xref: /aosp_15_r20/external/ComputeLibrary/examples/neon_copy_objects.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2016-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #include "arm_compute/runtime/NEON/NEFunctions.h"
26 
27 #include "arm_compute/core/Types.h"
28 #include "utils/Utils.h"
29 
30 #include <cstring>
31 #include <iostream>
32 
33 using namespace arm_compute;
34 using namespace utils;
35 
36 class NEONCopyObjectsExample : public Example
37 {
38 public:
do_setup(int argc,char ** argv)39     bool do_setup(int argc, char **argv) override
40     {
41         ARM_COMPUTE_UNUSED(argc);
42         ARM_COMPUTE_UNUSED(argv);
43 
44         /** [Copy objects example] */
45         constexpr unsigned int width  = 4;
46         constexpr unsigned int height = 3;
47         constexpr unsigned int batch  = 2;
48 
49         src_data = new float[width * height * batch];
50         dst_data = new float[width * height * batch];
51 
52         // Fill src_data with pseudo(meaningless) values:
53         for(unsigned int b = 0; b < batch; b++)
54         {
55             for(unsigned int h = 0; h < height; h++)
56             {
57                 for(unsigned int w = 0; w < width; w++)
58                 {
59                     src_data[b * (width * height) + h * width + w] = static_cast<float>(100 * b + 10 * h + w);
60                 }
61             }
62         }
63 
64         // Initialize the tensors dimensions and type:
65         const TensorShape shape(width, height, batch);
66         input.allocator()->init(TensorInfo(shape, 1, DataType::F32));
67         output.allocator()->init(TensorInfo(shape, 1, DataType::F32));
68 
69         // Configure softmax:
70         softmax.configure(&input, &output);
71 
72         // Allocate the input / output tensors:
73         input.allocator()->allocate();
74         output.allocator()->allocate();
75 
76         // Fill the input tensor:
77         // Simplest way: create an iterator to iterate through each element of the input tensor:
78         Window input_window;
79         input_window.use_tensor_dimensions(input.info()->tensor_shape());
80         std::cout << " Dimensions of the input's iterator:\n";
81         std::cout << " X = [start=" << input_window.x().start() << ", end=" << input_window.x().end() << ", step=" << input_window.x().step() << "]\n";
82         std::cout << " Y = [start=" << input_window.y().start() << ", end=" << input_window.y().end() << ", step=" << input_window.y().step() << "]\n";
83         std::cout << " Z = [start=" << input_window.z().start() << ", end=" << input_window.z().end() << ", step=" << input_window.z().step() << "]\n";
84 
85         // Create an iterator:
86         Iterator input_it(&input, input_window);
87 
88         // Iterate through the elements of src_data and copy them one by one to the input tensor:
89         // This is equivalent to:
90         // for( unsigned int z = 0; z < batch; ++z)
91         // {
92         //   for( unsigned int y = 0; y < height; ++y)
93         //   {
94         //     for( unsigned int x = 0; x < width; ++x)
95         //     {
96         //       *reinterpret_cast<float*>( input.buffer() + input.info()->offset_element_in_bytes(Coordinates(x,y,z))) = src_data[ z * (width*height) + y * width + x];
97         //     }
98         //   }
99         // }
100         // Except it works for an arbitrary number of dimensions
101         execute_window_loop(input_window, [&](const Coordinates & id)
102         {
103             std::cout << "Setting item [" << id.x() << "," << id.y() << "," << id.z() << "]\n";
104             *reinterpret_cast<float *>(input_it.ptr()) = src_data[id.z() * (width * height) + id.y() * width + id.x()];
105         },
106         input_it);
107 
108         // More efficient way: create an iterator to iterate through each row (instead of each element) of the output tensor:
109         Window output_window;
110         output_window.use_tensor_dimensions(output.info()->tensor_shape(), /* first_dimension =*/Window::DimY); // Iterate through the rows (not each element)
111         std::cout << " Dimensions of the output's iterator:\n";
112         std::cout << " X = [start=" << output_window.x().start() << ", end=" << output_window.x().end() << ", step=" << output_window.x().step() << "]\n";
113         std::cout << " Y = [start=" << output_window.y().start() << ", end=" << output_window.y().end() << ", step=" << output_window.y().step() << "]\n";
114         std::cout << " Z = [start=" << output_window.z().start() << ", end=" << output_window.z().end() << ", step=" << output_window.z().step() << "]\n";
115 
116         // Create an iterator:
117         Iterator output_it(&output, output_window);
118 
119         // Iterate through the rows of the output tensor and copy them to dst_data:
120         // This is equivalent to:
121         // for( unsigned int z = 0; z < batch; ++z)
122         // {
123         //   for( unsigned int y = 0; y < height; ++y)
124         //   {
125         //     memcpy( dst_data + z * (width*height) + y * width, input.buffer() + input.info()->offset_element_in_bytes(Coordinates(0,y,z)), width * sizeof(float));
126         //   }
127         // }
128         // Except it works for an arbitrary number of dimensions
129         execute_window_loop(output_window, [&](const Coordinates & id)
130         {
131             std::cout << "Copying one row starting from [" << id.x() << "," << id.y() << "," << id.z() << "]\n";
132             // Copy one whole row:
133             memcpy(dst_data + id.z() * (width * height) + id.y() * width, output_it.ptr(), width * sizeof(float));
134         },
135         output_it);
136 
137         /** [Copy objects example] */
138 
139         return true;
140     }
do_run()141     void do_run() override
142     {
143         // Run softmax:
144         softmax.run();
145     }
do_teardown()146     void do_teardown() override
147     {
148         delete[] src_data;
149         delete[] dst_data;
150     }
151 
152 private:
153     Tensor         input{}, output{};
154     float         *src_data{};
155     float         *dst_data{};
156     NESoftmaxLayer softmax{};
157 };
158 /** Main program for the copy objects test
159  *
160  * @param[in] argc Number of arguments
161  * @param[in] argv Arguments
162  */
main(int argc,char ** argv)163 int main(int argc, char **argv)
164 {
165     return utils::run_example<NEONCopyObjectsExample>(argc, argv);
166 }
167