1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * zswap.c - zswap driver file
4 *
5 * zswap is a cache that takes pages that are in the process
6 * of being swapped out and attempts to compress and store them in a
7 * RAM-based memory pool. This can result in a significant I/O reduction on
8 * the swap device and, in the case where decompressing from RAM is faster
9 * than reading from the swap device, can also improve workload performance.
10 *
11 * Copyright (C) 2012 Seth Jennings <[email protected]>
12 */
13
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15
16 #include <linux/module.h>
17 #include <linux/cpu.h>
18 #include <linux/highmem.h>
19 #include <linux/slab.h>
20 #include <linux/spinlock.h>
21 #include <linux/types.h>
22 #include <linux/atomic.h>
23 #include <linux/swap.h>
24 #include <linux/crypto.h>
25 #include <linux/scatterlist.h>
26 #include <linux/mempolicy.h>
27 #include <linux/mempool.h>
28 #include <linux/zpool.h>
29 #include <crypto/acompress.h>
30 #include <linux/zswap.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <linux/swapops.h>
34 #include <linux/writeback.h>
35 #include <linux/pagemap.h>
36 #include <linux/workqueue.h>
37 #include <linux/list_lru.h>
38
39 #include "swap.h"
40 #include "internal.h"
41
42 /*********************************
43 * statistics
44 **********************************/
45 /* The number of compressed pages currently stored in zswap */
46 atomic_long_t zswap_stored_pages = ATOMIC_LONG_INIT(0);
47
48 /*
49 * The statistics below are not protected from concurrent access for
50 * performance reasons so they may not be a 100% accurate. However,
51 * they do provide useful information on roughly how many times a
52 * certain event is occurring.
53 */
54
55 /* Pool limit was hit (see zswap_max_pool_percent) */
56 static u64 zswap_pool_limit_hit;
57 /* Pages written back when pool limit was reached */
58 static u64 zswap_written_back_pages;
59 /* Store failed due to a reclaim failure after pool limit was reached */
60 static u64 zswap_reject_reclaim_fail;
61 /* Store failed due to compression algorithm failure */
62 static u64 zswap_reject_compress_fail;
63 /* Compressed page was too big for the allocator to (optimally) store */
64 static u64 zswap_reject_compress_poor;
65 /* Store failed because underlying allocator could not get memory */
66 static u64 zswap_reject_alloc_fail;
67 /* Store failed because the entry metadata could not be allocated (rare) */
68 static u64 zswap_reject_kmemcache_fail;
69
70 /* Shrinker work queue */
71 static struct workqueue_struct *shrink_wq;
72 /* Pool limit was hit, we need to calm down */
73 static bool zswap_pool_reached_full;
74
75 /*********************************
76 * tunables
77 **********************************/
78
79 #define ZSWAP_PARAM_UNSET ""
80
81 static int zswap_setup(void);
82
83 /* Enable/disable zswap */
84 static DEFINE_STATIC_KEY_MAYBE(CONFIG_ZSWAP_DEFAULT_ON, zswap_ever_enabled);
85 static bool zswap_enabled = IS_ENABLED(CONFIG_ZSWAP_DEFAULT_ON);
86 static int zswap_enabled_param_set(const char *,
87 const struct kernel_param *);
88 static const struct kernel_param_ops zswap_enabled_param_ops = {
89 .set = zswap_enabled_param_set,
90 .get = param_get_bool,
91 };
92 module_param_cb(enabled, &zswap_enabled_param_ops, &zswap_enabled, 0644);
93
94 /* Crypto compressor to use */
95 static char *zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
96 static int zswap_compressor_param_set(const char *,
97 const struct kernel_param *);
98 static const struct kernel_param_ops zswap_compressor_param_ops = {
99 .set = zswap_compressor_param_set,
100 .get = param_get_charp,
101 .free = param_free_charp,
102 };
103 module_param_cb(compressor, &zswap_compressor_param_ops,
104 &zswap_compressor, 0644);
105
106 /* Compressed storage zpool to use */
107 static char *zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
108 static int zswap_zpool_param_set(const char *, const struct kernel_param *);
109 static const struct kernel_param_ops zswap_zpool_param_ops = {
110 .set = zswap_zpool_param_set,
111 .get = param_get_charp,
112 .free = param_free_charp,
113 };
114 module_param_cb(zpool, &zswap_zpool_param_ops, &zswap_zpool_type, 0644);
115
116 /* The maximum percentage of memory that the compressed pool can occupy */
117 static unsigned int zswap_max_pool_percent = 20;
118 module_param_named(max_pool_percent, zswap_max_pool_percent, uint, 0644);
119
120 /* The threshold for accepting new pages after the max_pool_percent was hit */
121 static unsigned int zswap_accept_thr_percent = 90; /* of max pool size */
122 module_param_named(accept_threshold_percent, zswap_accept_thr_percent,
123 uint, 0644);
124
125 /* Enable/disable memory pressure-based shrinker. */
126 static bool zswap_shrinker_enabled = IS_ENABLED(
127 CONFIG_ZSWAP_SHRINKER_DEFAULT_ON);
128 module_param_named(shrinker_enabled, zswap_shrinker_enabled, bool, 0644);
129
zswap_is_enabled(void)130 bool zswap_is_enabled(void)
131 {
132 return zswap_enabled;
133 }
134
zswap_never_enabled(void)135 bool zswap_never_enabled(void)
136 {
137 return !static_branch_maybe(CONFIG_ZSWAP_DEFAULT_ON, &zswap_ever_enabled);
138 }
139
140 /*********************************
141 * data structures
142 **********************************/
143
144 struct crypto_acomp_ctx {
145 struct crypto_acomp *acomp;
146 struct acomp_req *req;
147 struct crypto_wait wait;
148 u8 *buffer;
149 struct mutex mutex;
150 bool is_sleepable;
151 };
152
153 /*
154 * The lock ordering is zswap_tree.lock -> zswap_pool.lru_lock.
155 * The only case where lru_lock is not acquired while holding tree.lock is
156 * when a zswap_entry is taken off the lru for writeback, in that case it
157 * needs to be verified that it's still valid in the tree.
158 */
159 struct zswap_pool {
160 struct zpool *zpool;
161 struct crypto_acomp_ctx __percpu *acomp_ctx;
162 struct percpu_ref ref;
163 struct list_head list;
164 struct work_struct release_work;
165 struct hlist_node node;
166 char tfm_name[CRYPTO_MAX_ALG_NAME];
167 };
168
169 /* Global LRU lists shared by all zswap pools. */
170 static struct list_lru zswap_list_lru;
171
172 /* The lock protects zswap_next_shrink updates. */
173 static DEFINE_SPINLOCK(zswap_shrink_lock);
174 static struct mem_cgroup *zswap_next_shrink;
175 static struct work_struct zswap_shrink_work;
176 static struct shrinker *zswap_shrinker;
177
178 /*
179 * struct zswap_entry
180 *
181 * This structure contains the metadata for tracking a single compressed
182 * page within zswap.
183 *
184 * swpentry - associated swap entry, the offset indexes into the red-black tree
185 * length - the length in bytes of the compressed page data. Needed during
186 * decompression.
187 * referenced - true if the entry recently entered the zswap pool. Unset by the
188 * writeback logic. The entry is only reclaimed by the writeback
189 * logic if referenced is unset. See comments in the shrinker
190 * section for context.
191 * pool - the zswap_pool the entry's data is in
192 * handle - zpool allocation handle that stores the compressed page data
193 * objcg - the obj_cgroup that the compressed memory is charged to
194 * lru - handle to the pool's lru used to evict pages.
195 */
196 struct zswap_entry {
197 swp_entry_t swpentry;
198 unsigned int length;
199 bool referenced;
200 struct zswap_pool *pool;
201 unsigned long handle;
202 struct obj_cgroup *objcg;
203 struct list_head lru;
204 };
205
206 static struct xarray *zswap_trees[MAX_SWAPFILES];
207 static unsigned int nr_zswap_trees[MAX_SWAPFILES];
208
209 /* RCU-protected iteration */
210 static LIST_HEAD(zswap_pools);
211 /* protects zswap_pools list modification */
212 static DEFINE_SPINLOCK(zswap_pools_lock);
213 /* pool counter to provide unique names to zpool */
214 static atomic_t zswap_pools_count = ATOMIC_INIT(0);
215
216 enum zswap_init_type {
217 ZSWAP_UNINIT,
218 ZSWAP_INIT_SUCCEED,
219 ZSWAP_INIT_FAILED
220 };
221
222 static enum zswap_init_type zswap_init_state;
223
224 /* used to ensure the integrity of initialization */
225 static DEFINE_MUTEX(zswap_init_lock);
226
227 /* init completed, but couldn't create the initial pool */
228 static bool zswap_has_pool;
229
230 /*********************************
231 * helpers and fwd declarations
232 **********************************/
233
swap_zswap_tree(swp_entry_t swp)234 static inline struct xarray *swap_zswap_tree(swp_entry_t swp)
235 {
236 return &zswap_trees[swp_type(swp)][swp_offset(swp)
237 >> SWAP_ADDRESS_SPACE_SHIFT];
238 }
239
240 #define zswap_pool_debug(msg, p) \
241 pr_debug("%s pool %s/%s\n", msg, (p)->tfm_name, \
242 zpool_get_type((p)->zpool))
243
244 /*********************************
245 * pool functions
246 **********************************/
247 static void __zswap_pool_empty(struct percpu_ref *ref);
248
zswap_pool_create(char * type,char * compressor)249 static struct zswap_pool *zswap_pool_create(char *type, char *compressor)
250 {
251 struct zswap_pool *pool;
252 char name[38]; /* 'zswap' + 32 char (max) num + \0 */
253 gfp_t gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
254 int ret, cpu;
255
256 if (!zswap_has_pool) {
257 /* if either are unset, pool initialization failed, and we
258 * need both params to be set correctly before trying to
259 * create a pool.
260 */
261 if (!strcmp(type, ZSWAP_PARAM_UNSET))
262 return NULL;
263 if (!strcmp(compressor, ZSWAP_PARAM_UNSET))
264 return NULL;
265 }
266
267 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
268 if (!pool)
269 return NULL;
270
271 /* unique name for each pool specifically required by zsmalloc */
272 snprintf(name, 38, "zswap%x", atomic_inc_return(&zswap_pools_count));
273 pool->zpool = zpool_create_pool(type, name, gfp);
274 if (!pool->zpool) {
275 pr_err("%s zpool not available\n", type);
276 goto error;
277 }
278 pr_debug("using %s zpool\n", zpool_get_type(pool->zpool));
279
280 strscpy(pool->tfm_name, compressor, sizeof(pool->tfm_name));
281
282 pool->acomp_ctx = alloc_percpu(*pool->acomp_ctx);
283 if (!pool->acomp_ctx) {
284 pr_err("percpu alloc failed\n");
285 goto error;
286 }
287
288 for_each_possible_cpu(cpu)
289 mutex_init(&per_cpu_ptr(pool->acomp_ctx, cpu)->mutex);
290
291 ret = cpuhp_state_add_instance(CPUHP_MM_ZSWP_POOL_PREPARE,
292 &pool->node);
293 if (ret)
294 goto error;
295
296 /* being the current pool takes 1 ref; this func expects the
297 * caller to always add the new pool as the current pool
298 */
299 ret = percpu_ref_init(&pool->ref, __zswap_pool_empty,
300 PERCPU_REF_ALLOW_REINIT, GFP_KERNEL);
301 if (ret)
302 goto ref_fail;
303 INIT_LIST_HEAD(&pool->list);
304
305 zswap_pool_debug("created", pool);
306
307 return pool;
308
309 ref_fail:
310 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
311 error:
312 if (pool->acomp_ctx)
313 free_percpu(pool->acomp_ctx);
314 if (pool->zpool)
315 zpool_destroy_pool(pool->zpool);
316 kfree(pool);
317 return NULL;
318 }
319
__zswap_pool_create_fallback(void)320 static struct zswap_pool *__zswap_pool_create_fallback(void)
321 {
322 bool has_comp, has_zpool;
323
324 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
325 if (!has_comp && strcmp(zswap_compressor,
326 CONFIG_ZSWAP_COMPRESSOR_DEFAULT)) {
327 pr_err("compressor %s not available, using default %s\n",
328 zswap_compressor, CONFIG_ZSWAP_COMPRESSOR_DEFAULT);
329 param_free_charp(&zswap_compressor);
330 zswap_compressor = CONFIG_ZSWAP_COMPRESSOR_DEFAULT;
331 has_comp = crypto_has_acomp(zswap_compressor, 0, 0);
332 }
333 if (!has_comp) {
334 pr_err("default compressor %s not available\n",
335 zswap_compressor);
336 param_free_charp(&zswap_compressor);
337 zswap_compressor = ZSWAP_PARAM_UNSET;
338 }
339
340 has_zpool = zpool_has_pool(zswap_zpool_type);
341 if (!has_zpool && strcmp(zswap_zpool_type,
342 CONFIG_ZSWAP_ZPOOL_DEFAULT)) {
343 pr_err("zpool %s not available, using default %s\n",
344 zswap_zpool_type, CONFIG_ZSWAP_ZPOOL_DEFAULT);
345 param_free_charp(&zswap_zpool_type);
346 zswap_zpool_type = CONFIG_ZSWAP_ZPOOL_DEFAULT;
347 has_zpool = zpool_has_pool(zswap_zpool_type);
348 }
349 if (!has_zpool) {
350 pr_err("default zpool %s not available\n",
351 zswap_zpool_type);
352 param_free_charp(&zswap_zpool_type);
353 zswap_zpool_type = ZSWAP_PARAM_UNSET;
354 }
355
356 if (!has_comp || !has_zpool)
357 return NULL;
358
359 return zswap_pool_create(zswap_zpool_type, zswap_compressor);
360 }
361
zswap_pool_destroy(struct zswap_pool * pool)362 static void zswap_pool_destroy(struct zswap_pool *pool)
363 {
364 zswap_pool_debug("destroying", pool);
365
366 cpuhp_state_remove_instance(CPUHP_MM_ZSWP_POOL_PREPARE, &pool->node);
367 free_percpu(pool->acomp_ctx);
368
369 zpool_destroy_pool(pool->zpool);
370 kfree(pool);
371 }
372
__zswap_pool_release(struct work_struct * work)373 static void __zswap_pool_release(struct work_struct *work)
374 {
375 struct zswap_pool *pool = container_of(work, typeof(*pool),
376 release_work);
377
378 synchronize_rcu();
379
380 /* nobody should have been able to get a ref... */
381 WARN_ON(!percpu_ref_is_zero(&pool->ref));
382 percpu_ref_exit(&pool->ref);
383
384 /* pool is now off zswap_pools list and has no references. */
385 zswap_pool_destroy(pool);
386 }
387
388 static struct zswap_pool *zswap_pool_current(void);
389
__zswap_pool_empty(struct percpu_ref * ref)390 static void __zswap_pool_empty(struct percpu_ref *ref)
391 {
392 struct zswap_pool *pool;
393
394 pool = container_of(ref, typeof(*pool), ref);
395
396 spin_lock_bh(&zswap_pools_lock);
397
398 WARN_ON(pool == zswap_pool_current());
399
400 list_del_rcu(&pool->list);
401
402 INIT_WORK(&pool->release_work, __zswap_pool_release);
403 schedule_work(&pool->release_work);
404
405 spin_unlock_bh(&zswap_pools_lock);
406 }
407
zswap_pool_tryget(struct zswap_pool * pool)408 static int __must_check zswap_pool_tryget(struct zswap_pool *pool)
409 {
410 if (!pool)
411 return 0;
412
413 return percpu_ref_tryget(&pool->ref);
414 }
415
416 /* The caller must already have a reference. */
zswap_pool_get(struct zswap_pool * pool)417 static void zswap_pool_get(struct zswap_pool *pool)
418 {
419 percpu_ref_get(&pool->ref);
420 }
421
zswap_pool_put(struct zswap_pool * pool)422 static void zswap_pool_put(struct zswap_pool *pool)
423 {
424 percpu_ref_put(&pool->ref);
425 }
426
__zswap_pool_current(void)427 static struct zswap_pool *__zswap_pool_current(void)
428 {
429 struct zswap_pool *pool;
430
431 pool = list_first_or_null_rcu(&zswap_pools, typeof(*pool), list);
432 WARN_ONCE(!pool && zswap_has_pool,
433 "%s: no page storage pool!\n", __func__);
434
435 return pool;
436 }
437
zswap_pool_current(void)438 static struct zswap_pool *zswap_pool_current(void)
439 {
440 assert_spin_locked(&zswap_pools_lock);
441
442 return __zswap_pool_current();
443 }
444
zswap_pool_current_get(void)445 static struct zswap_pool *zswap_pool_current_get(void)
446 {
447 struct zswap_pool *pool;
448
449 rcu_read_lock();
450
451 pool = __zswap_pool_current();
452 if (!zswap_pool_tryget(pool))
453 pool = NULL;
454
455 rcu_read_unlock();
456
457 return pool;
458 }
459
460 /* type and compressor must be null-terminated */
zswap_pool_find_get(char * type,char * compressor)461 static struct zswap_pool *zswap_pool_find_get(char *type, char *compressor)
462 {
463 struct zswap_pool *pool;
464
465 assert_spin_locked(&zswap_pools_lock);
466
467 list_for_each_entry_rcu(pool, &zswap_pools, list) {
468 if (strcmp(pool->tfm_name, compressor))
469 continue;
470 if (strcmp(zpool_get_type(pool->zpool), type))
471 continue;
472 /* if we can't get it, it's about to be destroyed */
473 if (!zswap_pool_tryget(pool))
474 continue;
475 return pool;
476 }
477
478 return NULL;
479 }
480
zswap_max_pages(void)481 static unsigned long zswap_max_pages(void)
482 {
483 return totalram_pages() * zswap_max_pool_percent / 100;
484 }
485
zswap_accept_thr_pages(void)486 static unsigned long zswap_accept_thr_pages(void)
487 {
488 return zswap_max_pages() * zswap_accept_thr_percent / 100;
489 }
490
zswap_total_pages(void)491 unsigned long zswap_total_pages(void)
492 {
493 struct zswap_pool *pool;
494 unsigned long total = 0;
495
496 rcu_read_lock();
497 list_for_each_entry_rcu(pool, &zswap_pools, list)
498 total += zpool_get_total_pages(pool->zpool);
499 rcu_read_unlock();
500
501 return total;
502 }
503
zswap_check_limits(void)504 static bool zswap_check_limits(void)
505 {
506 unsigned long cur_pages = zswap_total_pages();
507 unsigned long max_pages = zswap_max_pages();
508
509 if (cur_pages >= max_pages) {
510 zswap_pool_limit_hit++;
511 zswap_pool_reached_full = true;
512 } else if (zswap_pool_reached_full &&
513 cur_pages <= zswap_accept_thr_pages()) {
514 zswap_pool_reached_full = false;
515 }
516 return zswap_pool_reached_full;
517 }
518
519 /*********************************
520 * param callbacks
521 **********************************/
522
zswap_pool_changed(const char * s,const struct kernel_param * kp)523 static bool zswap_pool_changed(const char *s, const struct kernel_param *kp)
524 {
525 /* no change required */
526 if (!strcmp(s, *(char **)kp->arg) && zswap_has_pool)
527 return false;
528 return true;
529 }
530
531 /* val must be a null-terminated string */
__zswap_param_set(const char * val,const struct kernel_param * kp,char * type,char * compressor)532 static int __zswap_param_set(const char *val, const struct kernel_param *kp,
533 char *type, char *compressor)
534 {
535 struct zswap_pool *pool, *put_pool = NULL;
536 char *s = strstrip((char *)val);
537 int ret = 0;
538 bool new_pool = false;
539
540 mutex_lock(&zswap_init_lock);
541 switch (zswap_init_state) {
542 case ZSWAP_UNINIT:
543 /* if this is load-time (pre-init) param setting,
544 * don't create a pool; that's done during init.
545 */
546 ret = param_set_charp(s, kp);
547 break;
548 case ZSWAP_INIT_SUCCEED:
549 new_pool = zswap_pool_changed(s, kp);
550 break;
551 case ZSWAP_INIT_FAILED:
552 pr_err("can't set param, initialization failed\n");
553 ret = -ENODEV;
554 }
555 mutex_unlock(&zswap_init_lock);
556
557 /* no need to create a new pool, return directly */
558 if (!new_pool)
559 return ret;
560
561 if (!type) {
562 if (!zpool_has_pool(s)) {
563 pr_err("zpool %s not available\n", s);
564 return -ENOENT;
565 }
566 type = s;
567 } else if (!compressor) {
568 if (!crypto_has_acomp(s, 0, 0)) {
569 pr_err("compressor %s not available\n", s);
570 return -ENOENT;
571 }
572 compressor = s;
573 } else {
574 WARN_ON(1);
575 return -EINVAL;
576 }
577
578 spin_lock_bh(&zswap_pools_lock);
579
580 pool = zswap_pool_find_get(type, compressor);
581 if (pool) {
582 zswap_pool_debug("using existing", pool);
583 WARN_ON(pool == zswap_pool_current());
584 list_del_rcu(&pool->list);
585 }
586
587 spin_unlock_bh(&zswap_pools_lock);
588
589 if (!pool)
590 pool = zswap_pool_create(type, compressor);
591 else {
592 /*
593 * Restore the initial ref dropped by percpu_ref_kill()
594 * when the pool was decommissioned and switch it again
595 * to percpu mode.
596 */
597 percpu_ref_resurrect(&pool->ref);
598
599 /* Drop the ref from zswap_pool_find_get(). */
600 zswap_pool_put(pool);
601 }
602
603 if (pool)
604 ret = param_set_charp(s, kp);
605 else
606 ret = -EINVAL;
607
608 spin_lock_bh(&zswap_pools_lock);
609
610 if (!ret) {
611 put_pool = zswap_pool_current();
612 list_add_rcu(&pool->list, &zswap_pools);
613 zswap_has_pool = true;
614 } else if (pool) {
615 /* add the possibly pre-existing pool to the end of the pools
616 * list; if it's new (and empty) then it'll be removed and
617 * destroyed by the put after we drop the lock
618 */
619 list_add_tail_rcu(&pool->list, &zswap_pools);
620 put_pool = pool;
621 }
622
623 spin_unlock_bh(&zswap_pools_lock);
624
625 if (!zswap_has_pool && !pool) {
626 /* if initial pool creation failed, and this pool creation also
627 * failed, maybe both compressor and zpool params were bad.
628 * Allow changing this param, so pool creation will succeed
629 * when the other param is changed. We already verified this
630 * param is ok in the zpool_has_pool() or crypto_has_acomp()
631 * checks above.
632 */
633 ret = param_set_charp(s, kp);
634 }
635
636 /* drop the ref from either the old current pool,
637 * or the new pool we failed to add
638 */
639 if (put_pool)
640 percpu_ref_kill(&put_pool->ref);
641
642 return ret;
643 }
644
zswap_compressor_param_set(const char * val,const struct kernel_param * kp)645 static int zswap_compressor_param_set(const char *val,
646 const struct kernel_param *kp)
647 {
648 return __zswap_param_set(val, kp, zswap_zpool_type, NULL);
649 }
650
zswap_zpool_param_set(const char * val,const struct kernel_param * kp)651 static int zswap_zpool_param_set(const char *val,
652 const struct kernel_param *kp)
653 {
654 return __zswap_param_set(val, kp, NULL, zswap_compressor);
655 }
656
zswap_enabled_param_set(const char * val,const struct kernel_param * kp)657 static int zswap_enabled_param_set(const char *val,
658 const struct kernel_param *kp)
659 {
660 int ret = -ENODEV;
661
662 /* if this is load-time (pre-init) param setting, only set param. */
663 if (system_state != SYSTEM_RUNNING)
664 return param_set_bool(val, kp);
665
666 mutex_lock(&zswap_init_lock);
667 switch (zswap_init_state) {
668 case ZSWAP_UNINIT:
669 if (zswap_setup())
670 break;
671 fallthrough;
672 case ZSWAP_INIT_SUCCEED:
673 if (!zswap_has_pool)
674 pr_err("can't enable, no pool configured\n");
675 else
676 ret = param_set_bool(val, kp);
677 break;
678 case ZSWAP_INIT_FAILED:
679 pr_err("can't enable, initialization failed\n");
680 }
681 mutex_unlock(&zswap_init_lock);
682
683 return ret;
684 }
685
686 /*********************************
687 * lru functions
688 **********************************/
689
690 /* should be called under RCU */
691 #ifdef CONFIG_MEMCG
mem_cgroup_from_entry(struct zswap_entry * entry)692 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
693 {
694 return entry->objcg ? obj_cgroup_memcg(entry->objcg) : NULL;
695 }
696 #else
mem_cgroup_from_entry(struct zswap_entry * entry)697 static inline struct mem_cgroup *mem_cgroup_from_entry(struct zswap_entry *entry)
698 {
699 return NULL;
700 }
701 #endif
702
entry_to_nid(struct zswap_entry * entry)703 static inline int entry_to_nid(struct zswap_entry *entry)
704 {
705 return page_to_nid(virt_to_page(entry));
706 }
707
zswap_lru_add(struct list_lru * list_lru,struct zswap_entry * entry)708 static void zswap_lru_add(struct list_lru *list_lru, struct zswap_entry *entry)
709 {
710 int nid = entry_to_nid(entry);
711 struct mem_cgroup *memcg;
712
713 /*
714 * Note that it is safe to use rcu_read_lock() here, even in the face of
715 * concurrent memcg offlining:
716 *
717 * 1. list_lru_add() is called before list_lru_one is dead. The
718 * new entry will be reparented to memcg's parent's list_lru.
719 * 2. list_lru_add() is called after list_lru_one is dead. The
720 * new entry will be added directly to memcg's parent's list_lru.
721 *
722 * Similar reasoning holds for list_lru_del().
723 */
724 rcu_read_lock();
725 memcg = mem_cgroup_from_entry(entry);
726 /* will always succeed */
727 list_lru_add(list_lru, &entry->lru, nid, memcg);
728 rcu_read_unlock();
729 }
730
zswap_lru_del(struct list_lru * list_lru,struct zswap_entry * entry)731 static void zswap_lru_del(struct list_lru *list_lru, struct zswap_entry *entry)
732 {
733 int nid = entry_to_nid(entry);
734 struct mem_cgroup *memcg;
735
736 rcu_read_lock();
737 memcg = mem_cgroup_from_entry(entry);
738 /* will always succeed */
739 list_lru_del(list_lru, &entry->lru, nid, memcg);
740 rcu_read_unlock();
741 }
742
zswap_lruvec_state_init(struct lruvec * lruvec)743 void zswap_lruvec_state_init(struct lruvec *lruvec)
744 {
745 atomic_long_set(&lruvec->zswap_lruvec_state.nr_disk_swapins, 0);
746 }
747
zswap_folio_swapin(struct folio * folio)748 void zswap_folio_swapin(struct folio *folio)
749 {
750 struct lruvec *lruvec;
751
752 if (folio) {
753 lruvec = folio_lruvec(folio);
754 atomic_long_inc(&lruvec->zswap_lruvec_state.nr_disk_swapins);
755 }
756 }
757
758 /*
759 * This function should be called when a memcg is being offlined.
760 *
761 * Since the global shrinker shrink_worker() may hold a reference
762 * of the memcg, we must check and release the reference in
763 * zswap_next_shrink.
764 *
765 * shrink_worker() must handle the case where this function releases
766 * the reference of memcg being shrunk.
767 */
zswap_memcg_offline_cleanup(struct mem_cgroup * memcg)768 void zswap_memcg_offline_cleanup(struct mem_cgroup *memcg)
769 {
770 /* lock out zswap shrinker walking memcg tree */
771 spin_lock(&zswap_shrink_lock);
772 if (zswap_next_shrink == memcg) {
773 do {
774 zswap_next_shrink = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
775 } while (zswap_next_shrink && !mem_cgroup_online(zswap_next_shrink));
776 }
777 spin_unlock(&zswap_shrink_lock);
778 }
779
780 /*********************************
781 * zswap entry functions
782 **********************************/
783 static struct kmem_cache *zswap_entry_cache;
784
zswap_entry_cache_alloc(gfp_t gfp,int nid)785 static struct zswap_entry *zswap_entry_cache_alloc(gfp_t gfp, int nid)
786 {
787 struct zswap_entry *entry;
788 entry = kmem_cache_alloc_node(zswap_entry_cache, gfp, nid);
789 if (!entry)
790 return NULL;
791 return entry;
792 }
793
zswap_entry_cache_free(struct zswap_entry * entry)794 static void zswap_entry_cache_free(struct zswap_entry *entry)
795 {
796 kmem_cache_free(zswap_entry_cache, entry);
797 }
798
799 /*
800 * Carries out the common pattern of freeing and entry's zpool allocation,
801 * freeing the entry itself, and decrementing the number of stored pages.
802 */
zswap_entry_free(struct zswap_entry * entry)803 static void zswap_entry_free(struct zswap_entry *entry)
804 {
805 zswap_lru_del(&zswap_list_lru, entry);
806 zpool_free(entry->pool->zpool, entry->handle);
807 zswap_pool_put(entry->pool);
808 if (entry->objcg) {
809 obj_cgroup_uncharge_zswap(entry->objcg, entry->length);
810 obj_cgroup_put(entry->objcg);
811 }
812 zswap_entry_cache_free(entry);
813 atomic_long_dec(&zswap_stored_pages);
814 }
815
816 /*********************************
817 * compressed storage functions
818 **********************************/
zswap_cpu_comp_prepare(unsigned int cpu,struct hlist_node * node)819 static int zswap_cpu_comp_prepare(unsigned int cpu, struct hlist_node *node)
820 {
821 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
822 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
823 struct crypto_acomp *acomp = NULL;
824 struct acomp_req *req = NULL;
825 u8 *buffer = NULL;
826 int ret;
827
828 buffer = kmalloc_node(PAGE_SIZE * 2, GFP_KERNEL, cpu_to_node(cpu));
829 if (!buffer) {
830 ret = -ENOMEM;
831 goto fail;
832 }
833
834 acomp = crypto_alloc_acomp_node(pool->tfm_name, 0, 0, cpu_to_node(cpu));
835 if (IS_ERR(acomp)) {
836 pr_err("could not alloc crypto acomp %s : %ld\n",
837 pool->tfm_name, PTR_ERR(acomp));
838 ret = PTR_ERR(acomp);
839 goto fail;
840 }
841
842 req = acomp_request_alloc(acomp);
843 if (!req) {
844 pr_err("could not alloc crypto acomp_request %s\n",
845 pool->tfm_name);
846 ret = -ENOMEM;
847 goto fail;
848 }
849
850 /*
851 * Only hold the mutex after completing allocations, otherwise we may
852 * recurse into zswap through reclaim and attempt to hold the mutex
853 * again resulting in a deadlock.
854 */
855 mutex_lock(&acomp_ctx->mutex);
856 crypto_init_wait(&acomp_ctx->wait);
857
858 /*
859 * if the backend of acomp is async zip, crypto_req_done() will wakeup
860 * crypto_wait_req(); if the backend of acomp is scomp, the callback
861 * won't be called, crypto_wait_req() will return without blocking.
862 */
863 acomp_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
864 crypto_req_done, &acomp_ctx->wait);
865
866 acomp_ctx->buffer = buffer;
867 acomp_ctx->acomp = acomp;
868 acomp_ctx->is_sleepable = acomp_is_async(acomp);
869 acomp_ctx->req = req;
870 mutex_unlock(&acomp_ctx->mutex);
871 return 0;
872
873 fail:
874 if (acomp)
875 crypto_free_acomp(acomp);
876 kfree(buffer);
877 return ret;
878 }
879
zswap_cpu_comp_dead(unsigned int cpu,struct hlist_node * node)880 static int zswap_cpu_comp_dead(unsigned int cpu, struct hlist_node *node)
881 {
882 struct zswap_pool *pool = hlist_entry(node, struct zswap_pool, node);
883 struct crypto_acomp_ctx *acomp_ctx = per_cpu_ptr(pool->acomp_ctx, cpu);
884 struct acomp_req *req;
885 struct crypto_acomp *acomp;
886 u8 *buffer;
887
888 if (IS_ERR_OR_NULL(acomp_ctx))
889 return 0;
890
891 mutex_lock(&acomp_ctx->mutex);
892 req = acomp_ctx->req;
893 acomp = acomp_ctx->acomp;
894 buffer = acomp_ctx->buffer;
895 acomp_ctx->req = NULL;
896 acomp_ctx->acomp = NULL;
897 acomp_ctx->buffer = NULL;
898 mutex_unlock(&acomp_ctx->mutex);
899
900 /*
901 * Do the actual freeing after releasing the mutex to avoid subtle
902 * locking dependencies causing deadlocks.
903 */
904 if (!IS_ERR_OR_NULL(req))
905 acomp_request_free(req);
906 if (!IS_ERR_OR_NULL(acomp))
907 crypto_free_acomp(acomp);
908 kfree(buffer);
909
910 return 0;
911 }
912
acomp_ctx_get_cpu_lock(struct zswap_pool * pool)913 static struct crypto_acomp_ctx *acomp_ctx_get_cpu_lock(struct zswap_pool *pool)
914 {
915 struct crypto_acomp_ctx *acomp_ctx;
916
917 for (;;) {
918 acomp_ctx = raw_cpu_ptr(pool->acomp_ctx);
919 mutex_lock(&acomp_ctx->mutex);
920 if (likely(acomp_ctx->req))
921 return acomp_ctx;
922 /*
923 * It is possible that we were migrated to a different CPU after
924 * getting the per-CPU ctx but before the mutex was acquired. If
925 * the old CPU got offlined, zswap_cpu_comp_dead() could have
926 * already freed ctx->req (among other things) and set it to
927 * NULL. Just try again on the new CPU that we ended up on.
928 */
929 mutex_unlock(&acomp_ctx->mutex);
930 }
931 }
932
acomp_ctx_put_unlock(struct crypto_acomp_ctx * acomp_ctx)933 static void acomp_ctx_put_unlock(struct crypto_acomp_ctx *acomp_ctx)
934 {
935 mutex_unlock(&acomp_ctx->mutex);
936 }
937
zswap_compress(struct page * page,struct zswap_entry * entry,struct zswap_pool * pool)938 static bool zswap_compress(struct page *page, struct zswap_entry *entry,
939 struct zswap_pool *pool)
940 {
941 struct crypto_acomp_ctx *acomp_ctx;
942 struct scatterlist input, output;
943 int comp_ret = 0, alloc_ret = 0;
944 unsigned int dlen = PAGE_SIZE;
945 unsigned long handle;
946 struct zpool *zpool;
947 char *buf;
948 gfp_t gfp;
949 u8 *dst;
950
951 acomp_ctx = acomp_ctx_get_cpu_lock(pool);
952 dst = acomp_ctx->buffer;
953 sg_init_table(&input, 1);
954 sg_set_page(&input, page, PAGE_SIZE, 0);
955
956 /*
957 * We need PAGE_SIZE * 2 here since there maybe over-compression case,
958 * and hardware-accelerators may won't check the dst buffer size, so
959 * giving the dst buffer with enough length to avoid buffer overflow.
960 */
961 sg_init_one(&output, dst, PAGE_SIZE * 2);
962 acomp_request_set_params(acomp_ctx->req, &input, &output, PAGE_SIZE, dlen);
963
964 /*
965 * it maybe looks a little bit silly that we send an asynchronous request,
966 * then wait for its completion synchronously. This makes the process look
967 * synchronous in fact.
968 * Theoretically, acomp supports users send multiple acomp requests in one
969 * acomp instance, then get those requests done simultaneously. but in this
970 * case, zswap actually does store and load page by page, there is no
971 * existing method to send the second page before the first page is done
972 * in one thread doing zwap.
973 * but in different threads running on different cpu, we have different
974 * acomp instance, so multiple threads can do (de)compression in parallel.
975 */
976 comp_ret = crypto_wait_req(crypto_acomp_compress(acomp_ctx->req), &acomp_ctx->wait);
977 dlen = acomp_ctx->req->dlen;
978 if (comp_ret)
979 goto unlock;
980
981 zpool = pool->zpool;
982 gfp = __GFP_NORETRY | __GFP_NOWARN | __GFP_KSWAPD_RECLAIM;
983 if (zpool_malloc_support_movable(zpool))
984 gfp |= __GFP_HIGHMEM | __GFP_MOVABLE;
985 alloc_ret = zpool_malloc(zpool, dlen, gfp, &handle);
986 if (alloc_ret)
987 goto unlock;
988
989 buf = zpool_map_handle(zpool, handle, ZPOOL_MM_WO);
990 memcpy(buf, dst, dlen);
991 zpool_unmap_handle(zpool, handle);
992
993 entry->handle = handle;
994 entry->length = dlen;
995
996 unlock:
997 if (comp_ret == -ENOSPC || alloc_ret == -ENOSPC)
998 zswap_reject_compress_poor++;
999 else if (comp_ret)
1000 zswap_reject_compress_fail++;
1001 else if (alloc_ret)
1002 zswap_reject_alloc_fail++;
1003
1004 acomp_ctx_put_unlock(acomp_ctx);
1005 return comp_ret == 0 && alloc_ret == 0;
1006 }
1007
zswap_decompress(struct zswap_entry * entry,struct folio * folio)1008 static void zswap_decompress(struct zswap_entry *entry, struct folio *folio)
1009 {
1010 struct zpool *zpool = entry->pool->zpool;
1011 struct scatterlist input, output;
1012 struct crypto_acomp_ctx *acomp_ctx;
1013 u8 *src;
1014
1015 acomp_ctx = acomp_ctx_get_cpu_lock(entry->pool);
1016 src = zpool_map_handle(zpool, entry->handle, ZPOOL_MM_RO);
1017 /*
1018 * If zpool_map_handle is atomic, we cannot reliably utilize its mapped buffer
1019 * to do crypto_acomp_decompress() which might sleep. In such cases, we must
1020 * resort to copying the buffer to a temporary one.
1021 * Meanwhile, zpool_map_handle() might return a non-linearly mapped buffer,
1022 * such as a kmap address of high memory or even ever a vmap address.
1023 * However, sg_init_one is only equipped to handle linearly mapped low memory.
1024 * In such cases, we also must copy the buffer to a temporary and lowmem one.
1025 */
1026 if ((acomp_ctx->is_sleepable && !zpool_can_sleep_mapped(zpool)) ||
1027 !virt_addr_valid(src)) {
1028 memcpy(acomp_ctx->buffer, src, entry->length);
1029 src = acomp_ctx->buffer;
1030 zpool_unmap_handle(zpool, entry->handle);
1031 }
1032
1033 sg_init_one(&input, src, entry->length);
1034 sg_init_table(&output, 1);
1035 sg_set_folio(&output, folio, PAGE_SIZE, 0);
1036 acomp_request_set_params(acomp_ctx->req, &input, &output, entry->length, PAGE_SIZE);
1037 BUG_ON(crypto_wait_req(crypto_acomp_decompress(acomp_ctx->req), &acomp_ctx->wait));
1038 BUG_ON(acomp_ctx->req->dlen != PAGE_SIZE);
1039
1040 if (src != acomp_ctx->buffer)
1041 zpool_unmap_handle(zpool, entry->handle);
1042 acomp_ctx_put_unlock(acomp_ctx);
1043 }
1044
1045 /*********************************
1046 * writeback code
1047 **********************************/
1048 /*
1049 * Attempts to free an entry by adding a folio to the swap cache,
1050 * decompressing the entry data into the folio, and issuing a
1051 * bio write to write the folio back to the swap device.
1052 *
1053 * This can be thought of as a "resumed writeback" of the folio
1054 * to the swap device. We are basically resuming the same swap
1055 * writeback path that was intercepted with the zswap_store()
1056 * in the first place. After the folio has been decompressed into
1057 * the swap cache, the compressed version stored by zswap can be
1058 * freed.
1059 */
zswap_writeback_entry(struct zswap_entry * entry,swp_entry_t swpentry)1060 static int zswap_writeback_entry(struct zswap_entry *entry,
1061 swp_entry_t swpentry)
1062 {
1063 struct xarray *tree;
1064 pgoff_t offset = swp_offset(swpentry);
1065 struct folio *folio;
1066 struct mempolicy *mpol;
1067 bool folio_was_allocated;
1068 struct writeback_control wbc = {
1069 .sync_mode = WB_SYNC_NONE,
1070 };
1071
1072 /* try to allocate swap cache folio */
1073 mpol = get_task_policy(current);
1074 folio = __read_swap_cache_async(swpentry, GFP_KERNEL, mpol,
1075 NO_INTERLEAVE_INDEX, &folio_was_allocated, true);
1076 if (!folio)
1077 return -ENOMEM;
1078
1079 /*
1080 * Found an existing folio, we raced with swapin or concurrent
1081 * shrinker. We generally writeback cold folios from zswap, and
1082 * swapin means the folio just became hot, so skip this folio.
1083 * For unlikely concurrent shrinker case, it will be unlinked
1084 * and freed when invalidated by the concurrent shrinker anyway.
1085 */
1086 if (!folio_was_allocated) {
1087 folio_put(folio);
1088 return -EEXIST;
1089 }
1090
1091 /*
1092 * folio is locked, and the swapcache is now secured against
1093 * concurrent swapping to and from the slot, and concurrent
1094 * swapoff so we can safely dereference the zswap tree here.
1095 * Verify that the swap entry hasn't been invalidated and recycled
1096 * behind our backs, to avoid overwriting a new swap folio with
1097 * old compressed data. Only when this is successful can the entry
1098 * be dereferenced.
1099 */
1100 tree = swap_zswap_tree(swpentry);
1101 if (entry != xa_cmpxchg(tree, offset, entry, NULL, GFP_KERNEL)) {
1102 delete_from_swap_cache(folio);
1103 folio_unlock(folio);
1104 folio_put(folio);
1105 return -ENOMEM;
1106 }
1107
1108 zswap_decompress(entry, folio);
1109
1110 count_vm_event(ZSWPWB);
1111 if (entry->objcg)
1112 count_objcg_events(entry->objcg, ZSWPWB, 1);
1113
1114 zswap_entry_free(entry);
1115
1116 /* folio is up to date */
1117 folio_mark_uptodate(folio);
1118
1119 /* move it to the tail of the inactive list after end_writeback */
1120 folio_set_reclaim(folio);
1121
1122 /* start writeback */
1123 __swap_writepage(folio, &wbc);
1124 folio_put(folio);
1125
1126 return 0;
1127 }
1128
1129 /*********************************
1130 * shrinker functions
1131 **********************************/
1132 /*
1133 * The dynamic shrinker is modulated by the following factors:
1134 *
1135 * 1. Each zswap entry has a referenced bit, which the shrinker unsets (giving
1136 * the entry a second chance) before rotating it in the LRU list. If the
1137 * entry is considered again by the shrinker, with its referenced bit unset,
1138 * it is written back. The writeback rate as a result is dynamically
1139 * adjusted by the pool activities - if the pool is dominated by new entries
1140 * (i.e lots of recent zswapouts), these entries will be protected and
1141 * the writeback rate will slow down. On the other hand, if the pool has a
1142 * lot of stagnant entries, these entries will be reclaimed immediately,
1143 * effectively increasing the writeback rate.
1144 *
1145 * 2. Swapins counter: If we observe swapins, it is a sign that we are
1146 * overshrinking and should slow down. We maintain a swapins counter, which
1147 * is consumed and subtract from the number of eligible objects on the LRU
1148 * in zswap_shrinker_count().
1149 *
1150 * 3. Compression ratio. The better the workload compresses, the less gains we
1151 * can expect from writeback. We scale down the number of objects available
1152 * for reclaim by this ratio.
1153 */
shrink_memcg_cb(struct list_head * item,struct list_lru_one * l,void * arg)1154 static enum lru_status shrink_memcg_cb(struct list_head *item, struct list_lru_one *l,
1155 void *arg)
1156 {
1157 struct zswap_entry *entry = container_of(item, struct zswap_entry, lru);
1158 bool *encountered_page_in_swapcache = (bool *)arg;
1159 swp_entry_t swpentry;
1160 enum lru_status ret = LRU_REMOVED_RETRY;
1161 int writeback_result;
1162
1163 /*
1164 * Second chance algorithm: if the entry has its referenced bit set, give it
1165 * a second chance. Only clear the referenced bit and rotate it in the
1166 * zswap's LRU list.
1167 */
1168 if (entry->referenced) {
1169 entry->referenced = false;
1170 return LRU_ROTATE;
1171 }
1172
1173 /*
1174 * As soon as we drop the LRU lock, the entry can be freed by
1175 * a concurrent invalidation. This means the following:
1176 *
1177 * 1. We extract the swp_entry_t to the stack, allowing
1178 * zswap_writeback_entry() to pin the swap entry and
1179 * then validate the zwap entry against that swap entry's
1180 * tree using pointer value comparison. Only when that
1181 * is successful can the entry be dereferenced.
1182 *
1183 * 2. Usually, objects are taken off the LRU for reclaim. In
1184 * this case this isn't possible, because if reclaim fails
1185 * for whatever reason, we have no means of knowing if the
1186 * entry is alive to put it back on the LRU.
1187 *
1188 * So rotate it before dropping the lock. If the entry is
1189 * written back or invalidated, the free path will unlink
1190 * it. For failures, rotation is the right thing as well.
1191 *
1192 * Temporary failures, where the same entry should be tried
1193 * again immediately, almost never happen for this shrinker.
1194 * We don't do any trylocking; -ENOMEM comes closest,
1195 * but that's extremely rare and doesn't happen spuriously
1196 * either. Don't bother distinguishing this case.
1197 */
1198 list_move_tail(item, &l->list);
1199
1200 /*
1201 * Once the lru lock is dropped, the entry might get freed. The
1202 * swpentry is copied to the stack, and entry isn't deref'd again
1203 * until the entry is verified to still be alive in the tree.
1204 */
1205 swpentry = entry->swpentry;
1206
1207 /*
1208 * It's safe to drop the lock here because we return either
1209 * LRU_REMOVED_RETRY, LRU_RETRY or LRU_STOP.
1210 */
1211 spin_unlock(&l->lock);
1212
1213 writeback_result = zswap_writeback_entry(entry, swpentry);
1214
1215 if (writeback_result) {
1216 zswap_reject_reclaim_fail++;
1217 ret = LRU_RETRY;
1218
1219 /*
1220 * Encountering a page already in swap cache is a sign that we are shrinking
1221 * into the warmer region. We should terminate shrinking (if we're in the dynamic
1222 * shrinker context).
1223 */
1224 if (writeback_result == -EEXIST && encountered_page_in_swapcache) {
1225 ret = LRU_STOP;
1226 *encountered_page_in_swapcache = true;
1227 }
1228 } else {
1229 zswap_written_back_pages++;
1230 }
1231
1232 return ret;
1233 }
1234
zswap_shrinker_scan(struct shrinker * shrinker,struct shrink_control * sc)1235 static unsigned long zswap_shrinker_scan(struct shrinker *shrinker,
1236 struct shrink_control *sc)
1237 {
1238 unsigned long shrink_ret;
1239 bool encountered_page_in_swapcache = false;
1240
1241 if (!zswap_shrinker_enabled ||
1242 !mem_cgroup_zswap_writeback_enabled(sc->memcg)) {
1243 sc->nr_scanned = 0;
1244 return SHRINK_STOP;
1245 }
1246
1247 shrink_ret = list_lru_shrink_walk(&zswap_list_lru, sc, &shrink_memcg_cb,
1248 &encountered_page_in_swapcache);
1249
1250 if (encountered_page_in_swapcache)
1251 return SHRINK_STOP;
1252
1253 return shrink_ret ? shrink_ret : SHRINK_STOP;
1254 }
1255
zswap_shrinker_count(struct shrinker * shrinker,struct shrink_control * sc)1256 static unsigned long zswap_shrinker_count(struct shrinker *shrinker,
1257 struct shrink_control *sc)
1258 {
1259 struct mem_cgroup *memcg = sc->memcg;
1260 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(sc->nid));
1261 atomic_long_t *nr_disk_swapins =
1262 &lruvec->zswap_lruvec_state.nr_disk_swapins;
1263 unsigned long nr_backing, nr_stored, nr_freeable, nr_disk_swapins_cur,
1264 nr_remain;
1265
1266 if (!zswap_shrinker_enabled || !mem_cgroup_zswap_writeback_enabled(memcg))
1267 return 0;
1268
1269 /*
1270 * The shrinker resumes swap writeback, which will enter block
1271 * and may enter fs. XXX: Harmonize with vmscan.c __GFP_FS
1272 * rules (may_enter_fs()), which apply on a per-folio basis.
1273 */
1274 if (!gfp_has_io_fs(sc->gfp_mask))
1275 return 0;
1276
1277 /*
1278 * For memcg, use the cgroup-wide ZSWAP stats since we don't
1279 * have them per-node and thus per-lruvec. Careful if memcg is
1280 * runtime-disabled: we can get sc->memcg == NULL, which is ok
1281 * for the lruvec, but not for memcg_page_state().
1282 *
1283 * Without memcg, use the zswap pool-wide metrics.
1284 */
1285 if (!mem_cgroup_disabled()) {
1286 mem_cgroup_flush_stats(memcg);
1287 nr_backing = memcg_page_state(memcg, MEMCG_ZSWAP_B) >> PAGE_SHIFT;
1288 nr_stored = memcg_page_state(memcg, MEMCG_ZSWAPPED);
1289 } else {
1290 nr_backing = zswap_total_pages();
1291 nr_stored = atomic_long_read(&zswap_stored_pages);
1292 }
1293
1294 if (!nr_stored)
1295 return 0;
1296
1297 nr_freeable = list_lru_shrink_count(&zswap_list_lru, sc);
1298 if (!nr_freeable)
1299 return 0;
1300
1301 /*
1302 * Subtract from the lru size the number of pages that are recently swapped
1303 * in from disk. The idea is that had we protect the zswap's LRU by this
1304 * amount of pages, these disk swapins would not have happened.
1305 */
1306 nr_disk_swapins_cur = atomic_long_read(nr_disk_swapins);
1307 do {
1308 if (nr_freeable >= nr_disk_swapins_cur)
1309 nr_remain = 0;
1310 else
1311 nr_remain = nr_disk_swapins_cur - nr_freeable;
1312 } while (!atomic_long_try_cmpxchg(
1313 nr_disk_swapins, &nr_disk_swapins_cur, nr_remain));
1314
1315 nr_freeable -= nr_disk_swapins_cur - nr_remain;
1316 if (!nr_freeable)
1317 return 0;
1318
1319 /*
1320 * Scale the number of freeable pages by the memory saving factor.
1321 * This ensures that the better zswap compresses memory, the fewer
1322 * pages we will evict to swap (as it will otherwise incur IO for
1323 * relatively small memory saving).
1324 */
1325 return mult_frac(nr_freeable, nr_backing, nr_stored);
1326 }
1327
zswap_alloc_shrinker(void)1328 static struct shrinker *zswap_alloc_shrinker(void)
1329 {
1330 struct shrinker *shrinker;
1331
1332 shrinker =
1333 shrinker_alloc(SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE, "mm-zswap");
1334 if (!shrinker)
1335 return NULL;
1336
1337 shrinker->scan_objects = zswap_shrinker_scan;
1338 shrinker->count_objects = zswap_shrinker_count;
1339 shrinker->batch = 0;
1340 shrinker->seeks = DEFAULT_SEEKS;
1341 return shrinker;
1342 }
1343
shrink_memcg(struct mem_cgroup * memcg)1344 static int shrink_memcg(struct mem_cgroup *memcg)
1345 {
1346 int nid, shrunk = 0, scanned = 0;
1347
1348 if (!mem_cgroup_zswap_writeback_enabled(memcg))
1349 return -ENOENT;
1350
1351 /*
1352 * Skip zombies because their LRUs are reparented and we would be
1353 * reclaiming from the parent instead of the dead memcg.
1354 */
1355 if (memcg && !mem_cgroup_online(memcg))
1356 return -ENOENT;
1357
1358 for_each_node_state(nid, N_NORMAL_MEMORY) {
1359 unsigned long nr_to_walk = 1;
1360
1361 shrunk += list_lru_walk_one(&zswap_list_lru, nid, memcg,
1362 &shrink_memcg_cb, NULL, &nr_to_walk);
1363 scanned += 1 - nr_to_walk;
1364 }
1365
1366 if (!scanned)
1367 return -ENOENT;
1368
1369 return shrunk ? 0 : -EAGAIN;
1370 }
1371
shrink_worker(struct work_struct * w)1372 static void shrink_worker(struct work_struct *w)
1373 {
1374 struct mem_cgroup *memcg;
1375 int ret, failures = 0, attempts = 0;
1376 unsigned long thr;
1377
1378 /* Reclaim down to the accept threshold */
1379 thr = zswap_accept_thr_pages();
1380
1381 /*
1382 * Global reclaim will select cgroup in a round-robin fashion from all
1383 * online memcgs, but memcgs that have no pages in zswap and
1384 * writeback-disabled memcgs (memory.zswap.writeback=0) are not
1385 * candidates for shrinking.
1386 *
1387 * Shrinking will be aborted if we encounter the following
1388 * MAX_RECLAIM_RETRIES times:
1389 * - No writeback-candidate memcgs found in a memcg tree walk.
1390 * - Shrinking a writeback-candidate memcg failed.
1391 *
1392 * We save iteration cursor memcg into zswap_next_shrink,
1393 * which can be modified by the offline memcg cleaner
1394 * zswap_memcg_offline_cleanup().
1395 *
1396 * Since the offline cleaner is called only once, we cannot leave an
1397 * offline memcg reference in zswap_next_shrink.
1398 * We can rely on the cleaner only if we get online memcg under lock.
1399 *
1400 * If we get an offline memcg, we cannot determine if the cleaner has
1401 * already been called or will be called later. We must put back the
1402 * reference before returning from this function. Otherwise, the
1403 * offline memcg left in zswap_next_shrink will hold the reference
1404 * until the next run of shrink_worker().
1405 */
1406 do {
1407 /*
1408 * Start shrinking from the next memcg after zswap_next_shrink.
1409 * When the offline cleaner has already advanced the cursor,
1410 * advancing the cursor here overlooks one memcg, but this
1411 * should be negligibly rare.
1412 *
1413 * If we get an online memcg, keep the extra reference in case
1414 * the original one obtained by mem_cgroup_iter() is dropped by
1415 * zswap_memcg_offline_cleanup() while we are shrinking the
1416 * memcg.
1417 */
1418 spin_lock(&zswap_shrink_lock);
1419 do {
1420 memcg = mem_cgroup_iter(NULL, zswap_next_shrink, NULL);
1421 zswap_next_shrink = memcg;
1422 } while (memcg && !mem_cgroup_tryget_online(memcg));
1423 spin_unlock(&zswap_shrink_lock);
1424
1425 if (!memcg) {
1426 /*
1427 * Continue shrinking without incrementing failures if
1428 * we found candidate memcgs in the last tree walk.
1429 */
1430 if (!attempts && ++failures == MAX_RECLAIM_RETRIES)
1431 break;
1432
1433 attempts = 0;
1434 goto resched;
1435 }
1436
1437 ret = shrink_memcg(memcg);
1438 /* drop the extra reference */
1439 mem_cgroup_put(memcg);
1440
1441 /*
1442 * There are no writeback-candidate pages in the memcg.
1443 * This is not an issue as long as we can find another memcg
1444 * with pages in zswap. Skip this without incrementing attempts
1445 * and failures.
1446 */
1447 if (ret == -ENOENT)
1448 continue;
1449 ++attempts;
1450
1451 if (ret && ++failures == MAX_RECLAIM_RETRIES)
1452 break;
1453 resched:
1454 cond_resched();
1455 } while (zswap_total_pages() > thr);
1456 }
1457
1458 /*********************************
1459 * main API
1460 **********************************/
1461
zswap_store_page(struct page * page,struct obj_cgroup * objcg,struct zswap_pool * pool)1462 static bool zswap_store_page(struct page *page,
1463 struct obj_cgroup *objcg,
1464 struct zswap_pool *pool)
1465 {
1466 swp_entry_t page_swpentry = page_swap_entry(page);
1467 struct zswap_entry *entry, *old;
1468
1469 /* allocate entry */
1470 entry = zswap_entry_cache_alloc(GFP_KERNEL, page_to_nid(page));
1471 if (!entry) {
1472 zswap_reject_kmemcache_fail++;
1473 return false;
1474 }
1475
1476 if (!zswap_compress(page, entry, pool))
1477 goto compress_failed;
1478
1479 old = xa_store(swap_zswap_tree(page_swpentry),
1480 swp_offset(page_swpentry),
1481 entry, GFP_KERNEL);
1482 if (xa_is_err(old)) {
1483 int err = xa_err(old);
1484
1485 WARN_ONCE(err != -ENOMEM, "unexpected xarray error: %d\n", err);
1486 zswap_reject_alloc_fail++;
1487 goto store_failed;
1488 }
1489
1490 /*
1491 * We may have had an existing entry that became stale when
1492 * the folio was redirtied and now the new version is being
1493 * swapped out. Get rid of the old.
1494 */
1495 if (old)
1496 zswap_entry_free(old);
1497
1498 /*
1499 * The entry is successfully compressed and stored in the tree, there is
1500 * no further possibility of failure. Grab refs to the pool and objcg,
1501 * charge zswap memory, and increment zswap_stored_pages.
1502 * The opposite actions will be performed by zswap_entry_free()
1503 * when the entry is removed from the tree.
1504 */
1505 zswap_pool_get(pool);
1506 if (objcg) {
1507 obj_cgroup_get(objcg);
1508 obj_cgroup_charge_zswap(objcg, entry->length);
1509 }
1510 atomic_long_inc(&zswap_stored_pages);
1511
1512 /*
1513 * We finish initializing the entry while it's already in xarray.
1514 * This is safe because:
1515 *
1516 * 1. Concurrent stores and invalidations are excluded by folio lock.
1517 *
1518 * 2. Writeback is excluded by the entry not being on the LRU yet.
1519 * The publishing order matters to prevent writeback from seeing
1520 * an incoherent entry.
1521 */
1522 entry->pool = pool;
1523 entry->swpentry = page_swpentry;
1524 entry->objcg = objcg;
1525 entry->referenced = true;
1526 if (entry->length) {
1527 INIT_LIST_HEAD(&entry->lru);
1528 zswap_lru_add(&zswap_list_lru, entry);
1529 }
1530
1531 return true;
1532
1533 store_failed:
1534 zpool_free(pool->zpool, entry->handle);
1535 compress_failed:
1536 zswap_entry_cache_free(entry);
1537 return false;
1538 }
1539
zswap_store(struct folio * folio)1540 bool zswap_store(struct folio *folio)
1541 {
1542 long nr_pages = folio_nr_pages(folio);
1543 swp_entry_t swp = folio->swap;
1544 struct obj_cgroup *objcg = NULL;
1545 struct mem_cgroup *memcg = NULL;
1546 struct zswap_pool *pool;
1547 bool ret = false;
1548 long index;
1549
1550 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1551 VM_WARN_ON_ONCE(!folio_test_swapcache(folio));
1552
1553 if (!zswap_enabled)
1554 goto check_old;
1555
1556 objcg = get_obj_cgroup_from_folio(folio);
1557 if (objcg && !obj_cgroup_may_zswap(objcg)) {
1558 memcg = get_mem_cgroup_from_objcg(objcg);
1559 if (shrink_memcg(memcg)) {
1560 mem_cgroup_put(memcg);
1561 goto put_objcg;
1562 }
1563 mem_cgroup_put(memcg);
1564 }
1565
1566 if (zswap_check_limits())
1567 goto put_objcg;
1568
1569 pool = zswap_pool_current_get();
1570 if (!pool)
1571 goto put_objcg;
1572
1573 if (objcg) {
1574 memcg = get_mem_cgroup_from_objcg(objcg);
1575 if (memcg_list_lru_alloc(memcg, &zswap_list_lru, GFP_KERNEL)) {
1576 mem_cgroup_put(memcg);
1577 goto put_pool;
1578 }
1579 mem_cgroup_put(memcg);
1580 }
1581
1582 for (index = 0; index < nr_pages; ++index) {
1583 struct page *page = folio_page(folio, index);
1584
1585 if (!zswap_store_page(page, objcg, pool))
1586 goto put_pool;
1587 }
1588
1589 if (objcg)
1590 count_objcg_events(objcg, ZSWPOUT, nr_pages);
1591
1592 count_vm_events(ZSWPOUT, nr_pages);
1593
1594 ret = true;
1595
1596 put_pool:
1597 zswap_pool_put(pool);
1598 put_objcg:
1599 obj_cgroup_put(objcg);
1600 if (!ret && zswap_pool_reached_full)
1601 queue_work(shrink_wq, &zswap_shrink_work);
1602 check_old:
1603 /*
1604 * If the zswap store fails or zswap is disabled, we must invalidate
1605 * the possibly stale entries which were previously stored at the
1606 * offsets corresponding to each page of the folio. Otherwise,
1607 * writeback could overwrite the new data in the swapfile.
1608 */
1609 if (!ret) {
1610 unsigned type = swp_type(swp);
1611 pgoff_t offset = swp_offset(swp);
1612 struct zswap_entry *entry;
1613 struct xarray *tree;
1614
1615 for (index = 0; index < nr_pages; ++index) {
1616 tree = swap_zswap_tree(swp_entry(type, offset + index));
1617 entry = xa_erase(tree, offset + index);
1618 if (entry)
1619 zswap_entry_free(entry);
1620 }
1621 }
1622
1623 return ret;
1624 }
1625
zswap_load(struct folio * folio)1626 bool zswap_load(struct folio *folio)
1627 {
1628 swp_entry_t swp = folio->swap;
1629 pgoff_t offset = swp_offset(swp);
1630 bool swapcache = folio_test_swapcache(folio);
1631 struct xarray *tree = swap_zswap_tree(swp);
1632 struct zswap_entry *entry;
1633
1634 VM_WARN_ON_ONCE(!folio_test_locked(folio));
1635
1636 if (zswap_never_enabled())
1637 return false;
1638
1639 /*
1640 * Large folios should not be swapped in while zswap is being used, as
1641 * they are not properly handled. Zswap does not properly load large
1642 * folios, and a large folio may only be partially in zswap.
1643 *
1644 * Return true without marking the folio uptodate so that an IO error is
1645 * emitted (e.g. do_swap_page() will sigbus).
1646 */
1647 if (WARN_ON_ONCE(folio_test_large(folio)))
1648 return true;
1649
1650 /*
1651 * When reading into the swapcache, invalidate our entry. The
1652 * swapcache can be the authoritative owner of the page and
1653 * its mappings, and the pressure that results from having two
1654 * in-memory copies outweighs any benefits of caching the
1655 * compression work.
1656 *
1657 * (Most swapins go through the swapcache. The notable
1658 * exception is the singleton fault on SWP_SYNCHRONOUS_IO
1659 * files, which reads into a private page and may free it if
1660 * the fault fails. We remain the primary owner of the entry.)
1661 */
1662 if (swapcache)
1663 entry = xa_erase(tree, offset);
1664 else
1665 entry = xa_load(tree, offset);
1666
1667 if (!entry)
1668 return false;
1669
1670 zswap_decompress(entry, folio);
1671
1672 count_vm_event(ZSWPIN);
1673 if (entry->objcg)
1674 count_objcg_events(entry->objcg, ZSWPIN, 1);
1675
1676 if (swapcache) {
1677 zswap_entry_free(entry);
1678 folio_mark_dirty(folio);
1679 }
1680
1681 folio_mark_uptodate(folio);
1682 return true;
1683 }
1684
zswap_invalidate(swp_entry_t swp)1685 void zswap_invalidate(swp_entry_t swp)
1686 {
1687 pgoff_t offset = swp_offset(swp);
1688 struct xarray *tree = swap_zswap_tree(swp);
1689 struct zswap_entry *entry;
1690
1691 if (xa_empty(tree))
1692 return;
1693
1694 entry = xa_erase(tree, offset);
1695 if (entry)
1696 zswap_entry_free(entry);
1697 }
1698
zswap_swapon(int type,unsigned long nr_pages)1699 int zswap_swapon(int type, unsigned long nr_pages)
1700 {
1701 struct xarray *trees, *tree;
1702 unsigned int nr, i;
1703
1704 nr = DIV_ROUND_UP(nr_pages, SWAP_ADDRESS_SPACE_PAGES);
1705 trees = kvcalloc(nr, sizeof(*tree), GFP_KERNEL);
1706 if (!trees) {
1707 pr_err("alloc failed, zswap disabled for swap type %d\n", type);
1708 return -ENOMEM;
1709 }
1710
1711 for (i = 0; i < nr; i++)
1712 xa_init(trees + i);
1713
1714 nr_zswap_trees[type] = nr;
1715 zswap_trees[type] = trees;
1716 return 0;
1717 }
1718
zswap_swapoff(int type)1719 void zswap_swapoff(int type)
1720 {
1721 struct xarray *trees = zswap_trees[type];
1722 unsigned int i;
1723
1724 if (!trees)
1725 return;
1726
1727 /* try_to_unuse() invalidated all the entries already */
1728 for (i = 0; i < nr_zswap_trees[type]; i++)
1729 WARN_ON_ONCE(!xa_empty(trees + i));
1730
1731 kvfree(trees);
1732 nr_zswap_trees[type] = 0;
1733 zswap_trees[type] = NULL;
1734 }
1735
1736 /*********************************
1737 * debugfs functions
1738 **********************************/
1739 #ifdef CONFIG_DEBUG_FS
1740 #include <linux/debugfs.h>
1741
1742 static struct dentry *zswap_debugfs_root;
1743
debugfs_get_total_size(void * data,u64 * val)1744 static int debugfs_get_total_size(void *data, u64 *val)
1745 {
1746 *val = zswap_total_pages() * PAGE_SIZE;
1747 return 0;
1748 }
1749 DEFINE_DEBUGFS_ATTRIBUTE(total_size_fops, debugfs_get_total_size, NULL, "%llu\n");
1750
debugfs_get_stored_pages(void * data,u64 * val)1751 static int debugfs_get_stored_pages(void *data, u64 *val)
1752 {
1753 *val = atomic_long_read(&zswap_stored_pages);
1754 return 0;
1755 }
1756 DEFINE_DEBUGFS_ATTRIBUTE(stored_pages_fops, debugfs_get_stored_pages, NULL, "%llu\n");
1757
zswap_debugfs_init(void)1758 static int zswap_debugfs_init(void)
1759 {
1760 if (!debugfs_initialized())
1761 return -ENODEV;
1762
1763 zswap_debugfs_root = debugfs_create_dir("zswap", NULL);
1764
1765 debugfs_create_u64("pool_limit_hit", 0444,
1766 zswap_debugfs_root, &zswap_pool_limit_hit);
1767 debugfs_create_u64("reject_reclaim_fail", 0444,
1768 zswap_debugfs_root, &zswap_reject_reclaim_fail);
1769 debugfs_create_u64("reject_alloc_fail", 0444,
1770 zswap_debugfs_root, &zswap_reject_alloc_fail);
1771 debugfs_create_u64("reject_kmemcache_fail", 0444,
1772 zswap_debugfs_root, &zswap_reject_kmemcache_fail);
1773 debugfs_create_u64("reject_compress_fail", 0444,
1774 zswap_debugfs_root, &zswap_reject_compress_fail);
1775 debugfs_create_u64("reject_compress_poor", 0444,
1776 zswap_debugfs_root, &zswap_reject_compress_poor);
1777 debugfs_create_u64("written_back_pages", 0444,
1778 zswap_debugfs_root, &zswap_written_back_pages);
1779 debugfs_create_file("pool_total_size", 0444,
1780 zswap_debugfs_root, NULL, &total_size_fops);
1781 debugfs_create_file("stored_pages", 0444,
1782 zswap_debugfs_root, NULL, &stored_pages_fops);
1783
1784 return 0;
1785 }
1786 #else
zswap_debugfs_init(void)1787 static int zswap_debugfs_init(void)
1788 {
1789 return 0;
1790 }
1791 #endif
1792
1793 /*********************************
1794 * module init and exit
1795 **********************************/
zswap_setup(void)1796 static int zswap_setup(void)
1797 {
1798 struct zswap_pool *pool;
1799 int ret;
1800
1801 zswap_entry_cache = KMEM_CACHE(zswap_entry, 0);
1802 if (!zswap_entry_cache) {
1803 pr_err("entry cache creation failed\n");
1804 goto cache_fail;
1805 }
1806
1807 ret = cpuhp_setup_state_multi(CPUHP_MM_ZSWP_POOL_PREPARE,
1808 "mm/zswap_pool:prepare",
1809 zswap_cpu_comp_prepare,
1810 zswap_cpu_comp_dead);
1811 if (ret)
1812 goto hp_fail;
1813
1814 shrink_wq = alloc_workqueue("zswap-shrink",
1815 WQ_UNBOUND|WQ_MEM_RECLAIM, 1);
1816 if (!shrink_wq)
1817 goto shrink_wq_fail;
1818
1819 zswap_shrinker = zswap_alloc_shrinker();
1820 if (!zswap_shrinker)
1821 goto shrinker_fail;
1822 if (list_lru_init_memcg(&zswap_list_lru, zswap_shrinker))
1823 goto lru_fail;
1824 shrinker_register(zswap_shrinker);
1825
1826 INIT_WORK(&zswap_shrink_work, shrink_worker);
1827
1828 pool = __zswap_pool_create_fallback();
1829 if (pool) {
1830 pr_info("loaded using pool %s/%s\n", pool->tfm_name,
1831 zpool_get_type(pool->zpool));
1832 list_add(&pool->list, &zswap_pools);
1833 zswap_has_pool = true;
1834 static_branch_enable(&zswap_ever_enabled);
1835 } else {
1836 pr_err("pool creation failed\n");
1837 zswap_enabled = false;
1838 }
1839
1840 if (zswap_debugfs_init())
1841 pr_warn("debugfs initialization failed\n");
1842 zswap_init_state = ZSWAP_INIT_SUCCEED;
1843 return 0;
1844
1845 lru_fail:
1846 shrinker_free(zswap_shrinker);
1847 shrinker_fail:
1848 destroy_workqueue(shrink_wq);
1849 shrink_wq_fail:
1850 cpuhp_remove_multi_state(CPUHP_MM_ZSWP_POOL_PREPARE);
1851 hp_fail:
1852 kmem_cache_destroy(zswap_entry_cache);
1853 cache_fail:
1854 /* if built-in, we aren't unloaded on failure; don't allow use */
1855 zswap_init_state = ZSWAP_INIT_FAILED;
1856 zswap_enabled = false;
1857 return -ENOMEM;
1858 }
1859
zswap_init(void)1860 static int __init zswap_init(void)
1861 {
1862 if (!zswap_enabled)
1863 return 0;
1864 return zswap_setup();
1865 }
1866 /* must be late so crypto has time to come up */
1867 late_initcall(zswap_init);
1868
1869 MODULE_AUTHOR("Seth Jennings <[email protected]>");
1870 MODULE_DESCRIPTION("Compressed cache for swap pages");
1871