1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the AF_INET socket handler.
8 *
9 * Version: @(#)sock.h 1.0.4 05/13/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <[email protected]>
13 * Corey Minyard <[email protected]>
14 * Florian La Roche <[email protected]>
15 *
16 * Fixes:
17 * Alan Cox : Volatiles in skbuff pointers. See
18 * skbuff comments. May be overdone,
19 * better to prove they can be removed
20 * than the reverse.
21 * Alan Cox : Added a zapped field for tcp to note
22 * a socket is reset and must stay shut up
23 * Alan Cox : New fields for options
24 * Pauline Middelink : identd support
25 * Alan Cox : Eliminate low level recv/recvfrom
26 * David S. Miller : New socket lookup architecture.
27 * Steve Whitehouse: Default routines for sock_ops
28 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
29 * protinfo be just a void pointer, as the
30 * protocol specific parts were moved to
31 * respective headers and ipv4/v6, etc now
32 * use private slabcaches for its socks
33 * Pedro Hortas : New flags field for socket options
34 */
35 #ifndef _SOCK_H
36 #define _SOCK_H
37
38 #include <linux/hardirq.h>
39 #include <linux/kernel.h>
40 #include <linux/list.h>
41 #include <linux/list_nulls.h>
42 #include <linux/timer.h>
43 #include <linux/cache.h>
44 #include <linux/bitops.h>
45 #include <linux/lockdep.h>
46 #include <linux/netdevice.h>
47 #include <linux/skbuff.h> /* struct sk_buff */
48 #include <linux/mm.h>
49 #include <linux/security.h>
50 #include <linux/slab.h>
51 #include <linux/uaccess.h>
52 #include <linux/page_counter.h>
53 #include <linux/memcontrol.h>
54 #include <linux/static_key.h>
55 #include <linux/sched.h>
56 #include <linux/wait.h>
57 #include <linux/cgroup-defs.h>
58 #include <linux/rbtree.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
61 #include <linux/sockptr.h>
62 #include <linux/indirect_call_wrapper.h>
63 #include <linux/atomic.h>
64 #include <linux/refcount.h>
65 #include <linux/llist.h>
66 #include <net/dst.h>
67 #include <net/checksum.h>
68 #include <net/tcp_states.h>
69 #include <linux/net_tstamp.h>
70 #include <net/l3mdev.h>
71 #include <uapi/linux/socket.h>
72
73 /*
74 * This structure really needs to be cleaned up.
75 * Most of it is for TCP, and not used by any of
76 * the other protocols.
77 */
78
79 /* This is the per-socket lock. The spinlock provides a synchronization
80 * between user contexts and software interrupt processing, whereas the
81 * mini-semaphore synchronizes multiple users amongst themselves.
82 */
83 typedef struct {
84 spinlock_t slock;
85 int owned;
86 wait_queue_head_t wq;
87 /*
88 * We express the mutex-alike socket_lock semantics
89 * to the lock validator by explicitly managing
90 * the slock as a lock variant (in addition to
91 * the slock itself):
92 */
93 #ifdef CONFIG_DEBUG_LOCK_ALLOC
94 struct lockdep_map dep_map;
95 #endif
96 } socket_lock_t;
97
98 struct sock;
99 struct proto;
100 struct net;
101
102 typedef __u32 __bitwise __portpair;
103 typedef __u64 __bitwise __addrpair;
104
105 /**
106 * struct sock_common - minimal network layer representation of sockets
107 * @skc_daddr: Foreign IPv4 addr
108 * @skc_rcv_saddr: Bound local IPv4 addr
109 * @skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
110 * @skc_hash: hash value used with various protocol lookup tables
111 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
112 * @skc_dport: placeholder for inet_dport/tw_dport
113 * @skc_num: placeholder for inet_num/tw_num
114 * @skc_portpair: __u32 union of @skc_dport & @skc_num
115 * @skc_family: network address family
116 * @skc_state: Connection state
117 * @skc_reuse: %SO_REUSEADDR setting
118 * @skc_reuseport: %SO_REUSEPORT setting
119 * @skc_ipv6only: socket is IPV6 only
120 * @skc_net_refcnt: socket is using net ref counting
121 * @skc_bound_dev_if: bound device index if != 0
122 * @skc_bind_node: bind hash linkage for various protocol lookup tables
123 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
124 * @skc_prot: protocol handlers inside a network family
125 * @skc_net: reference to the network namespace of this socket
126 * @skc_v6_daddr: IPV6 destination address
127 * @skc_v6_rcv_saddr: IPV6 source address
128 * @skc_cookie: socket's cookie value
129 * @skc_node: main hash linkage for various protocol lookup tables
130 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
131 * @skc_tx_queue_mapping: tx queue number for this connection
132 * @skc_rx_queue_mapping: rx queue number for this connection
133 * @skc_flags: place holder for sk_flags
134 * %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
135 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
136 * @skc_listener: connection request listener socket (aka rsk_listener)
137 * [union with @skc_flags]
138 * @skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
139 * [union with @skc_flags]
140 * @skc_incoming_cpu: record/match cpu processing incoming packets
141 * @skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
142 * [union with @skc_incoming_cpu]
143 * @skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
144 * [union with @skc_incoming_cpu]
145 * @skc_refcnt: reference count
146 *
147 * This is the minimal network layer representation of sockets, the header
148 * for struct sock and struct inet_timewait_sock.
149 */
150 struct sock_common {
151 union {
152 __addrpair skc_addrpair;
153 struct {
154 __be32 skc_daddr;
155 __be32 skc_rcv_saddr;
156 };
157 };
158 union {
159 unsigned int skc_hash;
160 __u16 skc_u16hashes[2];
161 };
162 /* skc_dport && skc_num must be grouped as well */
163 union {
164 __portpair skc_portpair;
165 struct {
166 __be16 skc_dport;
167 __u16 skc_num;
168 };
169 };
170
171 unsigned short skc_family;
172 volatile unsigned char skc_state;
173 unsigned char skc_reuse:4;
174 unsigned char skc_reuseport:1;
175 unsigned char skc_ipv6only:1;
176 unsigned char skc_net_refcnt:1;
177 int skc_bound_dev_if;
178 union {
179 struct hlist_node skc_bind_node;
180 struct hlist_node skc_portaddr_node;
181 };
182 struct proto *skc_prot;
183 possible_net_t skc_net;
184
185 #if IS_ENABLED(CONFIG_IPV6)
186 struct in6_addr skc_v6_daddr;
187 struct in6_addr skc_v6_rcv_saddr;
188 #endif
189
190 atomic64_t skc_cookie;
191
192 /* following fields are padding to force
193 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
194 * assuming IPV6 is enabled. We use this padding differently
195 * for different kind of 'sockets'
196 */
197 union {
198 unsigned long skc_flags;
199 struct sock *skc_listener; /* request_sock */
200 struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
201 };
202 /*
203 * fields between dontcopy_begin/dontcopy_end
204 * are not copied in sock_copy()
205 */
206 /* private: */
207 int skc_dontcopy_begin[0];
208 /* public: */
209 union {
210 struct hlist_node skc_node;
211 struct hlist_nulls_node skc_nulls_node;
212 };
213 unsigned short skc_tx_queue_mapping;
214 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
215 unsigned short skc_rx_queue_mapping;
216 #endif
217 union {
218 int skc_incoming_cpu;
219 u32 skc_rcv_wnd;
220 u32 skc_tw_rcv_nxt; /* struct tcp_timewait_sock */
221 };
222
223 refcount_t skc_refcnt;
224 /* private: */
225 int skc_dontcopy_end[0];
226 union {
227 u32 skc_rxhash;
228 u32 skc_window_clamp;
229 u32 skc_tw_snd_nxt; /* struct tcp_timewait_sock */
230 };
231 /* public: */
232 };
233
234 struct bpf_local_storage;
235 struct sk_filter;
236
237 /**
238 * struct sock - network layer representation of sockets
239 * @__sk_common: shared layout with inet_timewait_sock
240 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
241 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
242 * @sk_lock: synchronizer
243 * @sk_kern_sock: True if sock is using kernel lock classes
244 * @sk_rcvbuf: size of receive buffer in bytes
245 * @sk_wq: sock wait queue and async head
246 * @sk_rx_dst: receive input route used by early demux
247 * @sk_rx_dst_ifindex: ifindex for @sk_rx_dst
248 * @sk_rx_dst_cookie: cookie for @sk_rx_dst
249 * @sk_dst_cache: destination cache
250 * @sk_dst_pending_confirm: need to confirm neighbour
251 * @sk_policy: flow policy
252 * @sk_receive_queue: incoming packets
253 * @sk_wmem_alloc: transmit queue bytes committed
254 * @sk_tsq_flags: TCP Small Queues flags
255 * @sk_write_queue: Packet sending queue
256 * @sk_omem_alloc: "o" is "option" or "other"
257 * @sk_wmem_queued: persistent queue size
258 * @sk_forward_alloc: space allocated forward
259 * @sk_reserved_mem: space reserved and non-reclaimable for the socket
260 * @sk_napi_id: id of the last napi context to receive data for sk
261 * @sk_ll_usec: usecs to busypoll when there is no data
262 * @sk_allocation: allocation mode
263 * @sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
264 * @sk_pacing_status: Pacing status (requested, handled by sch_fq)
265 * @sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
266 * @sk_sndbuf: size of send buffer in bytes
267 * @sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
268 * @sk_no_check_rx: allow zero checksum in RX packets
269 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
270 * @sk_gso_disabled: if set, NETIF_F_GSO_MASK is forbidden.
271 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
272 * @sk_gso_max_size: Maximum GSO segment size to build
273 * @sk_gso_max_segs: Maximum number of GSO segments
274 * @sk_pacing_shift: scaling factor for TCP Small Queues
275 * @sk_lingertime: %SO_LINGER l_linger setting
276 * @sk_backlog: always used with the per-socket spinlock held
277 * @sk_callback_lock: used with the callbacks in the end of this struct
278 * @sk_error_queue: rarely used
279 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
280 * IPV6_ADDRFORM for instance)
281 * @sk_err: last error
282 * @sk_err_soft: errors that don't cause failure but are the cause of a
283 * persistent failure not just 'timed out'
284 * @sk_drops: raw/udp drops counter
285 * @sk_ack_backlog: current listen backlog
286 * @sk_max_ack_backlog: listen backlog set in listen()
287 * @sk_uid: user id of owner
288 * @sk_prefer_busy_poll: prefer busypolling over softirq processing
289 * @sk_busy_poll_budget: napi processing budget when busypolling
290 * @sk_priority: %SO_PRIORITY setting
291 * @sk_type: socket type (%SOCK_STREAM, etc)
292 * @sk_protocol: which protocol this socket belongs in this network family
293 * @sk_peer_lock: lock protecting @sk_peer_pid and @sk_peer_cred
294 * @sk_peer_pid: &struct pid for this socket's peer
295 * @sk_peer_cred: %SO_PEERCRED setting
296 * @sk_rcvlowat: %SO_RCVLOWAT setting
297 * @sk_rcvtimeo: %SO_RCVTIMEO setting
298 * @sk_sndtimeo: %SO_SNDTIMEO setting
299 * @sk_txhash: computed flow hash for use on transmit
300 * @sk_txrehash: enable TX hash rethink
301 * @sk_filter: socket filtering instructions
302 * @sk_timer: sock cleanup timer
303 * @sk_stamp: time stamp of last packet received
304 * @sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
305 * @sk_tsflags: SO_TIMESTAMPING flags
306 * @sk_use_task_frag: allow sk_page_frag() to use current->task_frag.
307 * Sockets that can be used under memory reclaim should
308 * set this to false.
309 * @sk_bind_phc: SO_TIMESTAMPING bind PHC index of PTP virtual clock
310 * for timestamping
311 * @sk_tskey: counter to disambiguate concurrent tstamp requests
312 * @sk_zckey: counter to order MSG_ZEROCOPY notifications
313 * @sk_socket: Identd and reporting IO signals
314 * @sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
315 * @sk_frag: cached page frag
316 * @sk_peek_off: current peek_offset value
317 * @sk_send_head: front of stuff to transmit
318 * @tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
319 * @sk_security: used by security modules
320 * @sk_mark: generic packet mark
321 * @sk_cgrp_data: cgroup data for this cgroup
322 * @sk_memcg: this socket's memory cgroup association
323 * @sk_write_pending: a write to stream socket waits to start
324 * @sk_disconnects: number of disconnect operations performed on this sock
325 * @sk_state_change: callback to indicate change in the state of the sock
326 * @sk_data_ready: callback to indicate there is data to be processed
327 * @sk_write_space: callback to indicate there is bf sending space available
328 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
329 * @sk_backlog_rcv: callback to process the backlog
330 * @sk_validate_xmit_skb: ptr to an optional validate function
331 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
332 * @sk_reuseport_cb: reuseport group container
333 * @sk_bpf_storage: ptr to cache and control for bpf_sk_storage
334 * @sk_rcu: used during RCU grace period
335 * @sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
336 * @sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
337 * @sk_txtime_report_errors: set report errors mode for SO_TXTIME
338 * @sk_txtime_unused: unused txtime flags
339 * @ns_tracker: tracker for netns reference
340 * @sk_user_frags: xarray of pages the user is holding a reference on.
341 * @sk_owner: reference to the real owner of the socket that calls
342 * sock_lock_init_class_and_name().
343 */
344 struct sock {
345 /*
346 * Now struct inet_timewait_sock also uses sock_common, so please just
347 * don't add nothing before this first member (__sk_common) --acme
348 */
349 struct sock_common __sk_common;
350 #define sk_node __sk_common.skc_node
351 #define sk_nulls_node __sk_common.skc_nulls_node
352 #define sk_refcnt __sk_common.skc_refcnt
353 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
354 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
355 #define sk_rx_queue_mapping __sk_common.skc_rx_queue_mapping
356 #endif
357
358 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
359 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
360 #define sk_hash __sk_common.skc_hash
361 #define sk_portpair __sk_common.skc_portpair
362 #define sk_num __sk_common.skc_num
363 #define sk_dport __sk_common.skc_dport
364 #define sk_addrpair __sk_common.skc_addrpair
365 #define sk_daddr __sk_common.skc_daddr
366 #define sk_rcv_saddr __sk_common.skc_rcv_saddr
367 #define sk_family __sk_common.skc_family
368 #define sk_state __sk_common.skc_state
369 #define sk_reuse __sk_common.skc_reuse
370 #define sk_reuseport __sk_common.skc_reuseport
371 #define sk_ipv6only __sk_common.skc_ipv6only
372 #define sk_net_refcnt __sk_common.skc_net_refcnt
373 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
374 #define sk_bind_node __sk_common.skc_bind_node
375 #define sk_prot __sk_common.skc_prot
376 #define sk_net __sk_common.skc_net
377 #define sk_v6_daddr __sk_common.skc_v6_daddr
378 #define sk_v6_rcv_saddr __sk_common.skc_v6_rcv_saddr
379 #define sk_cookie __sk_common.skc_cookie
380 #define sk_incoming_cpu __sk_common.skc_incoming_cpu
381 #define sk_flags __sk_common.skc_flags
382 #define sk_rxhash __sk_common.skc_rxhash
383
384 __cacheline_group_begin(sock_write_rx);
385
386 atomic_t sk_drops;
387 __s32 sk_peek_off;
388 struct sk_buff_head sk_error_queue;
389 struct sk_buff_head sk_receive_queue;
390 /*
391 * The backlog queue is special, it is always used with
392 * the per-socket spinlock held and requires low latency
393 * access. Therefore we special case it's implementation.
394 * Note : rmem_alloc is in this structure to fill a hole
395 * on 64bit arches, not because its logically part of
396 * backlog.
397 */
398 struct {
399 atomic_t rmem_alloc;
400 int len;
401 struct sk_buff *head;
402 struct sk_buff *tail;
403 } sk_backlog;
404 #define sk_rmem_alloc sk_backlog.rmem_alloc
405
406 __cacheline_group_end(sock_write_rx);
407
408 __cacheline_group_begin(sock_read_rx);
409 /* early demux fields */
410 struct dst_entry __rcu *sk_rx_dst;
411 int sk_rx_dst_ifindex;
412 u32 sk_rx_dst_cookie;
413
414 #ifdef CONFIG_NET_RX_BUSY_POLL
415 unsigned int sk_ll_usec;
416 unsigned int sk_napi_id;
417 u16 sk_busy_poll_budget;
418 u8 sk_prefer_busy_poll;
419 #endif
420 u8 sk_userlocks;
421 int sk_rcvbuf;
422
423 struct sk_filter __rcu *sk_filter;
424 union {
425 struct socket_wq __rcu *sk_wq;
426 /* private: */
427 struct socket_wq *sk_wq_raw;
428 /* public: */
429 };
430
431 void (*sk_data_ready)(struct sock *sk);
432 long sk_rcvtimeo;
433 int sk_rcvlowat;
434 __cacheline_group_end(sock_read_rx);
435
436 __cacheline_group_begin(sock_read_rxtx);
437 int sk_err;
438 struct socket *sk_socket;
439 struct mem_cgroup *sk_memcg;
440 #ifdef CONFIG_XFRM
441 struct xfrm_policy __rcu *sk_policy[2];
442 #endif
443 __cacheline_group_end(sock_read_rxtx);
444
445 __cacheline_group_begin(sock_write_rxtx);
446 socket_lock_t sk_lock;
447 u32 sk_reserved_mem;
448 int sk_forward_alloc;
449 u32 sk_tsflags;
450 __cacheline_group_end(sock_write_rxtx);
451
452 __cacheline_group_begin(sock_write_tx);
453 int sk_write_pending;
454 atomic_t sk_omem_alloc;
455 int sk_sndbuf;
456
457 int sk_wmem_queued;
458 refcount_t sk_wmem_alloc;
459 unsigned long sk_tsq_flags;
460 union {
461 struct sk_buff *sk_send_head;
462 struct rb_root tcp_rtx_queue;
463 };
464 struct sk_buff_head sk_write_queue;
465 u32 sk_dst_pending_confirm;
466 u32 sk_pacing_status; /* see enum sk_pacing */
467 struct page_frag sk_frag;
468 struct timer_list sk_timer;
469
470 unsigned long sk_pacing_rate; /* bytes per second */
471 atomic_t sk_zckey;
472 atomic_t sk_tskey;
473 __cacheline_group_end(sock_write_tx);
474
475 __cacheline_group_begin(sock_read_tx);
476 unsigned long sk_max_pacing_rate;
477 long sk_sndtimeo;
478 u32 sk_priority;
479 u32 sk_mark;
480 struct dst_entry __rcu *sk_dst_cache;
481 netdev_features_t sk_route_caps;
482 #ifdef CONFIG_SOCK_VALIDATE_XMIT
483 struct sk_buff* (*sk_validate_xmit_skb)(struct sock *sk,
484 struct net_device *dev,
485 struct sk_buff *skb);
486 #endif
487 u16 sk_gso_type;
488 u16 sk_gso_max_segs;
489 unsigned int sk_gso_max_size;
490 gfp_t sk_allocation;
491 u32 sk_txhash;
492 u8 sk_pacing_shift;
493 bool sk_use_task_frag;
494 __cacheline_group_end(sock_read_tx);
495
496 /*
497 * Because of non atomicity rules, all
498 * changes are protected by socket lock.
499 */
500 u8 sk_gso_disabled : 1,
501 sk_kern_sock : 1,
502 sk_no_check_tx : 1,
503 sk_no_check_rx : 1;
504 u8 sk_shutdown;
505 u16 sk_type;
506 u16 sk_protocol;
507 unsigned long sk_lingertime;
508 struct proto *sk_prot_creator;
509 rwlock_t sk_callback_lock;
510 int sk_err_soft;
511 u32 sk_ack_backlog;
512 u32 sk_max_ack_backlog;
513 kuid_t sk_uid;
514 spinlock_t sk_peer_lock;
515 int sk_bind_phc;
516 struct pid *sk_peer_pid;
517 const struct cred *sk_peer_cred;
518
519 ktime_t sk_stamp;
520 #if BITS_PER_LONG==32
521 seqlock_t sk_stamp_seq;
522 #endif
523 int sk_disconnects;
524
525 u8 sk_txrehash;
526 u8 sk_clockid;
527 u8 sk_txtime_deadline_mode : 1,
528 sk_txtime_report_errors : 1,
529 sk_txtime_unused : 6;
530
531 void *sk_user_data;
532 #ifdef CONFIG_SECURITY
533 void *sk_security;
534 #endif
535 struct sock_cgroup_data sk_cgrp_data;
536 void (*sk_state_change)(struct sock *sk);
537 void (*sk_write_space)(struct sock *sk);
538 void (*sk_error_report)(struct sock *sk);
539 int (*sk_backlog_rcv)(struct sock *sk,
540 struct sk_buff *skb);
541 void (*sk_destruct)(struct sock *sk);
542 struct sock_reuseport __rcu *sk_reuseport_cb;
543 #ifdef CONFIG_BPF_SYSCALL
544 struct bpf_local_storage __rcu *sk_bpf_storage;
545 #endif
546 struct rcu_head sk_rcu;
547 netns_tracker ns_tracker;
548 struct xarray sk_user_frags;
549
550 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
551 struct module *sk_owner;
552 #endif
553 };
554
555 struct sock_bh_locked {
556 struct sock *sock;
557 local_lock_t bh_lock;
558 };
559
560 enum sk_pacing {
561 SK_PACING_NONE = 0,
562 SK_PACING_NEEDED = 1,
563 SK_PACING_FQ = 2,
564 };
565
566 /* flag bits in sk_user_data
567 *
568 * - SK_USER_DATA_NOCOPY: Pointer stored in sk_user_data might
569 * not be suitable for copying when cloning the socket. For instance,
570 * it can point to a reference counted object. sk_user_data bottom
571 * bit is set if pointer must not be copied.
572 *
573 * - SK_USER_DATA_BPF: Mark whether sk_user_data field is
574 * managed/owned by a BPF reuseport array. This bit should be set
575 * when sk_user_data's sk is added to the bpf's reuseport_array.
576 *
577 * - SK_USER_DATA_PSOCK: Mark whether pointer stored in
578 * sk_user_data points to psock type. This bit should be set
579 * when sk_user_data is assigned to a psock object.
580 */
581 #define SK_USER_DATA_NOCOPY 1UL
582 #define SK_USER_DATA_BPF 2UL
583 #define SK_USER_DATA_PSOCK 4UL
584 #define SK_USER_DATA_PTRMASK ~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
585 SK_USER_DATA_PSOCK)
586
587 /**
588 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
589 * @sk: socket
590 */
sk_user_data_is_nocopy(const struct sock * sk)591 static inline bool sk_user_data_is_nocopy(const struct sock *sk)
592 {
593 return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
594 }
595
596 #define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
597
598 /**
599 * __locked_read_sk_user_data_with_flags - return the pointer
600 * only if argument flags all has been set in sk_user_data. Otherwise
601 * return NULL
602 *
603 * @sk: socket
604 * @flags: flag bits
605 *
606 * The caller must be holding sk->sk_callback_lock.
607 */
608 static inline void *
__locked_read_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)609 __locked_read_sk_user_data_with_flags(const struct sock *sk,
610 uintptr_t flags)
611 {
612 uintptr_t sk_user_data =
613 (uintptr_t)rcu_dereference_check(__sk_user_data(sk),
614 lockdep_is_held(&sk->sk_callback_lock));
615
616 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
617
618 if ((sk_user_data & flags) == flags)
619 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
620 return NULL;
621 }
622
623 /**
624 * __rcu_dereference_sk_user_data_with_flags - return the pointer
625 * only if argument flags all has been set in sk_user_data. Otherwise
626 * return NULL
627 *
628 * @sk: socket
629 * @flags: flag bits
630 */
631 static inline void *
__rcu_dereference_sk_user_data_with_flags(const struct sock * sk,uintptr_t flags)632 __rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
633 uintptr_t flags)
634 {
635 uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
636
637 WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
638
639 if ((sk_user_data & flags) == flags)
640 return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
641 return NULL;
642 }
643
644 #define rcu_dereference_sk_user_data(sk) \
645 __rcu_dereference_sk_user_data_with_flags(sk, 0)
646 #define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags) \
647 ({ \
648 uintptr_t __tmp1 = (uintptr_t)(ptr), \
649 __tmp2 = (uintptr_t)(flags); \
650 WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK); \
651 WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK); \
652 rcu_assign_pointer(__sk_user_data((sk)), \
653 __tmp1 | __tmp2); \
654 })
655 #define rcu_assign_sk_user_data(sk, ptr) \
656 __rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
657
658 static inline
sock_net(const struct sock * sk)659 struct net *sock_net(const struct sock *sk)
660 {
661 return read_pnet(&sk->sk_net);
662 }
663
664 static inline
sock_net_set(struct sock * sk,struct net * net)665 void sock_net_set(struct sock *sk, struct net *net)
666 {
667 write_pnet(&sk->sk_net, net);
668 }
669
670 /*
671 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
672 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
673 * on a socket means that the socket will reuse everybody else's port
674 * without looking at the other's sk_reuse value.
675 */
676
677 #define SK_NO_REUSE 0
678 #define SK_CAN_REUSE 1
679 #define SK_FORCE_REUSE 2
680
681 int sk_set_peek_off(struct sock *sk, int val);
682
sk_peek_offset(const struct sock * sk,int flags)683 static inline int sk_peek_offset(const struct sock *sk, int flags)
684 {
685 if (unlikely(flags & MSG_PEEK)) {
686 return READ_ONCE(sk->sk_peek_off);
687 }
688
689 return 0;
690 }
691
sk_peek_offset_bwd(struct sock * sk,int val)692 static inline void sk_peek_offset_bwd(struct sock *sk, int val)
693 {
694 s32 off = READ_ONCE(sk->sk_peek_off);
695
696 if (unlikely(off >= 0)) {
697 off = max_t(s32, off - val, 0);
698 WRITE_ONCE(sk->sk_peek_off, off);
699 }
700 }
701
sk_peek_offset_fwd(struct sock * sk,int val)702 static inline void sk_peek_offset_fwd(struct sock *sk, int val)
703 {
704 sk_peek_offset_bwd(sk, -val);
705 }
706
707 /*
708 * Hashed lists helper routines
709 */
sk_entry(const struct hlist_node * node)710 static inline struct sock *sk_entry(const struct hlist_node *node)
711 {
712 return hlist_entry(node, struct sock, sk_node);
713 }
714
__sk_head(const struct hlist_head * head)715 static inline struct sock *__sk_head(const struct hlist_head *head)
716 {
717 return hlist_entry(head->first, struct sock, sk_node);
718 }
719
sk_head(const struct hlist_head * head)720 static inline struct sock *sk_head(const struct hlist_head *head)
721 {
722 return hlist_empty(head) ? NULL : __sk_head(head);
723 }
724
__sk_nulls_head(const struct hlist_nulls_head * head)725 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
726 {
727 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
728 }
729
sk_nulls_head(const struct hlist_nulls_head * head)730 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
731 {
732 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
733 }
734
sk_next(const struct sock * sk)735 static inline struct sock *sk_next(const struct sock *sk)
736 {
737 return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
738 }
739
sk_nulls_next(const struct sock * sk)740 static inline struct sock *sk_nulls_next(const struct sock *sk)
741 {
742 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
743 hlist_nulls_entry(sk->sk_nulls_node.next,
744 struct sock, sk_nulls_node) :
745 NULL;
746 }
747
sk_unhashed(const struct sock * sk)748 static inline bool sk_unhashed(const struct sock *sk)
749 {
750 return hlist_unhashed(&sk->sk_node);
751 }
752
sk_hashed(const struct sock * sk)753 static inline bool sk_hashed(const struct sock *sk)
754 {
755 return !sk_unhashed(sk);
756 }
757
sk_node_init(struct hlist_node * node)758 static inline void sk_node_init(struct hlist_node *node)
759 {
760 node->pprev = NULL;
761 }
762
__sk_del_node(struct sock * sk)763 static inline void __sk_del_node(struct sock *sk)
764 {
765 __hlist_del(&sk->sk_node);
766 }
767
768 /* NB: equivalent to hlist_del_init_rcu */
__sk_del_node_init(struct sock * sk)769 static inline bool __sk_del_node_init(struct sock *sk)
770 {
771 if (sk_hashed(sk)) {
772 __sk_del_node(sk);
773 sk_node_init(&sk->sk_node);
774 return true;
775 }
776 return false;
777 }
778
779 /* Grab socket reference count. This operation is valid only
780 when sk is ALREADY grabbed f.e. it is found in hash table
781 or a list and the lookup is made under lock preventing hash table
782 modifications.
783 */
784
sock_hold(struct sock * sk)785 static __always_inline void sock_hold(struct sock *sk)
786 {
787 refcount_inc(&sk->sk_refcnt);
788 }
789
790 /* Ungrab socket in the context, which assumes that socket refcnt
791 cannot hit zero, f.e. it is true in context of any socketcall.
792 */
__sock_put(struct sock * sk)793 static __always_inline void __sock_put(struct sock *sk)
794 {
795 refcount_dec(&sk->sk_refcnt);
796 }
797
sk_del_node_init(struct sock * sk)798 static inline bool sk_del_node_init(struct sock *sk)
799 {
800 bool rc = __sk_del_node_init(sk);
801
802 if (rc) {
803 /* paranoid for a while -acme */
804 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
805 __sock_put(sk);
806 }
807 return rc;
808 }
809 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
810
__sk_nulls_del_node_init_rcu(struct sock * sk)811 static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
812 {
813 if (sk_hashed(sk)) {
814 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
815 return true;
816 }
817 return false;
818 }
819
sk_nulls_del_node_init_rcu(struct sock * sk)820 static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
821 {
822 bool rc = __sk_nulls_del_node_init_rcu(sk);
823
824 if (rc) {
825 /* paranoid for a while -acme */
826 WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
827 __sock_put(sk);
828 }
829 return rc;
830 }
831
__sk_add_node(struct sock * sk,struct hlist_head * list)832 static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
833 {
834 hlist_add_head(&sk->sk_node, list);
835 }
836
sk_add_node(struct sock * sk,struct hlist_head * list)837 static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
838 {
839 sock_hold(sk);
840 __sk_add_node(sk, list);
841 }
842
sk_add_node_rcu(struct sock * sk,struct hlist_head * list)843 static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
844 {
845 sock_hold(sk);
846 if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
847 sk->sk_family == AF_INET6)
848 hlist_add_tail_rcu(&sk->sk_node, list);
849 else
850 hlist_add_head_rcu(&sk->sk_node, list);
851 }
852
sk_add_node_tail_rcu(struct sock * sk,struct hlist_head * list)853 static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
854 {
855 sock_hold(sk);
856 hlist_add_tail_rcu(&sk->sk_node, list);
857 }
858
__sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)859 static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
860 {
861 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
862 }
863
__sk_nulls_add_node_tail_rcu(struct sock * sk,struct hlist_nulls_head * list)864 static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
865 {
866 hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
867 }
868
sk_nulls_add_node_rcu(struct sock * sk,struct hlist_nulls_head * list)869 static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
870 {
871 sock_hold(sk);
872 __sk_nulls_add_node_rcu(sk, list);
873 }
874
__sk_del_bind_node(struct sock * sk)875 static inline void __sk_del_bind_node(struct sock *sk)
876 {
877 __hlist_del(&sk->sk_bind_node);
878 }
879
sk_add_bind_node(struct sock * sk,struct hlist_head * list)880 static inline void sk_add_bind_node(struct sock *sk,
881 struct hlist_head *list)
882 {
883 hlist_add_head(&sk->sk_bind_node, list);
884 }
885
886 #define sk_for_each(__sk, list) \
887 hlist_for_each_entry(__sk, list, sk_node)
888 #define sk_for_each_rcu(__sk, list) \
889 hlist_for_each_entry_rcu(__sk, list, sk_node)
890 #define sk_nulls_for_each(__sk, node, list) \
891 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
892 #define sk_nulls_for_each_rcu(__sk, node, list) \
893 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
894 #define sk_for_each_from(__sk) \
895 hlist_for_each_entry_from(__sk, sk_node)
896 #define sk_nulls_for_each_from(__sk, node) \
897 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
898 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
899 #define sk_for_each_safe(__sk, tmp, list) \
900 hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
901 #define sk_for_each_bound(__sk, list) \
902 hlist_for_each_entry(__sk, list, sk_bind_node)
903 #define sk_for_each_bound_safe(__sk, tmp, list) \
904 hlist_for_each_entry_safe(__sk, tmp, list, sk_bind_node)
905
906 /**
907 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
908 * @tpos: the type * to use as a loop cursor.
909 * @pos: the &struct hlist_node to use as a loop cursor.
910 * @head: the head for your list.
911 * @offset: offset of hlist_node within the struct.
912 *
913 */
914 #define sk_for_each_entry_offset_rcu(tpos, pos, head, offset) \
915 for (pos = rcu_dereference(hlist_first_rcu(head)); \
916 pos != NULL && \
917 ({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;}); \
918 pos = rcu_dereference(hlist_next_rcu(pos)))
919
sk_user_ns(const struct sock * sk)920 static inline struct user_namespace *sk_user_ns(const struct sock *sk)
921 {
922 /* Careful only use this in a context where these parameters
923 * can not change and must all be valid, such as recvmsg from
924 * userspace.
925 */
926 return sk->sk_socket->file->f_cred->user_ns;
927 }
928
929 /* Sock flags */
930 enum sock_flags {
931 SOCK_DEAD,
932 SOCK_DONE,
933 SOCK_URGINLINE,
934 SOCK_KEEPOPEN,
935 SOCK_LINGER,
936 SOCK_DESTROY,
937 SOCK_BROADCAST,
938 SOCK_TIMESTAMP,
939 SOCK_ZAPPED,
940 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
941 SOCK_DBG, /* %SO_DEBUG setting */
942 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
943 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
944 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
945 SOCK_MEMALLOC, /* VM depends on this socket for swapping */
946 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
947 SOCK_FASYNC, /* fasync() active */
948 SOCK_RXQ_OVFL,
949 SOCK_ZEROCOPY, /* buffers from userspace */
950 SOCK_WIFI_STATUS, /* push wifi status to userspace */
951 SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
952 * Will use last 4 bytes of packet sent from
953 * user-space instead.
954 */
955 SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
956 SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
957 SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
958 SOCK_TXTIME,
959 SOCK_XDP, /* XDP is attached */
960 SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
961 SOCK_RCVMARK, /* Receive SO_MARK ancillary data with packet */
962 SOCK_RCVPRIORITY, /* Receive SO_PRIORITY ancillary data with packet */
963 };
964
965 #define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
966 /*
967 * The highest bit of sk_tsflags is reserved for kernel-internal
968 * SOCKCM_FLAG_TS_OPT_ID. There is a check in core/sock.c to control that
969 * SOF_TIMESTAMPING* values do not reach this reserved area
970 */
971 #define SOCKCM_FLAG_TS_OPT_ID BIT(31)
972
sock_copy_flags(struct sock * nsk,const struct sock * osk)973 static inline void sock_copy_flags(struct sock *nsk, const struct sock *osk)
974 {
975 nsk->sk_flags = osk->sk_flags;
976 }
977
sock_set_flag(struct sock * sk,enum sock_flags flag)978 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
979 {
980 __set_bit(flag, &sk->sk_flags);
981 }
982
sock_reset_flag(struct sock * sk,enum sock_flags flag)983 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
984 {
985 __clear_bit(flag, &sk->sk_flags);
986 }
987
sock_valbool_flag(struct sock * sk,enum sock_flags bit,int valbool)988 static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
989 int valbool)
990 {
991 if (valbool)
992 sock_set_flag(sk, bit);
993 else
994 sock_reset_flag(sk, bit);
995 }
996
sock_flag(const struct sock * sk,enum sock_flags flag)997 static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
998 {
999 return test_bit(flag, &sk->sk_flags);
1000 }
1001
1002 #ifdef CONFIG_NET
1003 DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
sk_memalloc_socks(void)1004 static inline int sk_memalloc_socks(void)
1005 {
1006 return static_branch_unlikely(&memalloc_socks_key);
1007 }
1008
1009 void __receive_sock(struct file *file);
1010 #else
1011
sk_memalloc_socks(void)1012 static inline int sk_memalloc_socks(void)
1013 {
1014 return 0;
1015 }
1016
__receive_sock(struct file * file)1017 static inline void __receive_sock(struct file *file)
1018 { }
1019 #endif
1020
sk_gfp_mask(const struct sock * sk,gfp_t gfp_mask)1021 static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
1022 {
1023 return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
1024 }
1025
sk_acceptq_removed(struct sock * sk)1026 static inline void sk_acceptq_removed(struct sock *sk)
1027 {
1028 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
1029 }
1030
sk_acceptq_added(struct sock * sk)1031 static inline void sk_acceptq_added(struct sock *sk)
1032 {
1033 WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
1034 }
1035
1036 /* Note: If you think the test should be:
1037 * return READ_ONCE(sk->sk_ack_backlog) >= READ_ONCE(sk->sk_max_ack_backlog);
1038 * Then please take a look at commit 64a146513f8f ("[NET]: Revert incorrect accept queue backlog changes.")
1039 */
sk_acceptq_is_full(const struct sock * sk)1040 static inline bool sk_acceptq_is_full(const struct sock *sk)
1041 {
1042 return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
1043 }
1044
1045 /*
1046 * Compute minimal free write space needed to queue new packets.
1047 */
sk_stream_min_wspace(const struct sock * sk)1048 static inline int sk_stream_min_wspace(const struct sock *sk)
1049 {
1050 return READ_ONCE(sk->sk_wmem_queued) >> 1;
1051 }
1052
sk_stream_wspace(const struct sock * sk)1053 static inline int sk_stream_wspace(const struct sock *sk)
1054 {
1055 return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
1056 }
1057
sk_wmem_queued_add(struct sock * sk,int val)1058 static inline void sk_wmem_queued_add(struct sock *sk, int val)
1059 {
1060 WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
1061 }
1062
sk_forward_alloc_add(struct sock * sk,int val)1063 static inline void sk_forward_alloc_add(struct sock *sk, int val)
1064 {
1065 /* Paired with lockless reads of sk->sk_forward_alloc */
1066 WRITE_ONCE(sk->sk_forward_alloc, sk->sk_forward_alloc + val);
1067 }
1068
1069 void sk_stream_write_space(struct sock *sk);
1070
1071 /* OOB backlog add */
__sk_add_backlog(struct sock * sk,struct sk_buff * skb)1072 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
1073 {
1074 /* dont let skb dst not refcounted, we are going to leave rcu lock */
1075 skb_dst_force(skb);
1076
1077 if (!sk->sk_backlog.tail)
1078 WRITE_ONCE(sk->sk_backlog.head, skb);
1079 else
1080 sk->sk_backlog.tail->next = skb;
1081
1082 WRITE_ONCE(sk->sk_backlog.tail, skb);
1083 skb->next = NULL;
1084 }
1085
1086 /*
1087 * Take into account size of receive queue and backlog queue
1088 * Do not take into account this skb truesize,
1089 * to allow even a single big packet to come.
1090 */
sk_rcvqueues_full(const struct sock * sk,unsigned int limit)1091 static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1092 {
1093 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1094
1095 return qsize > limit;
1096 }
1097
1098 /* The per-socket spinlock must be held here. */
sk_add_backlog(struct sock * sk,struct sk_buff * skb,unsigned int limit)1099 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1100 unsigned int limit)
1101 {
1102 if (sk_rcvqueues_full(sk, limit))
1103 return -ENOBUFS;
1104
1105 /*
1106 * If the skb was allocated from pfmemalloc reserves, only
1107 * allow SOCK_MEMALLOC sockets to use it as this socket is
1108 * helping free memory
1109 */
1110 if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1111 return -ENOMEM;
1112
1113 __sk_add_backlog(sk, skb);
1114 sk->sk_backlog.len += skb->truesize;
1115 return 0;
1116 }
1117
1118 int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1119
1120 INDIRECT_CALLABLE_DECLARE(int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb));
1121 INDIRECT_CALLABLE_DECLARE(int tcp_v6_do_rcv(struct sock *sk, struct sk_buff *skb));
1122
sk_backlog_rcv(struct sock * sk,struct sk_buff * skb)1123 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1124 {
1125 if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1126 return __sk_backlog_rcv(sk, skb);
1127
1128 return INDIRECT_CALL_INET(sk->sk_backlog_rcv,
1129 tcp_v6_do_rcv,
1130 tcp_v4_do_rcv,
1131 sk, skb);
1132 }
1133
sk_incoming_cpu_update(struct sock * sk)1134 static inline void sk_incoming_cpu_update(struct sock *sk)
1135 {
1136 int cpu = raw_smp_processor_id();
1137
1138 if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1139 WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1140 }
1141
1142
sock_rps_save_rxhash(struct sock * sk,const struct sk_buff * skb)1143 static inline void sock_rps_save_rxhash(struct sock *sk,
1144 const struct sk_buff *skb)
1145 {
1146 #ifdef CONFIG_RPS
1147 /* The following WRITE_ONCE() is paired with the READ_ONCE()
1148 * here, and another one in sock_rps_record_flow().
1149 */
1150 if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1151 WRITE_ONCE(sk->sk_rxhash, skb->hash);
1152 #endif
1153 }
1154
sock_rps_reset_rxhash(struct sock * sk)1155 static inline void sock_rps_reset_rxhash(struct sock *sk)
1156 {
1157 #ifdef CONFIG_RPS
1158 /* Paired with READ_ONCE() in sock_rps_record_flow() */
1159 WRITE_ONCE(sk->sk_rxhash, 0);
1160 #endif
1161 }
1162
1163 #define sk_wait_event(__sk, __timeo, __condition, __wait) \
1164 ({ int __rc, __dis = __sk->sk_disconnects; \
1165 release_sock(__sk); \
1166 __rc = __condition; \
1167 if (!__rc) { \
1168 *(__timeo) = wait_woken(__wait, \
1169 TASK_INTERRUPTIBLE, \
1170 *(__timeo)); \
1171 } \
1172 sched_annotate_sleep(); \
1173 lock_sock(__sk); \
1174 __rc = __dis == __sk->sk_disconnects ? __condition : -EPIPE; \
1175 __rc; \
1176 })
1177
1178 int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1179 int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1180 void sk_stream_wait_close(struct sock *sk, long timeo_p);
1181 int sk_stream_error(struct sock *sk, int flags, int err);
1182 void sk_stream_kill_queues(struct sock *sk);
1183 void sk_set_memalloc(struct sock *sk);
1184 void sk_clear_memalloc(struct sock *sk);
1185
1186 void __sk_flush_backlog(struct sock *sk);
1187
sk_flush_backlog(struct sock * sk)1188 static inline bool sk_flush_backlog(struct sock *sk)
1189 {
1190 if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1191 __sk_flush_backlog(sk);
1192 return true;
1193 }
1194 return false;
1195 }
1196
1197 int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1198
1199 struct request_sock_ops;
1200 struct timewait_sock_ops;
1201 struct inet_hashinfo;
1202 struct raw_hashinfo;
1203 struct smc_hashinfo;
1204 struct module;
1205 struct sk_psock;
1206
1207 /*
1208 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1209 * un-modified. Special care is taken when initializing object to zero.
1210 */
sk_prot_clear_nulls(struct sock * sk,int size)1211 static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1212 {
1213 if (offsetof(struct sock, sk_node.next) != 0)
1214 memset(sk, 0, offsetof(struct sock, sk_node.next));
1215 memset(&sk->sk_node.pprev, 0,
1216 size - offsetof(struct sock, sk_node.pprev));
1217 }
1218
1219 struct proto_accept_arg {
1220 int flags;
1221 int err;
1222 int is_empty;
1223 bool kern;
1224 };
1225
1226 /* Networking protocol blocks we attach to sockets.
1227 * socket layer -> transport layer interface
1228 */
1229 struct proto {
1230 void (*close)(struct sock *sk,
1231 long timeout);
1232 int (*pre_connect)(struct sock *sk,
1233 struct sockaddr *uaddr,
1234 int addr_len);
1235 int (*connect)(struct sock *sk,
1236 struct sockaddr *uaddr,
1237 int addr_len);
1238 int (*disconnect)(struct sock *sk, int flags);
1239
1240 struct sock * (*accept)(struct sock *sk,
1241 struct proto_accept_arg *arg);
1242
1243 int (*ioctl)(struct sock *sk, int cmd,
1244 int *karg);
1245 int (*init)(struct sock *sk);
1246 void (*destroy)(struct sock *sk);
1247 void (*shutdown)(struct sock *sk, int how);
1248 int (*setsockopt)(struct sock *sk, int level,
1249 int optname, sockptr_t optval,
1250 unsigned int optlen);
1251 int (*getsockopt)(struct sock *sk, int level,
1252 int optname, char __user *optval,
1253 int __user *option);
1254 void (*keepalive)(struct sock *sk, int valbool);
1255 #ifdef CONFIG_COMPAT
1256 int (*compat_ioctl)(struct sock *sk,
1257 unsigned int cmd, unsigned long arg);
1258 #endif
1259 int (*sendmsg)(struct sock *sk, struct msghdr *msg,
1260 size_t len);
1261 int (*recvmsg)(struct sock *sk, struct msghdr *msg,
1262 size_t len, int flags, int *addr_len);
1263 void (*splice_eof)(struct socket *sock);
1264 int (*bind)(struct sock *sk,
1265 struct sockaddr *addr, int addr_len);
1266 int (*bind_add)(struct sock *sk,
1267 struct sockaddr *addr, int addr_len);
1268
1269 int (*backlog_rcv) (struct sock *sk,
1270 struct sk_buff *skb);
1271 bool (*bpf_bypass_getsockopt)(int level,
1272 int optname);
1273
1274 void (*release_cb)(struct sock *sk);
1275
1276 /* Keeping track of sk's, looking them up, and port selection methods. */
1277 int (*hash)(struct sock *sk);
1278 void (*unhash)(struct sock *sk);
1279 void (*rehash)(struct sock *sk);
1280 int (*get_port)(struct sock *sk, unsigned short snum);
1281 void (*put_port)(struct sock *sk);
1282 #ifdef CONFIG_BPF_SYSCALL
1283 int (*psock_update_sk_prot)(struct sock *sk,
1284 struct sk_psock *psock,
1285 bool restore);
1286 #endif
1287
1288 /* Keeping track of sockets in use */
1289 #ifdef CONFIG_PROC_FS
1290 unsigned int inuse_idx;
1291 #endif
1292
1293 #if IS_ENABLED(CONFIG_MPTCP)
1294 int (*forward_alloc_get)(const struct sock *sk);
1295 #endif
1296
1297 bool (*stream_memory_free)(const struct sock *sk, int wake);
1298 bool (*sock_is_readable)(struct sock *sk);
1299 /* Memory pressure */
1300 void (*enter_memory_pressure)(struct sock *sk);
1301 void (*leave_memory_pressure)(struct sock *sk);
1302 atomic_long_t *memory_allocated; /* Current allocated memory. */
1303 int __percpu *per_cpu_fw_alloc;
1304 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
1305
1306 /*
1307 * Pressure flag: try to collapse.
1308 * Technical note: it is used by multiple contexts non atomically.
1309 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1310 * All the __sk_mem_schedule() is of this nature: accounting
1311 * is strict, actions are advisory and have some latency.
1312 */
1313 unsigned long *memory_pressure;
1314 long *sysctl_mem;
1315
1316 int *sysctl_wmem;
1317 int *sysctl_rmem;
1318 u32 sysctl_wmem_offset;
1319 u32 sysctl_rmem_offset;
1320
1321 int max_header;
1322 bool no_autobind;
1323
1324 struct kmem_cache *slab;
1325 unsigned int obj_size;
1326 unsigned int ipv6_pinfo_offset;
1327 slab_flags_t slab_flags;
1328 unsigned int useroffset; /* Usercopy region offset */
1329 unsigned int usersize; /* Usercopy region size */
1330
1331 unsigned int __percpu *orphan_count;
1332
1333 struct request_sock_ops *rsk_prot;
1334 struct timewait_sock_ops *twsk_prot;
1335
1336 union {
1337 struct inet_hashinfo *hashinfo;
1338 struct udp_table *udp_table;
1339 struct raw_hashinfo *raw_hash;
1340 struct smc_hashinfo *smc_hash;
1341 } h;
1342
1343 struct module *owner;
1344
1345 char name[32];
1346
1347 struct list_head node;
1348 int (*diag_destroy)(struct sock *sk, int err);
1349 } __randomize_layout;
1350
1351 int proto_register(struct proto *prot, int alloc_slab);
1352 void proto_unregister(struct proto *prot);
1353 int sock_load_diag_module(int family, int protocol);
1354
1355 INDIRECT_CALLABLE_DECLARE(bool tcp_stream_memory_free(const struct sock *sk, int wake));
1356
sk_forward_alloc_get(const struct sock * sk)1357 static inline int sk_forward_alloc_get(const struct sock *sk)
1358 {
1359 #if IS_ENABLED(CONFIG_MPTCP)
1360 if (sk->sk_prot->forward_alloc_get)
1361 return sk->sk_prot->forward_alloc_get(sk);
1362 #endif
1363 return READ_ONCE(sk->sk_forward_alloc);
1364 }
1365
__sk_stream_memory_free(const struct sock * sk,int wake)1366 static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1367 {
1368 if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1369 return false;
1370
1371 return sk->sk_prot->stream_memory_free ?
1372 INDIRECT_CALL_INET_1(sk->sk_prot->stream_memory_free,
1373 tcp_stream_memory_free, sk, wake) : true;
1374 }
1375
sk_stream_memory_free(const struct sock * sk)1376 static inline bool sk_stream_memory_free(const struct sock *sk)
1377 {
1378 return __sk_stream_memory_free(sk, 0);
1379 }
1380
__sk_stream_is_writeable(const struct sock * sk,int wake)1381 static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1382 {
1383 return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1384 __sk_stream_memory_free(sk, wake);
1385 }
1386
sk_stream_is_writeable(const struct sock * sk)1387 static inline bool sk_stream_is_writeable(const struct sock *sk)
1388 {
1389 return __sk_stream_is_writeable(sk, 0);
1390 }
1391
sk_under_cgroup_hierarchy(struct sock * sk,struct cgroup * ancestor)1392 static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1393 struct cgroup *ancestor)
1394 {
1395 #ifdef CONFIG_SOCK_CGROUP_DATA
1396 return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1397 ancestor);
1398 #else
1399 return -ENOTSUPP;
1400 #endif
1401 }
1402
1403 #define SK_ALLOC_PERCPU_COUNTER_BATCH 16
1404
sk_sockets_allocated_dec(struct sock * sk)1405 static inline void sk_sockets_allocated_dec(struct sock *sk)
1406 {
1407 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, -1,
1408 SK_ALLOC_PERCPU_COUNTER_BATCH);
1409 }
1410
sk_sockets_allocated_inc(struct sock * sk)1411 static inline void sk_sockets_allocated_inc(struct sock *sk)
1412 {
1413 percpu_counter_add_batch(sk->sk_prot->sockets_allocated, 1,
1414 SK_ALLOC_PERCPU_COUNTER_BATCH);
1415 }
1416
1417 static inline u64
sk_sockets_allocated_read_positive(struct sock * sk)1418 sk_sockets_allocated_read_positive(struct sock *sk)
1419 {
1420 return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1421 }
1422
1423 static inline int
proto_sockets_allocated_sum_positive(struct proto * prot)1424 proto_sockets_allocated_sum_positive(struct proto *prot)
1425 {
1426 return percpu_counter_sum_positive(prot->sockets_allocated);
1427 }
1428
1429 #ifdef CONFIG_PROC_FS
1430 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
1431 struct prot_inuse {
1432 int all;
1433 int val[PROTO_INUSE_NR];
1434 };
1435
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1436 static inline void sock_prot_inuse_add(const struct net *net,
1437 const struct proto *prot, int val)
1438 {
1439 this_cpu_add(net->core.prot_inuse->val[prot->inuse_idx], val);
1440 }
1441
sock_inuse_add(const struct net * net,int val)1442 static inline void sock_inuse_add(const struct net *net, int val)
1443 {
1444 this_cpu_add(net->core.prot_inuse->all, val);
1445 }
1446
1447 int sock_prot_inuse_get(struct net *net, struct proto *proto);
1448 int sock_inuse_get(struct net *net);
1449 #else
sock_prot_inuse_add(const struct net * net,const struct proto * prot,int val)1450 static inline void sock_prot_inuse_add(const struct net *net,
1451 const struct proto *prot, int val)
1452 {
1453 }
1454
sock_inuse_add(const struct net * net,int val)1455 static inline void sock_inuse_add(const struct net *net, int val)
1456 {
1457 }
1458 #endif
1459
1460
1461 /* With per-bucket locks this operation is not-atomic, so that
1462 * this version is not worse.
1463 */
__sk_prot_rehash(struct sock * sk)1464 static inline int __sk_prot_rehash(struct sock *sk)
1465 {
1466 sk->sk_prot->unhash(sk);
1467 return sk->sk_prot->hash(sk);
1468 }
1469
1470 /* About 10 seconds */
1471 #define SOCK_DESTROY_TIME (10*HZ)
1472
1473 /* Sockets 0-1023 can't be bound to unless you are superuser */
1474 #define PROT_SOCK 1024
1475
1476 #define SHUTDOWN_MASK 3
1477 #define RCV_SHUTDOWN 1
1478 #define SEND_SHUTDOWN 2
1479
1480 #define SOCK_BINDADDR_LOCK 4
1481 #define SOCK_BINDPORT_LOCK 8
1482
1483 struct socket_alloc {
1484 struct socket socket;
1485 struct inode vfs_inode;
1486 };
1487
SOCKET_I(struct inode * inode)1488 static inline struct socket *SOCKET_I(struct inode *inode)
1489 {
1490 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1491 }
1492
SOCK_INODE(struct socket * socket)1493 static inline struct inode *SOCK_INODE(struct socket *socket)
1494 {
1495 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1496 }
1497
1498 /*
1499 * Functions for memory accounting
1500 */
1501 int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1502 int __sk_mem_schedule(struct sock *sk, int size, int kind);
1503 void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1504 void __sk_mem_reclaim(struct sock *sk, int amount);
1505
1506 #define SK_MEM_SEND 0
1507 #define SK_MEM_RECV 1
1508
1509 /* sysctl_mem values are in pages */
sk_prot_mem_limits(const struct sock * sk,int index)1510 static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1511 {
1512 return READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1513 }
1514
sk_mem_pages(int amt)1515 static inline int sk_mem_pages(int amt)
1516 {
1517 return (amt + PAGE_SIZE - 1) >> PAGE_SHIFT;
1518 }
1519
sk_has_account(struct sock * sk)1520 static inline bool sk_has_account(struct sock *sk)
1521 {
1522 /* return true if protocol supports memory accounting */
1523 return !!sk->sk_prot->memory_allocated;
1524 }
1525
sk_wmem_schedule(struct sock * sk,int size)1526 static inline bool sk_wmem_schedule(struct sock *sk, int size)
1527 {
1528 int delta;
1529
1530 if (!sk_has_account(sk))
1531 return true;
1532 delta = size - sk->sk_forward_alloc;
1533 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1534 }
1535
1536 static inline bool
__sk_rmem_schedule(struct sock * sk,int size,bool pfmemalloc)1537 __sk_rmem_schedule(struct sock *sk, int size, bool pfmemalloc)
1538 {
1539 int delta;
1540
1541 if (!sk_has_account(sk))
1542 return true;
1543 delta = size - sk->sk_forward_alloc;
1544 return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1545 pfmemalloc;
1546 }
1547
1548 static inline bool
sk_rmem_schedule(struct sock * sk,struct sk_buff * skb,int size)1549 sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1550 {
1551 return __sk_rmem_schedule(sk, size, skb_pfmemalloc(skb));
1552 }
1553
sk_unused_reserved_mem(const struct sock * sk)1554 static inline int sk_unused_reserved_mem(const struct sock *sk)
1555 {
1556 int unused_mem;
1557
1558 if (likely(!sk->sk_reserved_mem))
1559 return 0;
1560
1561 unused_mem = sk->sk_reserved_mem - sk->sk_wmem_queued -
1562 atomic_read(&sk->sk_rmem_alloc);
1563
1564 return unused_mem > 0 ? unused_mem : 0;
1565 }
1566
sk_mem_reclaim(struct sock * sk)1567 static inline void sk_mem_reclaim(struct sock *sk)
1568 {
1569 int reclaimable;
1570
1571 if (!sk_has_account(sk))
1572 return;
1573
1574 reclaimable = sk->sk_forward_alloc - sk_unused_reserved_mem(sk);
1575
1576 if (reclaimable >= (int)PAGE_SIZE)
1577 __sk_mem_reclaim(sk, reclaimable);
1578 }
1579
sk_mem_reclaim_final(struct sock * sk)1580 static inline void sk_mem_reclaim_final(struct sock *sk)
1581 {
1582 sk->sk_reserved_mem = 0;
1583 sk_mem_reclaim(sk);
1584 }
1585
sk_mem_charge(struct sock * sk,int size)1586 static inline void sk_mem_charge(struct sock *sk, int size)
1587 {
1588 if (!sk_has_account(sk))
1589 return;
1590 sk_forward_alloc_add(sk, -size);
1591 }
1592
sk_mem_uncharge(struct sock * sk,int size)1593 static inline void sk_mem_uncharge(struct sock *sk, int size)
1594 {
1595 if (!sk_has_account(sk))
1596 return;
1597 sk_forward_alloc_add(sk, size);
1598 sk_mem_reclaim(sk);
1599 }
1600
1601 #if IS_ENABLED(CONFIG_PROVE_LOCKING) && IS_ENABLED(CONFIG_MODULES)
sk_owner_set(struct sock * sk,struct module * owner)1602 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1603 {
1604 __module_get(owner);
1605 sk->sk_owner = owner;
1606 }
1607
sk_owner_clear(struct sock * sk)1608 static inline void sk_owner_clear(struct sock *sk)
1609 {
1610 sk->sk_owner = NULL;
1611 }
1612
sk_owner_put(struct sock * sk)1613 static inline void sk_owner_put(struct sock *sk)
1614 {
1615 module_put(sk->sk_owner);
1616 }
1617 #else
sk_owner_set(struct sock * sk,struct module * owner)1618 static inline void sk_owner_set(struct sock *sk, struct module *owner)
1619 {
1620 }
1621
sk_owner_clear(struct sock * sk)1622 static inline void sk_owner_clear(struct sock *sk)
1623 {
1624 }
1625
sk_owner_put(struct sock * sk)1626 static inline void sk_owner_put(struct sock *sk)
1627 {
1628 }
1629 #endif
1630 /*
1631 * Macro so as to not evaluate some arguments when
1632 * lockdep is not enabled.
1633 *
1634 * Mark both the sk_lock and the sk_lock.slock as a
1635 * per-address-family lock class.
1636 */
1637 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1638 do { \
1639 sk_owner_set(sk, THIS_MODULE); \
1640 sk->sk_lock.owned = 0; \
1641 init_waitqueue_head(&sk->sk_lock.wq); \
1642 spin_lock_init(&(sk)->sk_lock.slock); \
1643 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1644 sizeof((sk)->sk_lock)); \
1645 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1646 (skey), (sname)); \
1647 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1648 } while (0)
1649
lockdep_sock_is_held(const struct sock * sk)1650 static inline bool lockdep_sock_is_held(const struct sock *sk)
1651 {
1652 return lockdep_is_held(&sk->sk_lock) ||
1653 lockdep_is_held(&sk->sk_lock.slock);
1654 }
1655
1656 void lock_sock_nested(struct sock *sk, int subclass);
1657
lock_sock(struct sock * sk)1658 static inline void lock_sock(struct sock *sk)
1659 {
1660 lock_sock_nested(sk, 0);
1661 }
1662
1663 void __lock_sock(struct sock *sk);
1664 void __release_sock(struct sock *sk);
1665 void release_sock(struct sock *sk);
1666
1667 /* BH context may only use the following locking interface. */
1668 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1669 #define bh_lock_sock_nested(__sk) \
1670 spin_lock_nested(&((__sk)->sk_lock.slock), \
1671 SINGLE_DEPTH_NESTING)
1672 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1673
1674 bool __lock_sock_fast(struct sock *sk) __acquires(&sk->sk_lock.slock);
1675
1676 /**
1677 * lock_sock_fast - fast version of lock_sock
1678 * @sk: socket
1679 *
1680 * This version should be used for very small section, where process won't block
1681 * return false if fast path is taken:
1682 *
1683 * sk_lock.slock locked, owned = 0, BH disabled
1684 *
1685 * return true if slow path is taken:
1686 *
1687 * sk_lock.slock unlocked, owned = 1, BH enabled
1688 */
lock_sock_fast(struct sock * sk)1689 static inline bool lock_sock_fast(struct sock *sk)
1690 {
1691 /* The sk_lock has mutex_lock() semantics here. */
1692 mutex_acquire(&sk->sk_lock.dep_map, 0, 0, _RET_IP_);
1693
1694 return __lock_sock_fast(sk);
1695 }
1696
1697 /* fast socket lock variant for caller already holding a [different] socket lock */
lock_sock_fast_nested(struct sock * sk)1698 static inline bool lock_sock_fast_nested(struct sock *sk)
1699 {
1700 mutex_acquire(&sk->sk_lock.dep_map, SINGLE_DEPTH_NESTING, 0, _RET_IP_);
1701
1702 return __lock_sock_fast(sk);
1703 }
1704
1705 /**
1706 * unlock_sock_fast - complement of lock_sock_fast
1707 * @sk: socket
1708 * @slow: slow mode
1709 *
1710 * fast unlock socket for user context.
1711 * If slow mode is on, we call regular release_sock()
1712 */
unlock_sock_fast(struct sock * sk,bool slow)1713 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1714 __releases(&sk->sk_lock.slock)
1715 {
1716 if (slow) {
1717 release_sock(sk);
1718 __release(&sk->sk_lock.slock);
1719 } else {
1720 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1721 spin_unlock_bh(&sk->sk_lock.slock);
1722 }
1723 }
1724
1725 void sockopt_lock_sock(struct sock *sk);
1726 void sockopt_release_sock(struct sock *sk);
1727 bool sockopt_ns_capable(struct user_namespace *ns, int cap);
1728 bool sockopt_capable(int cap);
1729
1730 /* Used by processes to "lock" a socket state, so that
1731 * interrupts and bottom half handlers won't change it
1732 * from under us. It essentially blocks any incoming
1733 * packets, so that we won't get any new data or any
1734 * packets that change the state of the socket.
1735 *
1736 * While locked, BH processing will add new packets to
1737 * the backlog queue. This queue is processed by the
1738 * owner of the socket lock right before it is released.
1739 *
1740 * Since ~2.3.5 it is also exclusive sleep lock serializing
1741 * accesses from user process context.
1742 */
1743
sock_owned_by_me(const struct sock * sk)1744 static inline void sock_owned_by_me(const struct sock *sk)
1745 {
1746 #ifdef CONFIG_LOCKDEP
1747 WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1748 #endif
1749 }
1750
sock_not_owned_by_me(const struct sock * sk)1751 static inline void sock_not_owned_by_me(const struct sock *sk)
1752 {
1753 #ifdef CONFIG_LOCKDEP
1754 WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1755 #endif
1756 }
1757
sock_owned_by_user(const struct sock * sk)1758 static inline bool sock_owned_by_user(const struct sock *sk)
1759 {
1760 sock_owned_by_me(sk);
1761 return sk->sk_lock.owned;
1762 }
1763
sock_owned_by_user_nocheck(const struct sock * sk)1764 static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1765 {
1766 return sk->sk_lock.owned;
1767 }
1768
sock_release_ownership(struct sock * sk)1769 static inline void sock_release_ownership(struct sock *sk)
1770 {
1771 DEBUG_NET_WARN_ON_ONCE(!sock_owned_by_user_nocheck(sk));
1772 sk->sk_lock.owned = 0;
1773
1774 /* The sk_lock has mutex_unlock() semantics: */
1775 mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1776 }
1777
1778 /* no reclassification while locks are held */
sock_allow_reclassification(const struct sock * csk)1779 static inline bool sock_allow_reclassification(const struct sock *csk)
1780 {
1781 struct sock *sk = (struct sock *)csk;
1782
1783 return !sock_owned_by_user_nocheck(sk) &&
1784 !spin_is_locked(&sk->sk_lock.slock);
1785 }
1786
1787 struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1788 struct proto *prot, int kern);
1789 void sk_free(struct sock *sk);
1790 void sk_net_refcnt_upgrade(struct sock *sk);
1791 void sk_destruct(struct sock *sk);
1792 struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1793 void sk_free_unlock_clone(struct sock *sk);
1794
1795 struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1796 gfp_t priority);
1797 void __sock_wfree(struct sk_buff *skb);
1798 void sock_wfree(struct sk_buff *skb);
1799 struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1800 gfp_t priority);
1801 void skb_orphan_partial(struct sk_buff *skb);
1802 void sock_rfree(struct sk_buff *skb);
1803 void sock_efree(struct sk_buff *skb);
1804 #ifdef CONFIG_INET
1805 void sock_edemux(struct sk_buff *skb);
1806 void sock_pfree(struct sk_buff *skb);
1807
skb_set_owner_edemux(struct sk_buff * skb,struct sock * sk)1808 static inline void skb_set_owner_edemux(struct sk_buff *skb, struct sock *sk)
1809 {
1810 skb_orphan(skb);
1811 if (refcount_inc_not_zero(&sk->sk_refcnt)) {
1812 skb->sk = sk;
1813 skb->destructor = sock_edemux;
1814 }
1815 }
1816 #else
1817 #define sock_edemux sock_efree
1818 #endif
1819
1820 int sk_setsockopt(struct sock *sk, int level, int optname,
1821 sockptr_t optval, unsigned int optlen);
1822 int sock_setsockopt(struct socket *sock, int level, int op,
1823 sockptr_t optval, unsigned int optlen);
1824 int do_sock_setsockopt(struct socket *sock, bool compat, int level,
1825 int optname, sockptr_t optval, int optlen);
1826 int do_sock_getsockopt(struct socket *sock, bool compat, int level,
1827 int optname, sockptr_t optval, sockptr_t optlen);
1828
1829 int sk_getsockopt(struct sock *sk, int level, int optname,
1830 sockptr_t optval, sockptr_t optlen);
1831 int sock_gettstamp(struct socket *sock, void __user *userstamp,
1832 bool timeval, bool time32);
1833 struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1834 unsigned long data_len, int noblock,
1835 int *errcode, int max_page_order);
1836
sock_alloc_send_skb(struct sock * sk,unsigned long size,int noblock,int * errcode)1837 static inline struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1838 unsigned long size,
1839 int noblock, int *errcode)
1840 {
1841 return sock_alloc_send_pskb(sk, size, 0, noblock, errcode, 0);
1842 }
1843
1844 void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1845 void sock_kfree_s(struct sock *sk, void *mem, int size);
1846 void sock_kzfree_s(struct sock *sk, void *mem, int size);
1847 void sk_send_sigurg(struct sock *sk);
1848
sock_replace_proto(struct sock * sk,struct proto * proto)1849 static inline void sock_replace_proto(struct sock *sk, struct proto *proto)
1850 {
1851 if (sk->sk_socket)
1852 clear_bit(SOCK_SUPPORT_ZC, &sk->sk_socket->flags);
1853 WRITE_ONCE(sk->sk_prot, proto);
1854 }
1855
1856 struct sockcm_cookie {
1857 u64 transmit_time;
1858 u32 mark;
1859 u32 tsflags;
1860 u32 ts_opt_id;
1861 u32 priority;
1862 };
1863
sockcm_init(struct sockcm_cookie * sockc,const struct sock * sk)1864 static inline void sockcm_init(struct sockcm_cookie *sockc,
1865 const struct sock *sk)
1866 {
1867 *sockc = (struct sockcm_cookie) {
1868 .tsflags = READ_ONCE(sk->sk_tsflags),
1869 .priority = READ_ONCE(sk->sk_priority),
1870 };
1871 }
1872
1873 int __sock_cmsg_send(struct sock *sk, struct cmsghdr *cmsg,
1874 struct sockcm_cookie *sockc);
1875 int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1876 struct sockcm_cookie *sockc);
1877
1878 /*
1879 * Functions to fill in entries in struct proto_ops when a protocol
1880 * does not implement a particular function.
1881 */
1882 int sock_no_bind(struct socket *, struct sockaddr *, int);
1883 int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1884 int sock_no_socketpair(struct socket *, struct socket *);
1885 int sock_no_accept(struct socket *, struct socket *, struct proto_accept_arg *);
1886 int sock_no_getname(struct socket *, struct sockaddr *, int);
1887 int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1888 int sock_no_listen(struct socket *, int);
1889 int sock_no_shutdown(struct socket *, int);
1890 int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1891 int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1892 int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1893 int sock_no_mmap(struct file *file, struct socket *sock,
1894 struct vm_area_struct *vma);
1895
1896 /*
1897 * Functions to fill in entries in struct proto_ops when a protocol
1898 * uses the inet style.
1899 */
1900 int sock_common_getsockopt(struct socket *sock, int level, int optname,
1901 char __user *optval, int __user *optlen);
1902 int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1903 int flags);
1904 int sock_common_setsockopt(struct socket *sock, int level, int optname,
1905 sockptr_t optval, unsigned int optlen);
1906
1907 void sk_common_release(struct sock *sk);
1908
1909 /*
1910 * Default socket callbacks and setup code
1911 */
1912
1913 /* Initialise core socket variables using an explicit uid. */
1914 void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1915
1916 /* Initialise core socket variables.
1917 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1918 */
1919 void sock_init_data(struct socket *sock, struct sock *sk);
1920
1921 /*
1922 * Socket reference counting postulates.
1923 *
1924 * * Each user of socket SHOULD hold a reference count.
1925 * * Each access point to socket (an hash table bucket, reference from a list,
1926 * running timer, skb in flight MUST hold a reference count.
1927 * * When reference count hits 0, it means it will never increase back.
1928 * * When reference count hits 0, it means that no references from
1929 * outside exist to this socket and current process on current CPU
1930 * is last user and may/should destroy this socket.
1931 * * sk_free is called from any context: process, BH, IRQ. When
1932 * it is called, socket has no references from outside -> sk_free
1933 * may release descendant resources allocated by the socket, but
1934 * to the time when it is called, socket is NOT referenced by any
1935 * hash tables, lists etc.
1936 * * Packets, delivered from outside (from network or from another process)
1937 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1938 * when they sit in queue. Otherwise, packets will leak to hole, when
1939 * socket is looked up by one cpu and unhasing is made by another CPU.
1940 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1941 * (leak to backlog). Packet socket does all the processing inside
1942 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1943 * use separate SMP lock, so that they are prone too.
1944 */
1945
1946 /* Ungrab socket and destroy it, if it was the last reference. */
sock_put(struct sock * sk)1947 static inline void sock_put(struct sock *sk)
1948 {
1949 if (refcount_dec_and_test(&sk->sk_refcnt))
1950 sk_free(sk);
1951 }
1952 /* Generic version of sock_put(), dealing with all sockets
1953 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1954 */
1955 void sock_gen_put(struct sock *sk);
1956
1957 int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1958 unsigned int trim_cap, bool refcounted);
sk_receive_skb(struct sock * sk,struct sk_buff * skb,const int nested)1959 static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1960 const int nested)
1961 {
1962 return __sk_receive_skb(sk, skb, nested, 1, true);
1963 }
1964
sk_tx_queue_set(struct sock * sk,int tx_queue)1965 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1966 {
1967 /* sk_tx_queue_mapping accept only upto a 16-bit value */
1968 if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1969 return;
1970 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1971 * other WRITE_ONCE() because socket lock might be not held.
1972 */
1973 WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1974 }
1975
1976 #define NO_QUEUE_MAPPING USHRT_MAX
1977
sk_tx_queue_clear(struct sock * sk)1978 static inline void sk_tx_queue_clear(struct sock *sk)
1979 {
1980 /* Paired with READ_ONCE() in sk_tx_queue_get() and
1981 * other WRITE_ONCE() because socket lock might be not held.
1982 */
1983 WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1984 }
1985
sk_tx_queue_get(const struct sock * sk)1986 static inline int sk_tx_queue_get(const struct sock *sk)
1987 {
1988 if (sk) {
1989 /* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1990 * and sk_tx_queue_set().
1991 */
1992 int val = READ_ONCE(sk->sk_tx_queue_mapping);
1993
1994 if (val != NO_QUEUE_MAPPING)
1995 return val;
1996 }
1997 return -1;
1998 }
1999
__sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb,bool force_set)2000 static inline void __sk_rx_queue_set(struct sock *sk,
2001 const struct sk_buff *skb,
2002 bool force_set)
2003 {
2004 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2005 if (skb_rx_queue_recorded(skb)) {
2006 u16 rx_queue = skb_get_rx_queue(skb);
2007
2008 if (force_set ||
2009 unlikely(READ_ONCE(sk->sk_rx_queue_mapping) != rx_queue))
2010 WRITE_ONCE(sk->sk_rx_queue_mapping, rx_queue);
2011 }
2012 #endif
2013 }
2014
sk_rx_queue_set(struct sock * sk,const struct sk_buff * skb)2015 static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
2016 {
2017 __sk_rx_queue_set(sk, skb, true);
2018 }
2019
sk_rx_queue_update(struct sock * sk,const struct sk_buff * skb)2020 static inline void sk_rx_queue_update(struct sock *sk, const struct sk_buff *skb)
2021 {
2022 __sk_rx_queue_set(sk, skb, false);
2023 }
2024
sk_rx_queue_clear(struct sock * sk)2025 static inline void sk_rx_queue_clear(struct sock *sk)
2026 {
2027 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2028 WRITE_ONCE(sk->sk_rx_queue_mapping, NO_QUEUE_MAPPING);
2029 #endif
2030 }
2031
sk_rx_queue_get(const struct sock * sk)2032 static inline int sk_rx_queue_get(const struct sock *sk)
2033 {
2034 #ifdef CONFIG_SOCK_RX_QUEUE_MAPPING
2035 if (sk) {
2036 int res = READ_ONCE(sk->sk_rx_queue_mapping);
2037
2038 if (res != NO_QUEUE_MAPPING)
2039 return res;
2040 }
2041 #endif
2042
2043 return -1;
2044 }
2045
sk_set_socket(struct sock * sk,struct socket * sock)2046 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
2047 {
2048 sk->sk_socket = sock;
2049 }
2050
sk_sleep(struct sock * sk)2051 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
2052 {
2053 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
2054 return &rcu_dereference_raw(sk->sk_wq)->wait;
2055 }
2056 /* Detach socket from process context.
2057 * Announce socket dead, detach it from wait queue and inode.
2058 * Note that parent inode held reference count on this struct sock,
2059 * we do not release it in this function, because protocol
2060 * probably wants some additional cleanups or even continuing
2061 * to work with this socket (TCP).
2062 */
sock_orphan(struct sock * sk)2063 static inline void sock_orphan(struct sock *sk)
2064 {
2065 write_lock_bh(&sk->sk_callback_lock);
2066 sock_set_flag(sk, SOCK_DEAD);
2067 sk_set_socket(sk, NULL);
2068 sk->sk_wq = NULL;
2069 write_unlock_bh(&sk->sk_callback_lock);
2070 }
2071
sock_graft(struct sock * sk,struct socket * parent)2072 static inline void sock_graft(struct sock *sk, struct socket *parent)
2073 {
2074 WARN_ON(parent->sk);
2075 write_lock_bh(&sk->sk_callback_lock);
2076 rcu_assign_pointer(sk->sk_wq, &parent->wq);
2077 parent->sk = sk;
2078 sk_set_socket(sk, parent);
2079 sk->sk_uid = SOCK_INODE(parent)->i_uid;
2080 security_sock_graft(sk, parent);
2081 write_unlock_bh(&sk->sk_callback_lock);
2082 }
2083
2084 kuid_t sock_i_uid(struct sock *sk);
2085 unsigned long __sock_i_ino(struct sock *sk);
2086 unsigned long sock_i_ino(struct sock *sk);
2087
sock_net_uid(const struct net * net,const struct sock * sk)2088 static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
2089 {
2090 return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
2091 }
2092
net_tx_rndhash(void)2093 static inline u32 net_tx_rndhash(void)
2094 {
2095 u32 v = get_random_u32();
2096
2097 return v ?: 1;
2098 }
2099
sk_set_txhash(struct sock * sk)2100 static inline void sk_set_txhash(struct sock *sk)
2101 {
2102 /* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
2103 WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
2104 }
2105
sk_rethink_txhash(struct sock * sk)2106 static inline bool sk_rethink_txhash(struct sock *sk)
2107 {
2108 if (sk->sk_txhash && sk->sk_txrehash == SOCK_TXREHASH_ENABLED) {
2109 sk_set_txhash(sk);
2110 return true;
2111 }
2112 return false;
2113 }
2114
2115 static inline struct dst_entry *
__sk_dst_get(const struct sock * sk)2116 __sk_dst_get(const struct sock *sk)
2117 {
2118 return rcu_dereference_check(sk->sk_dst_cache,
2119 lockdep_sock_is_held(sk));
2120 }
2121
2122 static inline struct dst_entry *
sk_dst_get(const struct sock * sk)2123 sk_dst_get(const struct sock *sk)
2124 {
2125 struct dst_entry *dst;
2126
2127 rcu_read_lock();
2128 dst = rcu_dereference(sk->sk_dst_cache);
2129 if (dst && !rcuref_get(&dst->__rcuref))
2130 dst = NULL;
2131 rcu_read_unlock();
2132 return dst;
2133 }
2134
__dst_negative_advice(struct sock * sk)2135 static inline void __dst_negative_advice(struct sock *sk)
2136 {
2137 struct dst_entry *dst = __sk_dst_get(sk);
2138
2139 if (dst && dst->ops->negative_advice)
2140 dst->ops->negative_advice(sk, dst);
2141 }
2142
dst_negative_advice(struct sock * sk)2143 static inline void dst_negative_advice(struct sock *sk)
2144 {
2145 sk_rethink_txhash(sk);
2146 __dst_negative_advice(sk);
2147 }
2148
2149 static inline void
__sk_dst_set(struct sock * sk,struct dst_entry * dst)2150 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
2151 {
2152 struct dst_entry *old_dst;
2153
2154 sk_tx_queue_clear(sk);
2155 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2156 old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2157 lockdep_sock_is_held(sk));
2158 rcu_assign_pointer(sk->sk_dst_cache, dst);
2159 dst_release(old_dst);
2160 }
2161
2162 static inline void
sk_dst_set(struct sock * sk,struct dst_entry * dst)2163 sk_dst_set(struct sock *sk, struct dst_entry *dst)
2164 {
2165 struct dst_entry *old_dst;
2166
2167 sk_tx_queue_clear(sk);
2168 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2169 old_dst = unrcu_pointer(xchg(&sk->sk_dst_cache, RCU_INITIALIZER(dst)));
2170 dst_release(old_dst);
2171 }
2172
2173 static inline void
__sk_dst_reset(struct sock * sk)2174 __sk_dst_reset(struct sock *sk)
2175 {
2176 __sk_dst_set(sk, NULL);
2177 }
2178
2179 static inline void
sk_dst_reset(struct sock * sk)2180 sk_dst_reset(struct sock *sk)
2181 {
2182 sk_dst_set(sk, NULL);
2183 }
2184
2185 struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2186
2187 struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2188
sk_dst_confirm(struct sock * sk)2189 static inline void sk_dst_confirm(struct sock *sk)
2190 {
2191 if (!READ_ONCE(sk->sk_dst_pending_confirm))
2192 WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2193 }
2194
sock_confirm_neigh(struct sk_buff * skb,struct neighbour * n)2195 static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2196 {
2197 if (skb_get_dst_pending_confirm(skb)) {
2198 struct sock *sk = skb->sk;
2199
2200 if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2201 WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2202 neigh_confirm(n);
2203 }
2204 }
2205
2206 bool sk_mc_loop(const struct sock *sk);
2207
sk_can_gso(const struct sock * sk)2208 static inline bool sk_can_gso(const struct sock *sk)
2209 {
2210 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2211 }
2212
2213 void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2214
sk_gso_disable(struct sock * sk)2215 static inline void sk_gso_disable(struct sock *sk)
2216 {
2217 sk->sk_gso_disabled = 1;
2218 sk->sk_route_caps &= ~NETIF_F_GSO_MASK;
2219 }
2220
skb_do_copy_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,char * to,int copy,int offset)2221 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2222 struct iov_iter *from, char *to,
2223 int copy, int offset)
2224 {
2225 if (skb->ip_summed == CHECKSUM_NONE) {
2226 __wsum csum = 0;
2227 if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2228 return -EFAULT;
2229 skb->csum = csum_block_add(skb->csum, csum, offset);
2230 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2231 if (!copy_from_iter_full_nocache(to, copy, from))
2232 return -EFAULT;
2233 } else if (!copy_from_iter_full(to, copy, from))
2234 return -EFAULT;
2235
2236 return 0;
2237 }
2238
skb_add_data_nocache(struct sock * sk,struct sk_buff * skb,struct iov_iter * from,int copy)2239 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2240 struct iov_iter *from, int copy)
2241 {
2242 int err, offset = skb->len;
2243
2244 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2245 copy, offset);
2246 if (err)
2247 __skb_trim(skb, offset);
2248
2249 return err;
2250 }
2251
skb_copy_to_page_nocache(struct sock * sk,struct iov_iter * from,struct sk_buff * skb,struct page * page,int off,int copy)2252 static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2253 struct sk_buff *skb,
2254 struct page *page,
2255 int off, int copy)
2256 {
2257 int err;
2258
2259 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2260 copy, skb->len);
2261 if (err)
2262 return err;
2263
2264 skb_len_add(skb, copy);
2265 sk_wmem_queued_add(sk, copy);
2266 sk_mem_charge(sk, copy);
2267 return 0;
2268 }
2269
2270 /**
2271 * sk_wmem_alloc_get - returns write allocations
2272 * @sk: socket
2273 *
2274 * Return: sk_wmem_alloc minus initial offset of one
2275 */
sk_wmem_alloc_get(const struct sock * sk)2276 static inline int sk_wmem_alloc_get(const struct sock *sk)
2277 {
2278 return refcount_read(&sk->sk_wmem_alloc) - 1;
2279 }
2280
2281 /**
2282 * sk_rmem_alloc_get - returns read allocations
2283 * @sk: socket
2284 *
2285 * Return: sk_rmem_alloc
2286 */
sk_rmem_alloc_get(const struct sock * sk)2287 static inline int sk_rmem_alloc_get(const struct sock *sk)
2288 {
2289 return atomic_read(&sk->sk_rmem_alloc);
2290 }
2291
2292 /**
2293 * sk_has_allocations - check if allocations are outstanding
2294 * @sk: socket
2295 *
2296 * Return: true if socket has write or read allocations
2297 */
sk_has_allocations(const struct sock * sk)2298 static inline bool sk_has_allocations(const struct sock *sk)
2299 {
2300 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2301 }
2302
2303 /**
2304 * skwq_has_sleeper - check if there are any waiting processes
2305 * @wq: struct socket_wq
2306 *
2307 * Return: true if socket_wq has waiting processes
2308 *
2309 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2310 * barrier call. They were added due to the race found within the tcp code.
2311 *
2312 * Consider following tcp code paths::
2313 *
2314 * CPU1 CPU2
2315 * sys_select receive packet
2316 * ... ...
2317 * __add_wait_queue update tp->rcv_nxt
2318 * ... ...
2319 * tp->rcv_nxt check sock_def_readable
2320 * ... {
2321 * schedule rcu_read_lock();
2322 * wq = rcu_dereference(sk->sk_wq);
2323 * if (wq && waitqueue_active(&wq->wait))
2324 * wake_up_interruptible(&wq->wait)
2325 * ...
2326 * }
2327 *
2328 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2329 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
2330 * could then endup calling schedule and sleep forever if there are no more
2331 * data on the socket.
2332 *
2333 */
skwq_has_sleeper(struct socket_wq * wq)2334 static inline bool skwq_has_sleeper(struct socket_wq *wq)
2335 {
2336 return wq && wq_has_sleeper(&wq->wait);
2337 }
2338
2339 /**
2340 * sock_poll_wait - wrapper for the poll_wait call.
2341 * @filp: file
2342 * @sock: socket to wait on
2343 * @p: poll_table
2344 *
2345 * See the comments in the wq_has_sleeper function.
2346 */
sock_poll_wait(struct file * filp,struct socket * sock,poll_table * p)2347 static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2348 poll_table *p)
2349 {
2350 /* Provides a barrier we need to be sure we are in sync
2351 * with the socket flags modification.
2352 *
2353 * This memory barrier is paired in the wq_has_sleeper.
2354 */
2355 poll_wait(filp, &sock->wq.wait, p);
2356 }
2357
skb_set_hash_from_sk(struct sk_buff * skb,struct sock * sk)2358 static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2359 {
2360 /* This pairs with WRITE_ONCE() in sk_set_txhash() */
2361 u32 txhash = READ_ONCE(sk->sk_txhash);
2362
2363 if (txhash) {
2364 skb->l4_hash = 1;
2365 skb->hash = txhash;
2366 }
2367 }
2368
2369 void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2370
2371 /*
2372 * Queue a received datagram if it will fit. Stream and sequenced
2373 * protocols can't normally use this as they need to fit buffers in
2374 * and play with them.
2375 *
2376 * Inlined as it's very short and called for pretty much every
2377 * packet ever received.
2378 */
skb_set_owner_r(struct sk_buff * skb,struct sock * sk)2379 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2380 {
2381 skb_orphan(skb);
2382 skb->sk = sk;
2383 skb->destructor = sock_rfree;
2384 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2385 sk_mem_charge(sk, skb->truesize);
2386 }
2387
skb_set_owner_sk_safe(struct sk_buff * skb,struct sock * sk)2388 static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2389 {
2390 if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2391 skb_orphan(skb);
2392 skb->destructor = sock_efree;
2393 skb->sk = sk;
2394 return true;
2395 }
2396 return false;
2397 }
2398
skb_clone_and_charge_r(struct sk_buff * skb,struct sock * sk)2399 static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2400 {
2401 skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2402 if (skb) {
2403 if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2404 skb_set_owner_r(skb, sk);
2405 return skb;
2406 }
2407 __kfree_skb(skb);
2408 }
2409 return NULL;
2410 }
2411
skb_prepare_for_gro(struct sk_buff * skb)2412 static inline void skb_prepare_for_gro(struct sk_buff *skb)
2413 {
2414 if (skb->destructor != sock_wfree) {
2415 skb_orphan(skb);
2416 return;
2417 }
2418 skb->slow_gro = 1;
2419 }
2420
2421 void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2422 unsigned long expires);
2423
2424 void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2425
2426 void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2427
2428 int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2429 struct sk_buff *skb, unsigned int flags,
2430 void (*destructor)(struct sock *sk,
2431 struct sk_buff *skb));
2432 int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2433
2434 int sock_queue_rcv_skb_reason(struct sock *sk, struct sk_buff *skb,
2435 enum skb_drop_reason *reason);
2436
sock_queue_rcv_skb(struct sock * sk,struct sk_buff * skb)2437 static inline int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb)
2438 {
2439 return sock_queue_rcv_skb_reason(sk, skb, NULL);
2440 }
2441
2442 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2443 struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2444
2445 /*
2446 * Recover an error report and clear atomically
2447 */
2448
sock_error(struct sock * sk)2449 static inline int sock_error(struct sock *sk)
2450 {
2451 int err;
2452
2453 /* Avoid an atomic operation for the common case.
2454 * This is racy since another cpu/thread can change sk_err under us.
2455 */
2456 if (likely(data_race(!sk->sk_err)))
2457 return 0;
2458
2459 err = xchg(&sk->sk_err, 0);
2460 return -err;
2461 }
2462
2463 void sk_error_report(struct sock *sk);
2464
sock_wspace(struct sock * sk)2465 static inline unsigned long sock_wspace(struct sock *sk)
2466 {
2467 int amt = 0;
2468
2469 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2470 amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2471 if (amt < 0)
2472 amt = 0;
2473 }
2474 return amt;
2475 }
2476
2477 /* Note:
2478 * We use sk->sk_wq_raw, from contexts knowing this
2479 * pointer is not NULL and cannot disappear/change.
2480 */
sk_set_bit(int nr,struct sock * sk)2481 static inline void sk_set_bit(int nr, struct sock *sk)
2482 {
2483 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2484 !sock_flag(sk, SOCK_FASYNC))
2485 return;
2486
2487 set_bit(nr, &sk->sk_wq_raw->flags);
2488 }
2489
sk_clear_bit(int nr,struct sock * sk)2490 static inline void sk_clear_bit(int nr, struct sock *sk)
2491 {
2492 if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2493 !sock_flag(sk, SOCK_FASYNC))
2494 return;
2495
2496 clear_bit(nr, &sk->sk_wq_raw->flags);
2497 }
2498
sk_wake_async(const struct sock * sk,int how,int band)2499 static inline void sk_wake_async(const struct sock *sk, int how, int band)
2500 {
2501 if (sock_flag(sk, SOCK_FASYNC)) {
2502 rcu_read_lock();
2503 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2504 rcu_read_unlock();
2505 }
2506 }
2507
sk_wake_async_rcu(const struct sock * sk,int how,int band)2508 static inline void sk_wake_async_rcu(const struct sock *sk, int how, int band)
2509 {
2510 if (unlikely(sock_flag(sk, SOCK_FASYNC)))
2511 sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2512 }
2513
2514 /* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2515 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2516 * Note: for send buffers, TCP works better if we can build two skbs at
2517 * minimum.
2518 */
2519 #define TCP_SKB_MIN_TRUESIZE (2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2520
2521 #define SOCK_MIN_SNDBUF (TCP_SKB_MIN_TRUESIZE * 2)
2522 #define SOCK_MIN_RCVBUF TCP_SKB_MIN_TRUESIZE
2523
sk_stream_moderate_sndbuf(struct sock * sk)2524 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2525 {
2526 u32 val;
2527
2528 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2529 return;
2530
2531 val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2532 val = max_t(u32, val, sk_unused_reserved_mem(sk));
2533
2534 WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2535 }
2536
2537 /**
2538 * sk_page_frag - return an appropriate page_frag
2539 * @sk: socket
2540 *
2541 * Use the per task page_frag instead of the per socket one for
2542 * optimization when we know that we're in process context and own
2543 * everything that's associated with %current.
2544 *
2545 * Both direct reclaim and page faults can nest inside other
2546 * socket operations and end up recursing into sk_page_frag()
2547 * while it's already in use: explicitly avoid task page_frag
2548 * when users disable sk_use_task_frag.
2549 *
2550 * Return: a per task page_frag if context allows that,
2551 * otherwise a per socket one.
2552 */
sk_page_frag(struct sock * sk)2553 static inline struct page_frag *sk_page_frag(struct sock *sk)
2554 {
2555 if (sk->sk_use_task_frag)
2556 return ¤t->task_frag;
2557
2558 return &sk->sk_frag;
2559 }
2560
2561 bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2562
2563 /*
2564 * Default write policy as shown to user space via poll/select/SIGIO
2565 */
sock_writeable(const struct sock * sk)2566 static inline bool sock_writeable(const struct sock *sk)
2567 {
2568 return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2569 }
2570
gfp_any(void)2571 static inline gfp_t gfp_any(void)
2572 {
2573 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2574 }
2575
gfp_memcg_charge(void)2576 static inline gfp_t gfp_memcg_charge(void)
2577 {
2578 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2579 }
2580
sock_rcvtimeo(const struct sock * sk,bool noblock)2581 static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2582 {
2583 return noblock ? 0 : sk->sk_rcvtimeo;
2584 }
2585
sock_sndtimeo(const struct sock * sk,bool noblock)2586 static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2587 {
2588 return noblock ? 0 : sk->sk_sndtimeo;
2589 }
2590
sock_rcvlowat(const struct sock * sk,int waitall,int len)2591 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2592 {
2593 int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2594
2595 return v ?: 1;
2596 }
2597
2598 /* Alas, with timeout socket operations are not restartable.
2599 * Compare this to poll().
2600 */
sock_intr_errno(long timeo)2601 static inline int sock_intr_errno(long timeo)
2602 {
2603 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2604 }
2605
2606 struct sock_skb_cb {
2607 u32 dropcount;
2608 };
2609
2610 /* Store sock_skb_cb at the end of skb->cb[] so protocol families
2611 * using skb->cb[] would keep using it directly and utilize its
2612 * alignment guarantee.
2613 */
2614 #define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2615 sizeof(struct sock_skb_cb)))
2616
2617 #define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2618 SOCK_SKB_CB_OFFSET))
2619
2620 #define sock_skb_cb_check_size(size) \
2621 BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2622
2623 static inline void
sock_skb_set_dropcount(const struct sock * sk,struct sk_buff * skb)2624 sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2625 {
2626 SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2627 atomic_read(&sk->sk_drops) : 0;
2628 }
2629
sk_drops_add(struct sock * sk,const struct sk_buff * skb)2630 static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2631 {
2632 int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2633
2634 atomic_add(segs, &sk->sk_drops);
2635 }
2636
sock_read_timestamp(struct sock * sk)2637 static inline ktime_t sock_read_timestamp(struct sock *sk)
2638 {
2639 #if BITS_PER_LONG==32
2640 unsigned int seq;
2641 ktime_t kt;
2642
2643 do {
2644 seq = read_seqbegin(&sk->sk_stamp_seq);
2645 kt = sk->sk_stamp;
2646 } while (read_seqretry(&sk->sk_stamp_seq, seq));
2647
2648 return kt;
2649 #else
2650 return READ_ONCE(sk->sk_stamp);
2651 #endif
2652 }
2653
sock_write_timestamp(struct sock * sk,ktime_t kt)2654 static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2655 {
2656 #if BITS_PER_LONG==32
2657 write_seqlock(&sk->sk_stamp_seq);
2658 sk->sk_stamp = kt;
2659 write_sequnlock(&sk->sk_stamp_seq);
2660 #else
2661 WRITE_ONCE(sk->sk_stamp, kt);
2662 #endif
2663 }
2664
2665 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2666 struct sk_buff *skb);
2667 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2668 struct sk_buff *skb);
2669
2670 static inline void
sock_recv_timestamp(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2671 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2672 {
2673 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2674 u32 tsflags = READ_ONCE(sk->sk_tsflags);
2675 ktime_t kt = skb->tstamp;
2676 /*
2677 * generate control messages if
2678 * - receive time stamping in software requested
2679 * - software time stamp available and wanted
2680 * - hardware time stamps available and wanted
2681 */
2682 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2683 (tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2684 (kt && tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2685 (hwtstamps->hwtstamp &&
2686 (tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2687 __sock_recv_timestamp(msg, sk, skb);
2688 else
2689 sock_write_timestamp(sk, kt);
2690
2691 if (sock_flag(sk, SOCK_WIFI_STATUS) && skb_wifi_acked_valid(skb))
2692 __sock_recv_wifi_status(msg, sk, skb);
2693 }
2694
2695 void __sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2696 struct sk_buff *skb);
2697
2698 #define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
sock_recv_cmsgs(struct msghdr * msg,struct sock * sk,struct sk_buff * skb)2699 static inline void sock_recv_cmsgs(struct msghdr *msg, struct sock *sk,
2700 struct sk_buff *skb)
2701 {
2702 #define FLAGS_RECV_CMSGS ((1UL << SOCK_RXQ_OVFL) | \
2703 (1UL << SOCK_RCVTSTAMP) | \
2704 (1UL << SOCK_RCVMARK) |\
2705 (1UL << SOCK_RCVPRIORITY))
2706 #define TSFLAGS_ANY (SOF_TIMESTAMPING_SOFTWARE | \
2707 SOF_TIMESTAMPING_RAW_HARDWARE)
2708
2709 if (sk->sk_flags & FLAGS_RECV_CMSGS ||
2710 READ_ONCE(sk->sk_tsflags) & TSFLAGS_ANY)
2711 __sock_recv_cmsgs(msg, sk, skb);
2712 else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2713 sock_write_timestamp(sk, skb->tstamp);
2714 else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2715 sock_write_timestamp(sk, 0);
2716 }
2717
2718 void __sock_tx_timestamp(__u32 tsflags, __u8 *tx_flags);
2719
2720 /**
2721 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2722 * @sk: socket sending this packet
2723 * @sockc: pointer to socket cmsg cookie to get timestamping info
2724 * @tx_flags: completed with instructions for time stamping
2725 * @tskey: filled in with next sk_tskey (not for TCP, which uses seqno)
2726 *
2727 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2728 */
_sock_tx_timestamp(struct sock * sk,const struct sockcm_cookie * sockc,__u8 * tx_flags,__u32 * tskey)2729 static inline void _sock_tx_timestamp(struct sock *sk,
2730 const struct sockcm_cookie *sockc,
2731 __u8 *tx_flags, __u32 *tskey)
2732 {
2733 __u32 tsflags = sockc->tsflags;
2734
2735 if (unlikely(tsflags)) {
2736 __sock_tx_timestamp(tsflags, tx_flags);
2737 if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2738 tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK) {
2739 if (tsflags & SOCKCM_FLAG_TS_OPT_ID)
2740 *tskey = sockc->ts_opt_id;
2741 else
2742 *tskey = atomic_inc_return(&sk->sk_tskey) - 1;
2743 }
2744 }
2745 if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2746 *tx_flags |= SKBTX_WIFI_STATUS;
2747 }
2748
sock_tx_timestamp(struct sock * sk,const struct sockcm_cookie * sockc,__u8 * tx_flags)2749 static inline void sock_tx_timestamp(struct sock *sk,
2750 const struct sockcm_cookie *sockc,
2751 __u8 *tx_flags)
2752 {
2753 _sock_tx_timestamp(sk, sockc, tx_flags, NULL);
2754 }
2755
skb_setup_tx_timestamp(struct sk_buff * skb,const struct sockcm_cookie * sockc)2756 static inline void skb_setup_tx_timestamp(struct sk_buff *skb,
2757 const struct sockcm_cookie *sockc)
2758 {
2759 _sock_tx_timestamp(skb->sk, sockc, &skb_shinfo(skb)->tx_flags,
2760 &skb_shinfo(skb)->tskey);
2761 }
2762
sk_is_inet(const struct sock * sk)2763 static inline bool sk_is_inet(const struct sock *sk)
2764 {
2765 int family = READ_ONCE(sk->sk_family);
2766
2767 return family == AF_INET || family == AF_INET6;
2768 }
2769
sk_is_tcp(const struct sock * sk)2770 static inline bool sk_is_tcp(const struct sock *sk)
2771 {
2772 return sk_is_inet(sk) &&
2773 sk->sk_type == SOCK_STREAM &&
2774 sk->sk_protocol == IPPROTO_TCP;
2775 }
2776
sk_is_udp(const struct sock * sk)2777 static inline bool sk_is_udp(const struct sock *sk)
2778 {
2779 return sk_is_inet(sk) &&
2780 sk->sk_type == SOCK_DGRAM &&
2781 sk->sk_protocol == IPPROTO_UDP;
2782 }
2783
sk_is_stream_unix(const struct sock * sk)2784 static inline bool sk_is_stream_unix(const struct sock *sk)
2785 {
2786 return sk->sk_family == AF_UNIX && sk->sk_type == SOCK_STREAM;
2787 }
2788
sk_is_vsock(const struct sock * sk)2789 static inline bool sk_is_vsock(const struct sock *sk)
2790 {
2791 return sk->sk_family == AF_VSOCK;
2792 }
2793
2794 /**
2795 * sk_eat_skb - Release a skb if it is no longer needed
2796 * @sk: socket to eat this skb from
2797 * @skb: socket buffer to eat
2798 *
2799 * This routine must be called with interrupts disabled or with the socket
2800 * locked so that the sk_buff queue operation is ok.
2801 */
sk_eat_skb(struct sock * sk,struct sk_buff * skb)2802 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2803 {
2804 __skb_unlink(skb, &sk->sk_receive_queue);
2805 __kfree_skb(skb);
2806 }
2807
2808 static inline bool
skb_sk_is_prefetched(struct sk_buff * skb)2809 skb_sk_is_prefetched(struct sk_buff *skb)
2810 {
2811 #ifdef CONFIG_INET
2812 return skb->destructor == sock_pfree;
2813 #else
2814 return false;
2815 #endif /* CONFIG_INET */
2816 }
2817
2818 /* This helper checks if a socket is a full socket,
2819 * ie _not_ a timewait or request socket.
2820 */
sk_fullsock(const struct sock * sk)2821 static inline bool sk_fullsock(const struct sock *sk)
2822 {
2823 return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2824 }
2825
2826 static inline bool
sk_is_refcounted(struct sock * sk)2827 sk_is_refcounted(struct sock *sk)
2828 {
2829 /* Only full sockets have sk->sk_flags. */
2830 return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2831 }
2832
2833 /* Checks if this SKB belongs to an HW offloaded socket
2834 * and whether any SW fallbacks are required based on dev.
2835 * Check decrypted mark in case skb_orphan() cleared socket.
2836 */
sk_validate_xmit_skb(struct sk_buff * skb,struct net_device * dev)2837 static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2838 struct net_device *dev)
2839 {
2840 #ifdef CONFIG_SOCK_VALIDATE_XMIT
2841 struct sock *sk = skb->sk;
2842
2843 if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2844 skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2845 } else if (unlikely(skb_is_decrypted(skb))) {
2846 pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2847 kfree_skb(skb);
2848 skb = NULL;
2849 }
2850 #endif
2851
2852 return skb;
2853 }
2854
2855 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2856 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2857 */
sk_listener(const struct sock * sk)2858 static inline bool sk_listener(const struct sock *sk)
2859 {
2860 return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2861 }
2862
2863 /* This helper checks if a socket is a LISTEN or NEW_SYN_RECV or TIME_WAIT
2864 * TCP SYNACK messages can be attached to LISTEN or NEW_SYN_RECV (depending on SYNCOOKIE)
2865 * TCP RST and ACK can be attached to TIME_WAIT.
2866 */
sk_listener_or_tw(const struct sock * sk)2867 static inline bool sk_listener_or_tw(const struct sock *sk)
2868 {
2869 return (1 << READ_ONCE(sk->sk_state)) &
2870 (TCPF_LISTEN | TCPF_NEW_SYN_RECV | TCPF_TIME_WAIT);
2871 }
2872
2873 void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2874 int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2875 int type);
2876
2877 bool sk_ns_capable(const struct sock *sk,
2878 struct user_namespace *user_ns, int cap);
2879 bool sk_capable(const struct sock *sk, int cap);
2880 bool sk_net_capable(const struct sock *sk, int cap);
2881
2882 void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2883
2884 /* Take into consideration the size of the struct sk_buff overhead in the
2885 * determination of these values, since that is non-constant across
2886 * platforms. This makes socket queueing behavior and performance
2887 * not depend upon such differences.
2888 */
2889 #define _SK_MEM_PACKETS 256
2890 #define _SK_MEM_OVERHEAD SKB_TRUESIZE(256)
2891 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2892 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2893
2894 extern __u32 sysctl_wmem_max;
2895 extern __u32 sysctl_rmem_max;
2896
2897 extern __u32 sysctl_wmem_default;
2898 extern __u32 sysctl_rmem_default;
2899
2900 #define SKB_FRAG_PAGE_ORDER get_order(32768)
2901 DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2902
sk_get_wmem0(const struct sock * sk,const struct proto * proto)2903 static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2904 {
2905 /* Does this proto have per netns sysctl_wmem ? */
2906 if (proto->sysctl_wmem_offset)
2907 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2908
2909 return READ_ONCE(*proto->sysctl_wmem);
2910 }
2911
sk_get_rmem0(const struct sock * sk,const struct proto * proto)2912 static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2913 {
2914 /* Does this proto have per netns sysctl_rmem ? */
2915 if (proto->sysctl_rmem_offset)
2916 return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2917
2918 return READ_ONCE(*proto->sysctl_rmem);
2919 }
2920
2921 /* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2922 * Some wifi drivers need to tweak it to get more chunks.
2923 * They can use this helper from their ndo_start_xmit()
2924 */
sk_pacing_shift_update(struct sock * sk,int val)2925 static inline void sk_pacing_shift_update(struct sock *sk, int val)
2926 {
2927 if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2928 return;
2929 WRITE_ONCE(sk->sk_pacing_shift, val);
2930 }
2931
2932 /* if a socket is bound to a device, check that the given device
2933 * index is either the same or that the socket is bound to an L3
2934 * master device and the given device index is also enslaved to
2935 * that L3 master
2936 */
sk_dev_equal_l3scope(struct sock * sk,int dif)2937 static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2938 {
2939 int bound_dev_if = READ_ONCE(sk->sk_bound_dev_if);
2940 int mdif;
2941
2942 if (!bound_dev_if || bound_dev_if == dif)
2943 return true;
2944
2945 mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2946 if (mdif && mdif == bound_dev_if)
2947 return true;
2948
2949 return false;
2950 }
2951
2952 void sock_def_readable(struct sock *sk);
2953
2954 int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2955 void sock_set_timestamp(struct sock *sk, int optname, bool valbool);
2956 int sock_set_timestamping(struct sock *sk, int optname,
2957 struct so_timestamping timestamping);
2958
2959 void sock_enable_timestamps(struct sock *sk);
2960 void sock_no_linger(struct sock *sk);
2961 void sock_set_keepalive(struct sock *sk);
2962 void sock_set_priority(struct sock *sk, u32 priority);
2963 void sock_set_rcvbuf(struct sock *sk, int val);
2964 void sock_set_mark(struct sock *sk, u32 val);
2965 void sock_set_reuseaddr(struct sock *sk);
2966 void sock_set_reuseport(struct sock *sk);
2967 void sock_set_sndtimeo(struct sock *sk, s64 secs);
2968
2969 int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2970
2971 int sock_get_timeout(long timeo, void *optval, bool old_timeval);
2972 int sock_copy_user_timeval(struct __kernel_sock_timeval *tv,
2973 sockptr_t optval, int optlen, bool old_timeval);
2974
2975 int sock_ioctl_inout(struct sock *sk, unsigned int cmd,
2976 void __user *arg, void *karg, size_t size);
2977 int sk_ioctl(struct sock *sk, unsigned int cmd, void __user *arg);
sk_is_readable(struct sock * sk)2978 static inline bool sk_is_readable(struct sock *sk)
2979 {
2980 if (sk->sk_prot->sock_is_readable)
2981 return sk->sk_prot->sock_is_readable(sk);
2982 return false;
2983 }
2984 #endif /* _SOCK_H */
2985