches:  ffffffffc0f73f81 intel_pmu_lbr_is_enabled+0x21 ([kernel.kallsyms]) => ffffffffc10b68e0 kvm_find_cpuid_entry+0x0 ([kernel.kallsyms])
1645       CPU 3/KVM 13376/13384 [002]  7919.408804045:      branches:  ffffffffc0f66454 vmx_vcpu_run+0x524 ([kernel.kallsyms]) => ffffffffc0f61ff0 vmx_update_hv_timer+0x0 ([kernel.kallsyms])
1646       CPU 3/KVM 13376/13384 [002]  7919.408804057:      branches:  ffffffffc0f66142 vmx_vcpu_run+0x212 ([kernel.kallsyms]) => ffffffffc10af100 kvm_wait_lapic_expire+0x0 ([kernel.kallsyms])
1647       CPU 3/KVM 13376/13384 [002]  7919.408804057:      branches:  ffffffffc0f66156 vmx_vcpu_run+0x226 ([kernel.kallsyms]) => ffffffffb2255c60 x86_virt_spec_ctrl+0x0 ([kernel.kallsyms])
1648       CPU 3/KVM 13376/13384 [002]  7919.408804057:      branches:  ffffffffc0f66161 vmx_vcpu_run+0x231 ([kernel.kallsyms]) => ffffffffc0f8eb20 vmx_vcpu_enter_exit+0x0 ([kernel.kallsyms])
1649       CPU 3/KVM 13376/13384 [002]  7919.408804057:      branches:  ffffffffc0f8eb44 vmx_vcpu_enter_exit+0x24 ([kernel.kallsyms]) => ffffffffb2353e10 rcu_note_context_switch+0x0 ([kernel.kallsyms])
1650       CPU 3/KVM 13376/13384 [002]  7919.408804057:      branches:  ffffffffb2353e1c rcu_note_context_switch+0xc ([kernel.kallsyms]) => ffffffffb2353db0 rcu_qs+0x0 ([kernel.kallsyms])
1651       CPU 3/KVM 13376/13384 [002]  7919.408804066:      branches:  ffffffffc0f8ebe0 vmx_vcpu_enter_exit+0xc0 ([kernel.kallsyms]) => ffffffffc0f8edc0 __vmx_vcpu_run+0x0 ([kernel.kallsyms])
1652       CPU 3/KVM 13376/13384 [002]  7919.408804066:      branches:  ffffffffc0f8edd5 __vmx_vcpu_run+0x15 ([kernel.kallsyms]) => ffffffffc0f8eca0 vmx_update_host_rsp+0x0 ([kernel.kallsyms])
1653       CPU 3/KVM 13376/13384 [002]  7919.408804066:      branches:  ffffffffc0f8ee1b __vmx_vcpu_run+0x5b ([kernel.kallsyms]) => ffffffffc0f8ed60 vmx_vmenter+0x0 ([kernel.kallsyms])
1654       CPU 3/KVM 13376/13384 [002]  7919.408804162:      branches:  ffffffffc0f8ed62 vmx_vmenter+0x2 ([kernel.kallsyms]) =>                0 [unknown] ([unknown])
1655 VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804162:      branches:                 0 [unknown] ([unknown]) =>     7f851c9b5a5c init_cacheinfo+0x3ac (/usr/lib/x86_64-linux-gnu/libc-2.31.so)
1656 VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804273:      branches:      7f851cb7c0e4 _dl_init+0x74 (/usr/lib/x86_64-linux-gnu/ld-2.31.so) =>     7f851cb7bf50 call_init.part.0+0x0 (/usr/lib/x86_64-linux-gnu/ld-2.31.so)
1657 VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804526:      branches:      55e0c00136f0 _start+0x0 (/usr/bin/uname) => ffffffff83200ac0 asm_exc_page_fault+0x0 ([kernel.kallsyms])
1658 VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804526:      branches:  ffffffff83200ac3 asm_exc_page_fault+0x3 ([kernel.kallsyms]) => ffffffff83201290 error_entry+0x0 ([kernel.kallsyms])
1659 VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804534:      branches:  ffffffff832012fa error_entry+0x6a ([kernel.kallsyms]) => ffffffff830b59a0 sync_regs+0x0 ([kernel.kallsyms])
1660 VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804631:      branches:  ffffffff83200ad9 asm_exc_page_fault+0x19 ([kernel.kallsyms]) => ffffffff830b8210 exc_page_fault+0x0 ([kernel.kallsyms])
1661 VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804631:      branches:  ffffffff830b82a4 exc_page_fault+0x94 ([kernel.kallsyms]) => ffffffff830b80e0 __kvm_handle_async_pf+0x0 ([kernel.kallsyms])
1662 VM:13376 VCPU:003            uname  3404/3404  [002]  7919.408804631:      branches:  ffffffff830b80ed __kvm_handle_async_pf+0xd ([kernel.kallsyms]) => ffffffff830b80c0 kvm_read_and_reset_apf_flags+0x0 ([kernel.kallsyms])
1663
1664
1665Tracing Virtual Machines - Guest Code
1666-------------------------------------
1667
1668A common case for KVM test programs is that the test program acts as the
1669hypervisor, creating, running and destroying the virtual machine, and
1670providing the guest object code from its own object code. In this case,
1671the VM is not running an OS, but only the functions loaded into it by the
1672hypervisor test program, and conveniently, loaded at the same virtual
1673addresses. To support that, option "--guest-code" has been added to perf script
1674and perf kvm report.
1675
1676Here is an example tracing a test program from the kernel's KVM selftests:
1677
1678 # perf record --kcore -e intel_pt/cyc/ -- tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test
1679 [ perf record: Woken up 1 times to write data ]
1680 [ perf record: Captured and wrote 0.280 MB perf.data ]
1681 # perf script --guest-code --itrace=bep --ns -F-period,+addr,+flags
1682 [SNIP]
1683   tsc_msrs_test 18436 [007] 10897.962087733:      branches:   call                   ffffffffc13b2ff5 __vmx_vcpu_run+0x15 (vmlinux) => ffffffffc13b2f50 vmx_update_host_rsp+0x0 (vmlinux)
1684   tsc_msrs_test 18436 [007] 10897.962087733:      branches:   return                 ffffffffc13b2f5d vmx_update_host_rsp+0xd (vmlinux) => ffffffffc13b2ffa __vmx_vcpu_run+0x1a (vmlinux)
1685   tsc_msrs_test 18436 [007] 10897.962087733:      branches:   call                   ffffffffc13b303b __vmx_vcpu_run+0x5b (vmlinux) => ffffffffc13b2f80 vmx_vmenter+0x0 (vmlinux)
1686   tsc_msrs_test 18436 [007] 10897.962087836:      branches:   vmentry                ffffffffc13b2f82 vmx_vmenter+0x2 (vmlinux) =>                0 [unknown] ([unknown])
1687   [guest/18436] 18436 [007] 10897.962087836:      branches:   vmentry                               0 [unknown] ([unknown]) =>           402c81 guest_code+0x131 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1688   [guest/18436] 18436 [007] 10897.962087836:      branches:   call                             402c81 guest_code+0x131 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) =>           40dba0 ucall+0x0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1689   [guest/18436] 18436 [007] 10897.962088248:      branches:   vmexit                           40dba0 ucall+0x0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) =>                0 [unknown] ([unknown])
1690   tsc_msrs_test 18436 [007] 10897.962088248:      branches:   vmexit                                0 [unknown] ([unknown]) => ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux)
1691   tsc_msrs_test 18436 [007] 10897.962088248:      branches:   jmp                    ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux) => ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux)
1692   tsc_msrs_test 18436 [007] 10897.962088256:      branches:   return                 ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux) => ffffffffc13b3040 __vmx_vcpu_run+0x60 (vmlinux)
1693   tsc_msrs_test 18436 [007] 10897.962088270:      branches:   return                 ffffffffc13b30b6 __vmx_vcpu_run+0xd6 (vmlinux) => ffffffffc13b2f2e vmx_vcpu_enter_exit+0x4e (vmlinux)
1694 [SNIP]
1695   tsc_msrs_test 18436 [007] 10897.962089321:      branches:   call                   ffffffffc13b2ff5 __vmx_vcpu_run+0x15 (vmlinux) => ffffffffc13b2f50 vmx_update_host_rsp+0x0 (vmlinux)
1696   tsc_msrs_test 18436 [007] 10897.962089321:      branches:   return                 ffffffffc13b2f5d vmx_update_host_rsp+0xd (vmlinux) => ffffffffc13b2ffa __vmx_vcpu_run+0x1a (vmlinux)
1697   tsc_msrs_test 18436 [007] 10897.962089321:      branches:   call                   ffffffffc13b303b __vmx_vcpu_run+0x5b (vmlinux) => ffffffffc13b2f80 vmx_vmenter+0x0 (vmlinux)
1698   tsc_msrs_test 18436 [007] 10897.962089424:      branches:   vmentry                ffffffffc13b2f82 vmx_vmenter+0x2 (vmlinux) =>                0 [unknown] ([unknown])
1699   [guest/18436] 18436 [007] 10897.962089424:      branches:   vmentry                               0 [unknown] ([unknown]) =>           40dba0 ucall+0x0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1700   [guest/18436] 18436 [007] 10897.962089701:      branches:   jmp                              40dc1b ucall+0x7b (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) =>           40dc39 ucall+0x99 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1701   [guest/18436] 18436 [007] 10897.962089701:      branches:   jcc                              40dc3c ucall+0x9c (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) =>           40dc20 ucall+0x80 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1702   [guest/18436] 18436 [007] 10897.962089701:      branches:   jcc                              40dc3c ucall+0x9c (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) =>           40dc20 ucall+0x80 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1703   [guest/18436] 18436 [007] 10897.962089701:      branches:   jcc                              40dc37 ucall+0x97 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) =>           40dc50 ucall+0xb0 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test)
1704   [guest/18436] 18436 [007] 10897.962089878:      branches:   vmexit                           40dc55 ucall+0xb5 (/home/user/git/work/tools/testing/selftests/kselftest_install/kvm/tsc_msrs_test) =>                0 [unknown] ([unknown])
1705   tsc_msrs_test 18436 [007] 10897.962089878:      branches:   vmexit                                0 [unknown] ([unknown]) => ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux)
1706   tsc_msrs_test 18436 [007] 10897.962089878:      branches:   jmp                    ffffffffc13b2fa0 vmx_vmexit+0x0 (vmlinux) => ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux)
1707   tsc_msrs_test 18436 [007] 10897.962089887:      branches:   return                 ffffffffc13b2fd2 vmx_vmexit+0x32 (vmlinux) => ffffffffc13b3040 __vmx_vcpu_run+0x60 (vmlinux)
1708   tsc_msrs_test 18436 [007] 10897.962089901:      branches:   return                 ffffffffc13b30b6 __vmx_vcpu_run+0xd6 (vmlinux) => ffffffffc13b2f2e vmx_vcpu_enter_exit+0x4e (vmlinux)
1709 [SNIP]
1710
1711 # perf kvm --guest-code --guest --host report -i perf.data --stdio | head -20
1712
1713 # To display the perf.data header info, please use --header/--header-only options.
1714 #
1715 #
1716 # Total Lost Samples: 0
1717 #
1718 # Samples: 12  of event 'instructions'
1719 # Event count (approx.): 2274583
1720 #
1721 # Children      Self  Command        Shared Object         Symbol
1722 # ........  ........  .............  ....................  ...........................................
1723 #
1724    54.70%     0.00%  tsc_msrs_test  [kernel.vmlinux]      [k] entry_SYSCALL_64_after_hwframe
1725            |
1726            ---entry_SYSCALL_64_after_hwframe
1727               do_syscall_64
1728               |
1729               |--29.44%--syscall_exit_to_user_mode
1730               |          exit_to_user_mode_prepare
1731               |          task_work_run
1732               |          __fput
1733
1734
1735Event Trace
1736-----------
1737
1738Event Trace records information about asynchronous events, for example interrupts,
1739faults, VM exits and entries.  The information is recorded in CFE and EVD packets,
1740and also the Interrupt Flag is recorded on the MODE.Exec packet.  The CFE packet
1741contains a type field to identify one of the following:
1742
1743	 1	INTR		interrupt, fault, exception, NMI
1744	 2	IRET		interrupt return
1745	 3	SMI		system management interrupt
1746	 4	RSM		resume from system management mode
1747	 5	SIPI		startup interprocessor interrupt
1748	 6	INIT		INIT signal
1749	 7	VMENTRY		VM-Entry
1750	 8	VMEXIT		VM-Entry
1751	 9	VMEXIT_INTR	VM-Exit due to interrupt
1752	10	SHUTDOWN	Shutdown
1753
1754For more details, refer to the Intel 64 and IA-32 Architectures Software
1755Developer Manuals (version 076 or later).
1756
1757The capability to do Event Trace is indicated by the
1758/sys/bus/event_source/devices/intel_pt/caps/event_trace file.
1759
1760Event trace is selected for recording using the "event" config term. e.g.
1761
1762	perf record -e intel_pt/event/u uname
1763
1764Event trace events are output using the --itrace I option. e.g.
1765
1766	perf script --itrace=Ie
1767
1768perf script displays events containing CFE type, vector and event data,
1769in the form:
1770
1771	  evt:   hw int            (t)  cfe: INTR IP: 1 vector: 3 PFA: 0x8877665544332211
1772
1773The IP flag indicates if the event binds to an IP, which includes any case where
1774flow control packet generation is enabled, as well as when CFE packet IP bit is
1775set.
1776
1777perf script displays events containing changes to the Interrupt Flag in the form:
1778
1779	iflag:   t                      IFLAG: 1->0 via branch
1780
1781where "via branch" indicates a branch (interrupt or return from interrupt) and
1782"non branch" indicates an instruction such as CFI, STI or POPF).
1783
1784In addition, the current state of the interrupt flag is indicated by the presence
1785or absence of the "D" (interrupt disabled) perf script flag.  If the interrupt
1786flag is changed, then the "t" flag is also included i.e.
1787
1788		no flag, interrupts enabled IF=1
1789	t	interrupts become disabled IF=1 -> IF=0
1790	D	interrupts are disabled IF=0
1791	Dt	interrupts become enabled  IF=0 -> IF=1
1792
1793The intel-pt-events.py script illustrates how to access Event Trace information
1794using a Python script.
1795
1796
1797TNT Disable
1798-----------
1799
1800TNT packets are disabled using the "notnt" config term. e.g.
1801
1802	perf record -e intel_pt/notnt/u uname
1803
1804In that case the --itrace q option is forced because walking executable code
1805to reconstruct the control flow is not possible.
1806
1807
1808Emulated PTWRITE
1809----------------
1810
1811Later perf tools support a method to emulate the ptwrite instruction, which
1812can be useful if hardware does not support the ptwrite instruction.
1813
1814Instead of using the ptwrite instruction, a function is used which produces
1815a trace that encodes the payload data into TNT packets.  Here is an example
1816of the function:
1817
1818 #include <stdint.h>
1819
1820 void perf_emulate_ptwrite(uint64_t x)
1821 __attribute__((externally_visible, noipa, no_instrument_function, naked));
1822
1823 #define PERF_EMULATE_PTWRITE_8_BITS \
1824                 "1: shl %rax\n"     \
1825                 "   jc 1f\n"        \
1826                 "1: shl %rax\n"     \
1827                 "   jc 1f\n"        \
1828                 "1: shl %rax\n"     \
1829                 "   jc 1f\n"        \
1830                 "1: shl %rax\n"     \
1831                 "   jc 1f\n"        \
1832                 "1: shl %rax\n"     \
1833                 "   jc 1f\n"        \
1834                 "1: shl %rax\n"     \
1835                 "   jc 1f\n"        \
1836                 "1: shl %rax\n"     \
1837                 "   jc 1f\n"        \
1838                 "1: shl %rax\n"     \
1839                 "   jc 1f\n"
1840
1841 /* Undefined instruction */
1842 #define PERF_EMULATE_PTWRITE_UD2        ".byte 0x0f, 0x0b\n"
1843
1844 #define PERF_EMULATE_PTWRITE_MAGIC        PERF_EMULATE_PTWRITE_UD2 ".ascii \"perf,ptwrite  \"\n"
1845
1846 void perf_emulate_ptwrite(uint64_t x __attribute__ ((__unused__)))
1847 {
1848          /* Assumes SysV ABI : x passed in rdi */
1849         __asm__ volatile (
1850                 "jmp 1f\n"
1851                 PERF_EMULATE_PTWRITE_MAGIC
1852                 "1: mov %rdi, %rax\n"
1853                 PERF_EMULATE_PTWRITE_8_BITS
1854                 PERF_EMULATE_PTWRITE_8_BITS
1855                 PERF_EMULATE_PTWRITE_8_BITS
1856                 PERF_EMULATE_PTWRITE_8_BITS
1857                 PERF_EMULATE_PTWRITE_8_BITS
1858                 PERF_EMULATE_PTWRITE_8_BITS
1859                 PERF_EMULATE_PTWRITE_8_BITS
1860                 PERF_EMULATE_PTWRITE_8_BITS
1861                 "1: ret\n"
1862         );
1863 }
1864
1865For example, a test program with the function above:
1866
1867 #include <stdio.h>
1868 #include <stdint.h>
1869 #include <stdlib.h>
1870
1871 #include "perf_emulate_ptwrite.h"
1872
1873 int main(int argc, char *argv[])
1874 {
1875         uint64_t x = 0;
1876
1877         if (argc > 1)
1878                 x = strtoull(argv[1], NULL, 0);
1879         perf_emulate_ptwrite(x);
1880         return 0;
1881 }
1882
1883Can be compiled and traced:
1884
1885 $ gcc -Wall -Wextra -O3 -g -o eg_ptw eg_ptw.c
1886 $ perf record -e intel_pt//u ./eg_ptw 0x1234567890abcdef
1887 [ perf record: Woken up 1 times to write data ]
1888 [ perf record: Captured and wrote 0.017 MB perf.data ]
1889 $ perf script --itrace=ew
1890           eg_ptw 19875 [007]  8061.235912:     ptwrite:  IP: 0 payload: 0x1234567890abcdef      55701249a196 perf_emulate_ptwrite+0x16 (/home/user/eg_ptw)
1891 $
1892
1893
1894Pipe mode
1895---------
1896Pipe mode is a problem for Intel PT and possibly other auxtrace users.
1897It's not recommended to use a pipe as data output with Intel PT because
1898of the following reason.
1899
1900Essentially the auxtrace buffers do not behave like the regular perf
1901event buffers.  That is because the head and tail are updated by
1902software, but in the auxtrace case the data is written by hardware.
1903So the head and tail do not get updated as data is written.
1904
1905In the Intel PT case, the head and tail are updated only when the trace
1906is disabled by software, for example:
1907    - full-trace, system wide : when buffer passes watermark
1908    - full-trace, not system-wide : when buffer passes watermark or
1909                                    context switches
1910    - snapshot mode : as above but also when a snapshot is made
1911    - sample mode : as above but also when a sample is made
1912
1913That means finished-round ordering doesn't work.  An auxtrace buffer
1914can turn up that has data that extends back in time, possibly to the
1915very beginning of tracing.
1916
1917For a perf.data file, that problem is solved by going through the trace
1918and queuing up the auxtrace buffers in advance.
1919
1920For pipe mode, the order of events and timestamps can presumably
1921be messed up.
1922
1923
1924Pause or Resume Tracing
1925-----------------------
1926
1927With newer Kernels, it is possible to use other selected events to pause
1928or resume Intel PT tracing.  This is configured by using the "aux-action"
1929config term:
1930
1931"aux-action=pause" is used with events that are to pause Intel PT tracing.
1932
1933"aux-action=resume" is used with events that are to resume Intel PT tracing.
1934
1935"aux-action=start-paused" is used with the Intel PT event to start in a
1936paused state.
1937
1938For example, to trace only the uname system call (sys_newuname) when running the
1939command line utility uname:
1940
1941 $ perf record --kcore -e intel_pt/aux-action=start-paused/k,syscalls:sys_enter_newuname/aux-action=resume/,syscalls:sys_exit_newuname/aux-action=pause/ uname
1942 Linux
1943 [ perf record: Woken up 1 times to write data ]
1944 [ perf record: Captured and wrote 0.043 MB perf.data ]
1945 $ perf script --call-trace
1946 uname   30805 [000] 24001.058782799: name: 0x7ffc9c1865b0
1947 uname   30805 [000] 24001.058784424:  psb offs: 0
1948 uname   30805 [000] 24001.058784424:  cbr: 39 freq: 3904 MHz (139%)
1949 uname   30805 [000] 24001.058784629: ([kernel.kallsyms])        debug_smp_processor_id
1950 uname   30805 [000] 24001.058784629: ([kernel.kallsyms])        __x64_sys_newuname
1951 uname   30805 [000] 24001.058784629: ([kernel.kallsyms])            down_read
1952 uname   30805 [000] 24001.058784629: ([kernel.kallsyms])                __cond_resched
1953 uname   30805 [000] 24001.058784629: ([kernel.kallsyms])                preempt_count_add
1954 uname   30805 [000] 24001.058784629: ([kernel.kallsyms])                    in_lock_functions
1955 uname   30805 [000] 24001.058784629: ([kernel.kallsyms])                preempt_count_sub
1956 uname   30805 [000] 24001.058784629: ([kernel.kallsyms])            up_read
1957 uname   30805 [000] 24001.058784629: ([kernel.kallsyms])                preempt_count_add
1958 uname   30805 [000] 24001.058784838: ([kernel.kallsyms])                    in_lock_functions
1959 uname   30805 [000] 24001.058784838: ([kernel.kallsyms])                preempt_count_sub
1960 uname   30805 [000] 24001.058784838: ([kernel.kallsyms])            _copy_to_user
1961 uname   30805 [000] 24001.058784838: ([kernel.kallsyms])        syscall_exit_to_user_mode
1962 uname   30805 [000] 24001.058784838: ([kernel.kallsyms])            syscall_exit_work
1963 uname   30805 [000] 24001.058784838: ([kernel.kallsyms])                perf_syscall_exit
1964 uname   30805 [000] 24001.058784838: ([kernel.kallsyms])                    debug_smp_processor_id
1965 uname   30805 [000] 24001.058785046: ([kernel.kallsyms])                    perf_trace_buf_alloc
1966 uname   30805 [000] 24001.058785046: ([kernel.kallsyms])                        perf_swevent_get_recursion_context
1967 uname   30805 [000] 24001.058785046: ([kernel.kallsyms])                            debug_smp_processor_id
1968 uname   30805 [000] 24001.058785046: ([kernel.kallsyms])                        debug_smp_processor_id
1969 uname   30805 [000] 24001.058785046: ([kernel.kallsyms])                    perf_tp_event
1970 uname   30805 [000] 24001.058785046: ([kernel.kallsyms])                        perf_trace_buf_update
1971 uname   30805 [000] 24001.058785046: ([kernel.kallsyms])                            tracing_gen_ctx_irq_test
1972 uname   30805 [000] 24001.058785046: ([kernel.kallsyms])                        perf_swevent_event
1973 uname   30805 [000] 24001.058785046: ([kernel.kallsyms])                            __perf_event_account_interrupt
1974 uname   30805 [000] 24001.058785046: ([kernel.kallsyms])                                __this_cpu_preempt_check
1975 uname   30805 [000] 24001.058785046: ([kernel.kallsyms])                            perf_event_output_forward
1976 uname   30805 [000] 24001.058785046: ([kernel.kallsyms])                                perf_event_aux_pause
1977 uname   30805 [000] 24001.058785046: ([kernel.kallsyms])                                    ring_buffer_get
1978 uname   30805 [000] 24001.058785046: ([kernel.kallsyms])                                        __rcu_read_lock
1979 uname   30805 [000] 24001.058785046: ([kernel.kallsyms])                                        __rcu_read_unlock
1980 uname   30805 [000] 24001.058785254: ([kernel.kallsyms])                                    pt_event_stop
1981 uname   30805 [000] 24001.058785254: ([kernel.kallsyms])                                        debug_smp_processor_id
1982 uname   30805 [000] 24001.058785254: ([kernel.kallsyms])                                        debug_smp_processor_id
1983 uname   30805 [000] 24001.058785254: ([kernel.kallsyms])                                        native_write_msr
1984 uname   30805 [000] 24001.058785463: ([kernel.kallsyms])                                        native_write_msr
1985 uname   30805 [000] 24001.058785639: 0x0
1986
1987The example above uses tracepoints, but any kind of sampled event can be used.
1988
1989For example:
1990
1991 Tracing between arch_cpu_idle_enter() and arch_cpu_idle_exit() using breakpoint events:
1992
1993 $ sudo cat /proc/kallsyms | sort | grep ' arch_cpu_idle_enter\| arch_cpu_idle_exit'
1994 ffffffffb605bf60 T arch_cpu_idle_enter
1995 ffffffffb614d8a0 W arch_cpu_idle_exit
1996 $ sudo perf record --kcore -a -e intel_pt/aux-action=start-paused/k -e mem:0xffffffffb605bf60:x/aux-action=resume/ -e mem:0xffffffffb614d8a0:x/aux-action=pause/ -- sleep 1
1997 [ perf record: Woken up 1 times to write data ]
1998 [ perf record: Captured and wrote 1.387 MB perf.data ]
1999
2000 Tracing __alloc_pages() using kprobes:
2001
2002 $ sudo perf probe --add '__alloc_pages order'
2003 Added new event:  probe:__alloc_pages  (on __alloc_pages with order)
2004 $ sudo perf probe --add __alloc_pages%return
2005 Added new event:  probe:__alloc_pages__return (on __alloc_pages%return)
2006 $ sudo perf record --kcore -aR -e intel_pt/aux-action=start-paused/k -e probe:__alloc_pages/aux-action=resume/ -e probe:__alloc_pages__return/aux-action=pause/ -- sleep 1
2007 [ perf record: Woken up 1 times to write data ]
2008 [ perf record: Captured and wrote 1.490 MB perf.data ]
2009
2010 Tracing starting at main() using a uprobe event:
2011
2012 $ sudo perf probe -x /usr/bin/uname main
2013 Added new event:  probe_uname:main     (on main in /usr/bin/uname)
2014 $ sudo perf record -e intel_pt/-aux-action=start-paused/u -e probe_uname:main/aux-action=resume/ -- uname
2015 Linux
2016 [ perf record: Woken up 1 times to write data ]
2017 [ perf record: Captured and wrote 0.031 MB perf.data ]
2018
2019 Tracing occasionally using cycles events with different periods:
2020
2021 $ perf record --kcore -a -m,64M -e intel_pt/aux-action=start-paused/k -e cycles/aux-action=pause,period=1000000/Pk -e cycles/aux-action=resume,period=10500000/Pk -- firefox
2022 [ perf record: Woken up 19 times to write data ]
2023 [ perf record: Captured and wrote 16.561 MB perf.data ]
2024
2025
2026EXAMPLE
2027-------
2028
2029Examples can be found on perf wiki page "Perf tools support for Intel® Processor Trace":
2030
2031https://perf.wiki.kernel.org/index.php/Perf_tools_support_for_Intel%C2%AE_Processor_Trace
2032
2033
2034SEE ALSO
2035--------
2036
2037linkperf:perf-record[1], linkperf:perf-script[1], linkperf:perf-report[1],
2038linkperf:perf-inject[1]
2039