1 // Copyright 2013 The Chromium Authors
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "partition_alloc/partition_alloc_base/strings/safe_sprintf.h"
6 
7 #include <algorithm>
8 #include <cerrno>
9 #include <cstring>
10 #include <limits>
11 
12 #include "build/build_config.h"
13 
14 #if !defined(NDEBUG)
15 // In debug builds, we use RAW_CHECK() to print useful error messages, if
16 // SafeSPrintf() is called with broken arguments.
17 // As our contract promises that SafeSPrintf() can be called from any
18 // restricted run-time context, it is not actually safe to call logging
19 // functions from it; and we only ever do so for debug builds and hope for the
20 // best. We should _never_ call any logging function other than RAW_CHECK(),
21 // and we should _never_ include any logging code that is active in production
22 // builds. Most notably, we should not include these logging functions in
23 // unofficial release builds, even though those builds would otherwise have
24 // DCHECKS() enabled.
25 // In other words; please do not remove the #ifdef around this #include.
26 // Instead, in production builds we opt for returning a degraded result,
27 // whenever an error is encountered.
28 // E.g. The broken function call
29 //        SafeSPrintf("errno = %d (%x)", errno, strerror(errno))
30 //      will print something like
31 //        errno = 13, (%x)
32 //      instead of
33 //        errno = 13 (Access denied)
34 //      In most of the anticipated use cases, that's probably the preferred
35 //      behavior.
36 #include "partition_alloc/partition_alloc_base/check.h"
37 #define DEBUG_CHECK PA_RAW_CHECK
38 #else
39 #define DEBUG_CHECK(x) \
40   do {                 \
41     if (x) {           \
42     }                  \
43   } while (0)
44 #endif
45 
46 namespace partition_alloc::internal::base::strings {
47 
48 // The code in this file is extremely careful to be async-signal-safe.
49 //
50 // Most obviously, we avoid calling any code that could dynamically allocate
51 // memory. Doing so would almost certainly result in bugs and dead-locks.
52 // We also avoid calling any other STL functions that could have unintended
53 // side-effects involving memory allocation or access to other shared
54 // resources.
55 //
56 // But on top of that, we also avoid calling other library functions, as many
57 // of them have the side-effect of calling getenv() (in order to deal with
58 // localization) or accessing errno. The latter sounds benign, but there are
59 // several execution contexts where it isn't even possible to safely read let
60 // alone write errno.
61 //
62 // The stated design goal of the SafeSPrintf() function is that it can be
63 // called from any context that can safely call C or C++ code (i.e. anything
64 // that doesn't require assembly code).
65 //
66 // For a brief overview of some but not all of the issues with async-signal-
67 // safety, refer to:
68 // http://pubs.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html
69 
70 namespace {
71 const size_t kSSizeMaxConst = ((size_t)(ssize_t)-1) >> 1;
72 
73 const char kUpCaseHexDigits[] = "0123456789ABCDEF";
74 const char kDownCaseHexDigits[] = "0123456789abcdef";
75 }  // namespace
76 
77 #if defined(NDEBUG)
78 // We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(),
79 // but C++ doesn't allow us to do that for constants. Instead, we have to
80 // use careful casting and shifting. We later use a static_assert to
81 // verify that this worked correctly.
82 namespace {
83 const size_t kSSizeMax = kSSizeMaxConst;
84 }
85 #else   // defined(NDEBUG)
86 // For efficiency, we really need kSSizeMax to be a constant. But for unit
87 // tests, it should be adjustable. This allows us to verify edge cases without
88 // having to fill the entire available address space. As a compromise, we make
89 // kSSizeMax adjustable in debug builds, and then only compile that particular
90 // part of the unit test in debug builds.
91 namespace {
92 static size_t kSSizeMax = kSSizeMaxConst;
93 }
94 
95 namespace internal {
SetSafeSPrintfSSizeMaxForTest(size_t max)96 void SetSafeSPrintfSSizeMaxForTest(size_t max) {
97   kSSizeMax = max;
98 }
99 
GetSafeSPrintfSSizeMaxForTest()100 size_t GetSafeSPrintfSSizeMaxForTest() {
101   return kSSizeMax;
102 }
103 }  // namespace internal
104 #endif  // defined(NDEBUG)
105 
106 namespace {
107 class Buffer {
108  public:
109   // |buffer| is caller-allocated storage that SafeSPrintf() writes to. It
110   // has |size| bytes of writable storage. It is the caller's responsibility
111   // to ensure that the buffer is at least one byte in size, so that it fits
112   // the trailing NUL that will be added by the destructor. The buffer also
113   // must be smaller or equal to kSSizeMax in size.
Buffer(char * buffer,size_t size)114   Buffer(char* buffer, size_t size)
115       : buffer_(buffer),
116         size_(size - 1),  // Account for trailing NUL byte
117         count_(0) {
118 // MSVS2013's standard library doesn't mark max() as constexpr yet. cl.exe
119 // supports static_cast but doesn't really implement constexpr yet so it doesn't
120 // complain, but clang does.
121 #if __cplusplus >= 201103 && !(defined(__clang__) && BUILDFLAG(IS_WIN))
122     static_assert(kSSizeMaxConst ==
123                       static_cast<size_t>(std::numeric_limits<ssize_t>::max()),
124                   "kSSizeMaxConst should be the max value of an ssize_t");
125 #endif
126     DEBUG_CHECK(size > 0);
127     DEBUG_CHECK(size <= kSSizeMax);
128   }
129 
130   Buffer(const Buffer&) = delete;
131   Buffer& operator=(const Buffer&) = delete;
132 
~Buffer()133   ~Buffer() {
134     // The code calling the constructor guaranteed that there was enough space
135     // to store a trailing NUL -- and in debug builds, we are actually
136     // verifying this with DEBUG_CHECK()s in the constructor. So, we can
137     // always unconditionally write the NUL byte in the destructor.  We do not
138     // need to adjust the count_, as SafeSPrintf() copies snprintf() in not
139     // including the NUL byte in its return code.
140     *GetInsertionPoint() = '\000';
141   }
142 
143   // Returns true, iff the buffer is filled all the way to |kSSizeMax-1|. The
144   // caller can now stop adding more data, as GetCount() has reached its
145   // maximum possible value.
OutOfAddressableSpace() const146   inline bool OutOfAddressableSpace() const {
147     return count_ == static_cast<size_t>(kSSizeMax - 1);
148   }
149 
150   // Returns the number of bytes that would have been emitted to |buffer_|
151   // if it was sized sufficiently large. This number can be larger than
152   // |size_|, if the caller provided an insufficiently large output buffer.
153   // But it will never be bigger than |kSSizeMax-1|.
GetCount() const154   inline ssize_t GetCount() const {
155     DEBUG_CHECK(count_ < kSSizeMax);
156     return static_cast<ssize_t>(count_);
157   }
158 
159   // Emits one |ch| character into the |buffer_| and updates the |count_| of
160   // characters that are currently supposed to be in the buffer.
161   // Returns "false", iff the buffer was already full.
162   // N.B. |count_| increases even if no characters have been written. This is
163   // needed so that GetCount() can return the number of bytes that should
164   // have been allocated for the |buffer_|.
Out(char ch)165   inline bool Out(char ch) {
166     if (size_ >= 1 && count_ < size_) {
167       buffer_[count_] = ch;
168       return IncrementCountByOne();
169     }
170     // |count_| still needs to be updated, even if the buffer has been
171     // filled completely. This allows SafeSPrintf() to return the number of
172     // bytes that should have been emitted.
173     IncrementCountByOne();
174     return false;
175   }
176 
177   // Inserts |padding|-|len| bytes worth of padding into the |buffer_|.
178   // |count_| will also be incremented by the number of bytes that were meant
179   // to be emitted. The |pad| character is typically either a ' ' space
180   // or a '0' zero, but other non-NUL values are legal.
181   // Returns "false", iff the |buffer_| filled up (i.e. |count_|
182   // overflowed |size_|) at any time during padding.
Pad(char pad,size_t padding,size_t len)183   inline bool Pad(char pad, size_t padding, size_t len) {
184     DEBUG_CHECK(pad);
185     DEBUG_CHECK(padding <= kSSizeMax);
186     for (; padding > len; --padding) {
187       if (!Out(pad)) {
188         if (--padding) {
189           IncrementCount(padding - len);
190         }
191         return false;
192       }
193     }
194     return true;
195   }
196 
197   // POSIX doesn't define any async-signal-safe function for converting
198   // an integer to ASCII. Define our own version.
199   //
200   // This also gives us the ability to make the function a little more
201   // powerful and have it deal with |padding|, with truncation, and with
202   // predicting the length of the untruncated output.
203   //
204   // IToASCII() converts an integer |i| to ASCII.
205   //
206   // Unlike similar functions in the standard C library, it never appends a
207   // NUL character. This is left for the caller to do.
208   //
209   // While the function signature takes a signed int64_t, the code decides at
210   // run-time whether to treat the argument as signed (int64_t) or as unsigned
211   // (uint64_t) based on the value of |sign|.
212   //
213   // It supports |base|s 2 through 16. Only a |base| of 10 is allowed to have
214   // a |sign|. Otherwise, |i| is treated as unsigned.
215   //
216   // For bases larger than 10, |upcase| decides whether lower-case or upper-
217   // case letters should be used to designate digits greater than 10.
218   //
219   // Padding can be done with either '0' zeros or ' ' spaces. Padding has to
220   // be positive and will always be applied to the left of the output.
221   //
222   // Prepends a |prefix| to the number (e.g. "0x"). This prefix goes to
223   // the left of |padding|, if |pad| is '0'; and to the right of |padding|
224   // if |pad| is ' '.
225   //
226   // Returns "false", if the |buffer_| overflowed at any time.
227   bool IToASCII(bool sign,
228                 bool upcase,
229                 int64_t i,
230                 size_t base,
231                 char pad,
232                 size_t padding,
233                 const char* prefix);
234 
235  private:
236   // Increments |count_| by |inc| unless this would cause |count_| to
237   // overflow |kSSizeMax-1|. Returns "false", iff an overflow was detected;
238   // it then clamps |count_| to |kSSizeMax-1|.
IncrementCount(size_t inc)239   inline bool IncrementCount(size_t inc) {
240     // "inc" is either 1 or a "padding" value. Padding is clamped at
241     // run-time to at most kSSizeMax-1. So, we know that "inc" is always in
242     // the range 1..kSSizeMax-1.
243     // This allows us to compute "kSSizeMax - 1 - inc" without incurring any
244     // integer overflows.
245     DEBUG_CHECK(inc <= kSSizeMax - 1);
246     if (count_ > kSSizeMax - 1 - inc) {
247       count_ = kSSizeMax - 1;
248       return false;
249     }
250     count_ += inc;
251     return true;
252   }
253 
254   // Convenience method for the common case of incrementing |count_| by one.
IncrementCountByOne()255   inline bool IncrementCountByOne() { return IncrementCount(1); }
256 
257   // Return the current insertion point into the buffer. This is typically
258   // at |buffer_| + |count_|, but could be before that if truncation
259   // happened. It always points to one byte past the last byte that was
260   // successfully placed into the |buffer_|.
GetInsertionPoint() const261   inline char* GetInsertionPoint() const {
262     size_t idx = count_;
263     if (idx > size_) {
264       idx = size_;
265     }
266     return buffer_ + idx;
267   }
268 
269   // User-provided buffer that will receive the fully formatted output string.
270   char* buffer_;
271 
272   // Number of bytes that are available in the buffer excluding the trailing
273   // NUL byte that will be added by the destructor.
274   const size_t size_;
275 
276   // Number of bytes that would have been emitted to the buffer, if the buffer
277   // was sufficiently big. This number always excludes the trailing NUL byte
278   // and it is guaranteed to never grow bigger than kSSizeMax-1.
279   size_t count_;
280 };
281 
IToASCII(bool sign,bool upcase,int64_t i,size_t base,char pad,size_t padding,const char * prefix)282 bool Buffer::IToASCII(bool sign,
283                       bool upcase,
284                       int64_t i,
285                       size_t base,
286                       char pad,
287                       size_t padding,
288                       const char* prefix) {
289   // Sanity check for parameters. None of these should ever fail, but see
290   // above for the rationale why we can't call CHECK().
291   DEBUG_CHECK(base >= 2);
292   DEBUG_CHECK(base <= 16);
293   DEBUG_CHECK(!sign || base == 10);
294   DEBUG_CHECK(pad == '0' || pad == ' ');
295   DEBUG_CHECK(padding <= kSSizeMax);
296   DEBUG_CHECK(!(sign && prefix && *prefix));
297 
298   // Handle negative numbers, if the caller indicated that |i| should be
299   // treated as a signed number; otherwise treat |i| as unsigned (even if the
300   // MSB is set!)
301   // Details are tricky, because of limited data-types, but equivalent pseudo-
302   // code would look like:
303   //   if (sign && i < 0)
304   //     prefix = "-";
305   //   num = abs(i);
306   size_t minint = 0;
307   uint64_t num;
308   if (sign && i < 0) {
309     prefix = "-";
310 
311     // Turn our number positive.
312     if (i == std::numeric_limits<int64_t>::min()) {
313       // The most negative integer needs special treatment.
314       minint = 1;
315       num = static_cast<uint64_t>(-(i + 1));
316     } else {
317       // "Normal" negative numbers are easy.
318       num = static_cast<uint64_t>(-i);
319     }
320   } else {
321     num = static_cast<uint64_t>(i);
322   }
323 
324   // If padding with '0' zero, emit the prefix or '-' character now. Otherwise,
325   // make the prefix accessible in reverse order, so that we can later output
326   // it right between padding and the number.
327   // We cannot choose the easier approach of just reversing the number, as that
328   // fails in situations where we need to truncate numbers that have padding
329   // and/or prefixes.
330   const char* reverse_prefix = nullptr;
331   if (prefix && *prefix) {
332     if (pad == '0') {
333       while (*prefix) {
334         if (padding) {
335           --padding;
336         }
337         Out(*prefix++);
338       }
339       prefix = nullptr;
340     } else {
341       for (reverse_prefix = prefix; *reverse_prefix; ++reverse_prefix) {
342       }
343     }
344   } else {
345     prefix = nullptr;
346   }
347   const size_t prefix_length = static_cast<size_t>(reverse_prefix - prefix);
348 
349   // Loop until we have converted the entire number. Output at least one
350   // character (i.e. '0').
351   size_t start = count_;
352   size_t discarded = 0;
353   bool started = false;
354   do {
355     // Make sure there is still enough space left in our output buffer.
356     if (count_ >= size_) {
357       if (start < size_) {
358         // It is rare that we need to output a partial number. But if asked
359         // to do so, we will still make sure we output the correct number of
360         // leading digits.
361         // Since we are generating the digits in reverse order, we actually
362         // have to discard digits in the order that we have already emitted
363         // them. This is essentially equivalent to:
364         //   memmove(buffer_ + start, buffer_ + start + 1, size_ - start - 1)
365         for (char *move = buffer_ + start, *end = buffer_ + size_ - 1;
366              move < end; ++move) {
367           *move = move[1];
368         }
369         ++discarded;
370         --count_;
371       } else if (count_ - size_ > 1) {
372         // Need to increment either |count_| or |discarded| to make progress.
373         // The latter is more efficient, as it eventually triggers fast
374         // handling of padding. But we have to ensure we don't accidentally
375         // change the overall state (i.e. switch the state-machine from
376         // discarding to non-discarding). |count_| needs to always stay
377         // bigger than |size_|.
378         --count_;
379         ++discarded;
380       }
381     }
382 
383     // Output the next digit and (if necessary) compensate for the most
384     // negative integer needing special treatment. This works because,
385     // no matter the bit width of the integer, the lowest-most decimal
386     // integer always ends in 2, 4, 6, or 8.
387     if (!num && started) {
388       if (reverse_prefix > prefix) {
389         Out(*--reverse_prefix);
390       } else {
391         Out(pad);
392       }
393     } else {
394       started = true;
395       Out((upcase ? kUpCaseHexDigits
396                   : kDownCaseHexDigits)[num % base + minint]);
397     }
398 
399     minint = 0;
400     num /= base;
401 
402     // Add padding, if requested.
403     if (padding > 0) {
404       --padding;
405 
406       // Performance optimization for when we are asked to output excessive
407       // padding, but our output buffer is limited in size.  Even if we output
408       // a 64bit number in binary, we would never write more than 64 plus
409       // prefix non-padding characters. So, once this limit has been passed,
410       // any further state change can be computed arithmetically; we know that
411       // by this time, our entire final output consists of padding characters
412       // that have all already been output.
413       if (discarded > 8 * sizeof(num) + prefix_length) {
414         IncrementCount(padding);
415         padding = 0;
416       }
417     }
418   } while (num || padding || (reverse_prefix > prefix));
419 
420   if (start < size_) {
421     // Conversion to ASCII actually resulted in the digits being in reverse
422     // order. We can't easily generate them in forward order, as we can't tell
423     // the number of characters needed until we are done converting.
424     // So, now, we reverse the string (except for the possible '-' sign).
425     char* front = buffer_ + start;
426     char* back = GetInsertionPoint();
427     while (--back > front) {
428       char ch = *back;
429       *back = *front;
430       *front++ = ch;
431     }
432   }
433   IncrementCount(discarded);
434   return !discarded;
435 }
436 
437 }  // anonymous namespace
438 
439 namespace internal {
440 
SafeSNPrintf(char * buf,size_t sz,const char * fmt,const Arg * args,const size_t max_args)441 ssize_t SafeSNPrintf(char* buf,
442                      size_t sz,
443                      const char* fmt,
444                      const Arg* args,
445                      const size_t max_args) {
446   // Make sure that at least one NUL byte can be written, and that the buffer
447   // never overflows kSSizeMax. Not only does that use up most or all of the
448   // address space, it also would result in a return code that cannot be
449   // represented.
450   if (static_cast<ssize_t>(sz) < 1) {
451     return -1;
452   }
453   sz = std::min(sz, kSSizeMax);
454 
455   // Iterate over format string and interpret '%' arguments as they are
456   // encountered.
457   Buffer buffer(buf, sz);
458   size_t padding;
459   char pad;
460   for (unsigned int cur_arg = 0; *fmt && !buffer.OutOfAddressableSpace();) {
461     if (*fmt++ == '%') {
462       padding = 0;
463       pad = ' ';
464       char ch = *fmt++;
465     format_character_found:
466       switch (ch) {
467         case '0':
468         case '1':
469         case '2':
470         case '3':
471         case '4':
472         case '5':
473         case '6':
474         case '7':
475         case '8':
476         case '9':
477           // Found a width parameter. Convert to an integer value and store in
478           // "padding". If the leading digit is a zero, change the padding
479           // character from a space ' ' to a zero '0'.
480           pad = ch == '0' ? '0' : ' ';
481           for (;;) {
482             const size_t digit = static_cast<size_t>(ch - '0');
483             // The maximum allowed padding fills all the available address
484             // space and leaves just enough space to insert the trailing NUL.
485             const size_t max_padding = kSSizeMax - 1;
486             if (padding > max_padding / 10 ||
487                 10 * padding > max_padding - digit) {
488               DEBUG_CHECK(padding <= max_padding / 10 &&
489                           10 * padding <= max_padding - digit);
490               // Integer overflow detected. Skip the rest of the width until
491               // we find the format character, then do the normal error
492               // handling.
493             padding_overflow:
494               padding = max_padding;
495               while ((ch = *fmt++) >= '0' && ch <= '9') {
496               }
497               if (cur_arg < max_args) {
498                 ++cur_arg;
499               }
500               goto fail_to_expand;
501             }
502             padding = 10 * padding + digit;
503             if (padding > max_padding) {
504               // This doesn't happen for "sane" values of kSSizeMax. But once
505               // kSSizeMax gets smaller than about 10, our earlier range checks
506               // are incomplete. Unittests do trigger this artificial corner
507               // case.
508               DEBUG_CHECK(padding <= max_padding);
509               goto padding_overflow;
510             }
511             ch = *fmt++;
512             if (ch < '0' || ch > '9') {
513               // Reached the end of the width parameter. This is where the
514               // format character is found.
515               goto format_character_found;
516             }
517           }
518         case 'c': {  // Output an ASCII character.
519           // Check that there are arguments left to be inserted.
520           if (cur_arg >= max_args) {
521             DEBUG_CHECK(cur_arg < max_args);
522             goto fail_to_expand;
523           }
524 
525           // Check that the argument has the expected type.
526           const Arg& arg = args[cur_arg++];
527           if (arg.type != Arg::INT && arg.type != Arg::UINT) {
528             DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
529             goto fail_to_expand;
530           }
531 
532           // Apply padding, if needed.
533           buffer.Pad(' ', padding, 1);
534 
535           // Convert the argument to an ASCII character and output it.
536           char as_char = static_cast<char>(arg.integer.i);
537           if (!as_char) {
538             goto end_of_output_buffer;
539           }
540           buffer.Out(as_char);
541           break;
542         }
543         case 'd':  // Output a possibly signed decimal value.
544         case 'o':  // Output an unsigned octal value.
545         case 'x':  // Output an unsigned hexadecimal value.
546         case 'X':
547         case 'p': {  // Output a pointer value.
548           // Check that there are arguments left to be inserted.
549           if (cur_arg >= max_args) {
550             DEBUG_CHECK(cur_arg < max_args);
551             goto fail_to_expand;
552           }
553 
554           const Arg& arg = args[cur_arg++];
555           int64_t i;
556           const char* prefix = nullptr;
557           if (ch != 'p') {
558             // Check that the argument has the expected type.
559             if (arg.type != Arg::INT && arg.type != Arg::UINT) {
560               DEBUG_CHECK(arg.type == Arg::INT || arg.type == Arg::UINT);
561               goto fail_to_expand;
562             }
563             i = arg.integer.i;
564 
565             if (ch != 'd') {
566               // The Arg() constructor automatically performed sign expansion on
567               // signed parameters. This is great when outputting a %d decimal
568               // number, but can result in unexpected leading 0xFF bytes when
569               // outputting a %x hexadecimal number. Mask bits, if necessary.
570               // We have to do this here, instead of in the Arg() constructor,
571               // as the Arg() constructor cannot tell whether we will output a
572               // %d or a %x. Only the latter should experience masking.
573               if (arg.integer.width < sizeof(int64_t)) {
574                 i &= (1LL << (8 * arg.integer.width)) - 1;
575               }
576             }
577           } else {
578             // Pointer values require an actual pointer or a string.
579             if (arg.type == Arg::POINTER) {
580               i = static_cast<int64_t>(reinterpret_cast<uintptr_t>(arg.ptr));
581             } else if (arg.type == Arg::STRING) {
582               i = static_cast<int64_t>(reinterpret_cast<uintptr_t>(arg.str));
583             } else if (arg.type == Arg::INT &&
584                        arg.integer.width == sizeof(NULL) &&
585                        arg.integer.i == 0) {  // Allow C++'s version of NULL
586               i = 0;
587             } else {
588               DEBUG_CHECK(arg.type == Arg::POINTER || arg.type == Arg::STRING);
589               goto fail_to_expand;
590             }
591 
592             // Pointers always include the "0x" prefix.
593             prefix = "0x";
594           }
595 
596           // Use IToASCII() to convert to ASCII representation. For decimal
597           // numbers, optionally print a sign. For hexadecimal numbers,
598           // distinguish between upper and lower case. %p addresses are always
599           // printed as upcase. Supports base 8, 10, and 16. Prints padding
600           // and/or prefixes, if so requested.
601           buffer.IToASCII(ch == 'd' && arg.type == Arg::INT, ch != 'x', i,
602                           ch == 'o'   ? 8
603                           : ch == 'd' ? 10
604                                       : 16,
605                           pad, padding, prefix);
606           break;
607         }
608         case 's': {
609           // Check that there are arguments left to be inserted.
610           if (cur_arg >= max_args) {
611             DEBUG_CHECK(cur_arg < max_args);
612             goto fail_to_expand;
613           }
614 
615           // Check that the argument has the expected type.
616           const Arg& arg = args[cur_arg++];
617           const char* s;
618           if (arg.type == Arg::STRING) {
619             s = arg.str ? arg.str : "<NULL>";
620           } else if (arg.type == Arg::INT &&
621                      arg.integer.width == sizeof(NULL) &&
622                      arg.integer.i == 0) {  // Allow C++'s version of NULL
623             s = "<NULL>";
624           } else {
625             DEBUG_CHECK(arg.type == Arg::STRING);
626             goto fail_to_expand;
627           }
628 
629           // Apply padding, if needed. This requires us to first check the
630           // length of the string that we are outputting.
631           if (padding) {
632             size_t len = 0;
633             for (const char* src = s; *src++;) {
634               ++len;
635             }
636             buffer.Pad(' ', padding, len);
637           }
638 
639           // Printing a string involves nothing more than copying it into the
640           // output buffer and making sure we don't output more bytes than
641           // available space; Out() takes care of doing that.
642           for (const char* src = s; *src;) {
643             buffer.Out(*src++);
644           }
645           break;
646         }
647         case '%':
648           // Quoted percent '%' character.
649           goto copy_verbatim;
650         fail_to_expand:
651           // C++ gives us tools to do type checking -- something that snprintf()
652           // could never really do. So, whenever we see arguments that don't
653           // match up with the format string, we refuse to output them. But
654           // since we have to be extremely conservative about being async-
655           // signal-safe, we are limited in the type of error handling that we
656           // can do in production builds (in debug builds we can use
657           // DEBUG_CHECK() and hope for the best). So, all we do is pass the
658           // format string unchanged. That should eventually get the user's
659           // attention; and in the meantime, it hopefully doesn't lose too much
660           // data.
661         default:
662           // Unknown or unsupported format character. Just copy verbatim to
663           // output.
664           buffer.Out('%');
665           DEBUG_CHECK(ch);
666           if (!ch) {
667             goto end_of_format_string;
668           }
669           buffer.Out(ch);
670           break;
671       }
672     } else {
673     copy_verbatim:
674       buffer.Out(fmt[-1]);
675     }
676   }
677 end_of_format_string:
678 end_of_output_buffer:
679   return buffer.GetCount();
680 }
681 
682 }  // namespace internal
683 
SafeSNPrintf(char * buf,size_t sz,const char * fmt)684 ssize_t SafeSNPrintf(char* buf, size_t sz, const char* fmt) {
685   // Make sure that at least one NUL byte can be written, and that the buffer
686   // never overflows kSSizeMax. Not only does that use up most or all of the
687   // address space, it also would result in a return code that cannot be
688   // represented.
689   if (static_cast<ssize_t>(sz) < 1) {
690     return -1;
691   }
692   sz = std::min(sz, kSSizeMax);
693 
694   Buffer buffer(buf, sz);
695 
696   // In the slow-path, we deal with errors by copying the contents of
697   // "fmt" unexpanded. This means, if there are no arguments passed, the
698   // SafeSPrintf() function always degenerates to a version of strncpy() that
699   // de-duplicates '%' characters.
700   const char* src = fmt;
701   for (; *src; ++src) {
702     buffer.Out(*src);
703     DEBUG_CHECK(src[0] != '%' || src[1] == '%');
704     if (src[0] == '%' && src[1] == '%') {
705       ++src;
706     }
707   }
708   return buffer.GetCount();
709 }
710 
711 }  // namespace partition_alloc::internal::base::strings
712