1 // SPDX-License-Identifier: GPL-2.0-or-later
2 
3 /*
4  * VMA-specific functions.
5  */
6 
7 #include "vma_internal.h"
8 #include "vma.h"
9 
10 struct mmap_state {
11 	struct mm_struct *mm;
12 	struct vma_iterator *vmi;
13 
14 	unsigned long addr;
15 	unsigned long end;
16 	pgoff_t pgoff;
17 	unsigned long pglen;
18 	unsigned long flags;
19 	struct file *file;
20 
21 	unsigned long charged;
22 	bool retry_merge;
23 
24 	struct vm_area_struct *prev;
25 	struct vm_area_struct *next;
26 
27 	/* Unmapping state. */
28 	struct vma_munmap_struct vms;
29 	struct ma_state mas_detach;
30 	struct maple_tree mt_detach;
31 };
32 
33 #define MMAP_STATE(name, mm_, vmi_, addr_, len_, pgoff_, flags_, file_) \
34 	struct mmap_state name = {					\
35 		.mm = mm_,						\
36 		.vmi = vmi_,						\
37 		.addr = addr_,						\
38 		.end = (addr_) + (len_),				\
39 		.pgoff = pgoff_,					\
40 		.pglen = PHYS_PFN(len_),				\
41 		.flags = flags_,					\
42 		.file = file_,						\
43 	}
44 
45 #define VMG_MMAP_STATE(name, map_, vma_)				\
46 	struct vma_merge_struct name = {				\
47 		.mm = (map_)->mm,					\
48 		.vmi = (map_)->vmi,					\
49 		.start = (map_)->addr,					\
50 		.end = (map_)->end,					\
51 		.flags = (map_)->flags,					\
52 		.pgoff = (map_)->pgoff,					\
53 		.file = (map_)->file,					\
54 		.prev = (map_)->prev,					\
55 		.vma = vma_,						\
56 		.next = (vma_) ? NULL : (map_)->next,			\
57 		.state = VMA_MERGE_START,				\
58 		.merge_flags = VMG_FLAG_DEFAULT,			\
59 	}
60 
is_mergeable_vma(struct vma_merge_struct * vmg,bool merge_next)61 static inline bool is_mergeable_vma(struct vma_merge_struct *vmg, bool merge_next)
62 {
63 	struct vm_area_struct *vma = merge_next ? vmg->next : vmg->prev;
64 
65 	if (!mpol_equal(vmg->policy, vma_policy(vma)))
66 		return false;
67 	/*
68 	 * VM_SOFTDIRTY should not prevent from VMA merging, if we
69 	 * match the flags but dirty bit -- the caller should mark
70 	 * merged VMA as dirty. If dirty bit won't be excluded from
71 	 * comparison, we increase pressure on the memory system forcing
72 	 * the kernel to generate new VMAs when old one could be
73 	 * extended instead.
74 	 */
75 	if ((vma->vm_flags ^ vmg->flags) & ~VM_SOFTDIRTY)
76 		return false;
77 	if (vma->vm_file != vmg->file)
78 		return false;
79 	if (!is_mergeable_vm_userfaultfd_ctx(vma, vmg->uffd_ctx))
80 		return false;
81 	if (!anon_vma_name_eq(anon_vma_name(vma), vmg->anon_name))
82 		return false;
83 	return true;
84 }
85 
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)86 static inline bool is_mergeable_anon_vma(struct anon_vma *anon_vma1,
87 		 struct anon_vma *anon_vma2, struct vm_area_struct *vma)
88 {
89 	/*
90 	 * The list_is_singular() test is to avoid merging VMA cloned from
91 	 * parents. This can improve scalability caused by anon_vma lock.
92 	 */
93 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
94 		list_is_singular(&vma->anon_vma_chain)))
95 		return true;
96 	return anon_vma1 == anon_vma2;
97 }
98 
99 /* Are the anon_vma's belonging to each VMA compatible with one another? */
are_anon_vmas_compatible(struct vm_area_struct * vma1,struct vm_area_struct * vma2)100 static inline bool are_anon_vmas_compatible(struct vm_area_struct *vma1,
101 					    struct vm_area_struct *vma2)
102 {
103 	return is_mergeable_anon_vma(vma1->anon_vma, vma2->anon_vma, NULL);
104 }
105 
106 /*
107  * init_multi_vma_prep() - Initializer for struct vma_prepare
108  * @vp: The vma_prepare struct
109  * @vma: The vma that will be altered once locked
110  * @next: The next vma if it is to be adjusted
111  * @remove: The first vma to be removed
112  * @remove2: The second vma to be removed
113  */
init_multi_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma,struct vm_area_struct * next,struct vm_area_struct * remove,struct vm_area_struct * remove2)114 static void init_multi_vma_prep(struct vma_prepare *vp,
115 				struct vm_area_struct *vma,
116 				struct vm_area_struct *next,
117 				struct vm_area_struct *remove,
118 				struct vm_area_struct *remove2)
119 {
120 	memset(vp, 0, sizeof(struct vma_prepare));
121 	vp->vma = vma;
122 	vp->anon_vma = vma->anon_vma;
123 	vp->remove = remove;
124 	vp->remove2 = remove2;
125 	vp->adj_next = next;
126 	if (!vp->anon_vma && next)
127 		vp->anon_vma = next->anon_vma;
128 
129 	vp->file = vma->vm_file;
130 	if (vp->file)
131 		vp->mapping = vma->vm_file->f_mapping;
132 
133 }
134 
135 /*
136  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
137  * in front of (at a lower virtual address and file offset than) the vma.
138  *
139  * We cannot merge two vmas if they have differently assigned (non-NULL)
140  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
141  *
142  * We don't check here for the merged mmap wrapping around the end of pagecache
143  * indices (16TB on ia32) because do_mmap() does not permit mmap's which
144  * wrap, nor mmaps which cover the final page at index -1UL.
145  *
146  * We assume the vma may be removed as part of the merge.
147  */
can_vma_merge_before(struct vma_merge_struct * vmg)148 static bool can_vma_merge_before(struct vma_merge_struct *vmg)
149 {
150 	pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
151 
152 	if (is_mergeable_vma(vmg, /* merge_next = */ true) &&
153 	    is_mergeable_anon_vma(vmg->anon_vma, vmg->next->anon_vma, vmg->next)) {
154 		if (vmg->next->vm_pgoff == vmg->pgoff + pglen)
155 			return true;
156 	}
157 
158 	return false;
159 }
160 
161 /*
162  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
163  * beyond (at a higher virtual address and file offset than) the vma.
164  *
165  * We cannot merge two vmas if they have differently assigned (non-NULL)
166  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
167  *
168  * We assume that vma is not removed as part of the merge.
169  */
can_vma_merge_after(struct vma_merge_struct * vmg)170 static bool can_vma_merge_after(struct vma_merge_struct *vmg)
171 {
172 	if (is_mergeable_vma(vmg, /* merge_next = */ false) &&
173 	    is_mergeable_anon_vma(vmg->anon_vma, vmg->prev->anon_vma, vmg->prev)) {
174 		if (vmg->prev->vm_pgoff + vma_pages(vmg->prev) == vmg->pgoff)
175 			return true;
176 	}
177 	return false;
178 }
179 
__vma_link_file(struct vm_area_struct * vma,struct address_space * mapping)180 static void __vma_link_file(struct vm_area_struct *vma,
181 			    struct address_space *mapping)
182 {
183 	if (vma_is_shared_maywrite(vma))
184 		mapping_allow_writable(mapping);
185 
186 	flush_dcache_mmap_lock(mapping);
187 	vma_interval_tree_insert(vma, &mapping->i_mmap);
188 	flush_dcache_mmap_unlock(mapping);
189 }
190 
191 /*
192  * Requires inode->i_mapping->i_mmap_rwsem
193  */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct address_space * mapping)194 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
195 				      struct address_space *mapping)
196 {
197 	if (vma_is_shared_maywrite(vma))
198 		mapping_unmap_writable(mapping);
199 
200 	flush_dcache_mmap_lock(mapping);
201 	vma_interval_tree_remove(vma, &mapping->i_mmap);
202 	flush_dcache_mmap_unlock(mapping);
203 }
204 
205 /*
206  * vma has some anon_vma assigned, and is already inserted on that
207  * anon_vma's interval trees.
208  *
209  * Before updating the vma's vm_start / vm_end / vm_pgoff fields, the
210  * vma must be removed from the anon_vma's interval trees using
211  * anon_vma_interval_tree_pre_update_vma().
212  *
213  * After the update, the vma will be reinserted using
214  * anon_vma_interval_tree_post_update_vma().
215  *
216  * The entire update must be protected by exclusive mmap_lock and by
217  * the root anon_vma's mutex.
218  */
219 static void
anon_vma_interval_tree_pre_update_vma(struct vm_area_struct * vma)220 anon_vma_interval_tree_pre_update_vma(struct vm_area_struct *vma)
221 {
222 	struct anon_vma_chain *avc;
223 
224 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
225 		anon_vma_interval_tree_remove(avc, &avc->anon_vma->rb_root);
226 }
227 
228 static void
anon_vma_interval_tree_post_update_vma(struct vm_area_struct * vma)229 anon_vma_interval_tree_post_update_vma(struct vm_area_struct *vma)
230 {
231 	struct anon_vma_chain *avc;
232 
233 	list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
234 		anon_vma_interval_tree_insert(avc, &avc->anon_vma->rb_root);
235 }
236 
237 /*
238  * vma_prepare() - Helper function for handling locking VMAs prior to altering
239  * @vp: The initialized vma_prepare struct
240  */
vma_prepare(struct vma_prepare * vp)241 static void vma_prepare(struct vma_prepare *vp)
242 {
243 	if (vp->file) {
244 		uprobe_munmap(vp->vma, vp->vma->vm_start, vp->vma->vm_end);
245 
246 		if (vp->adj_next)
247 			uprobe_munmap(vp->adj_next, vp->adj_next->vm_start,
248 				      vp->adj_next->vm_end);
249 
250 		i_mmap_lock_write(vp->mapping);
251 		if (vp->insert && vp->insert->vm_file) {
252 			/*
253 			 * Put into interval tree now, so instantiated pages
254 			 * are visible to arm/parisc __flush_dcache_page
255 			 * throughout; but we cannot insert into address
256 			 * space until vma start or end is updated.
257 			 */
258 			__vma_link_file(vp->insert,
259 					vp->insert->vm_file->f_mapping);
260 		}
261 	}
262 
263 	if (vp->anon_vma) {
264 		anon_vma_lock_write(vp->anon_vma);
265 		anon_vma_interval_tree_pre_update_vma(vp->vma);
266 		if (vp->adj_next)
267 			anon_vma_interval_tree_pre_update_vma(vp->adj_next);
268 	}
269 
270 	if (vp->file) {
271 		flush_dcache_mmap_lock(vp->mapping);
272 		vma_interval_tree_remove(vp->vma, &vp->mapping->i_mmap);
273 		if (vp->adj_next)
274 			vma_interval_tree_remove(vp->adj_next,
275 						 &vp->mapping->i_mmap);
276 	}
277 
278 }
279 
280 /*
281  * vma_complete- Helper function for handling the unlocking after altering VMAs,
282  * or for inserting a VMA.
283  *
284  * @vp: The vma_prepare struct
285  * @vmi: The vma iterator
286  * @mm: The mm_struct
287  */
vma_complete(struct vma_prepare * vp,struct vma_iterator * vmi,struct mm_struct * mm)288 static void vma_complete(struct vma_prepare *vp, struct vma_iterator *vmi,
289 			 struct mm_struct *mm)
290 {
291 	if (vp->file) {
292 		if (vp->adj_next)
293 			vma_interval_tree_insert(vp->adj_next,
294 						 &vp->mapping->i_mmap);
295 		vma_interval_tree_insert(vp->vma, &vp->mapping->i_mmap);
296 		flush_dcache_mmap_unlock(vp->mapping);
297 	}
298 
299 	if (vp->remove && vp->file) {
300 		__remove_shared_vm_struct(vp->remove, vp->mapping);
301 		if (vp->remove2)
302 			__remove_shared_vm_struct(vp->remove2, vp->mapping);
303 	} else if (vp->insert) {
304 		/*
305 		 * split_vma has split insert from vma, and needs
306 		 * us to insert it before dropping the locks
307 		 * (it may either follow vma or precede it).
308 		 */
309 		vma_iter_store(vmi, vp->insert);
310 		mm->map_count++;
311 	}
312 
313 	if (vp->anon_vma) {
314 		anon_vma_interval_tree_post_update_vma(vp->vma);
315 		if (vp->adj_next)
316 			anon_vma_interval_tree_post_update_vma(vp->adj_next);
317 		anon_vma_unlock_write(vp->anon_vma);
318 	}
319 
320 	if (vp->file) {
321 		i_mmap_unlock_write(vp->mapping);
322 		uprobe_mmap(vp->vma);
323 
324 		if (vp->adj_next)
325 			uprobe_mmap(vp->adj_next);
326 	}
327 
328 	if (vp->remove) {
329 again:
330 		vma_mark_detached(vp->remove, true);
331 		if (vp->file) {
332 			uprobe_munmap(vp->remove, vp->remove->vm_start,
333 				      vp->remove->vm_end);
334 			fput(vp->file);
335 		}
336 		if (vp->remove->anon_vma)
337 			anon_vma_merge(vp->vma, vp->remove);
338 		mm->map_count--;
339 		mpol_put(vma_policy(vp->remove));
340 		if (!vp->remove2)
341 			WARN_ON_ONCE(vp->vma->vm_end < vp->remove->vm_end);
342 		vm_area_free(vp->remove);
343 
344 		/*
345 		 * In mprotect's case 6 (see comments on vma_merge),
346 		 * we are removing both mid and next vmas
347 		 */
348 		if (vp->remove2) {
349 			vp->remove = vp->remove2;
350 			vp->remove2 = NULL;
351 			goto again;
352 		}
353 	}
354 	if (vp->insert && vp->file)
355 		uprobe_mmap(vp->insert);
356 }
357 
358 /*
359  * init_vma_prep() - Initializer wrapper for vma_prepare struct
360  * @vp: The vma_prepare struct
361  * @vma: The vma that will be altered once locked
362  */
init_vma_prep(struct vma_prepare * vp,struct vm_area_struct * vma)363 static void init_vma_prep(struct vma_prepare *vp, struct vm_area_struct *vma)
364 {
365 	init_multi_vma_prep(vp, vma, NULL, NULL, NULL);
366 }
367 
368 /*
369  * Can the proposed VMA be merged with the left (previous) VMA taking into
370  * account the start position of the proposed range.
371  */
can_vma_merge_left(struct vma_merge_struct * vmg)372 static bool can_vma_merge_left(struct vma_merge_struct *vmg)
373 
374 {
375 	return vmg->prev && vmg->prev->vm_end == vmg->start &&
376 		can_vma_merge_after(vmg);
377 }
378 
379 /*
380  * Can the proposed VMA be merged with the right (next) VMA taking into
381  * account the end position of the proposed range.
382  *
383  * In addition, if we can merge with the left VMA, ensure that left and right
384  * anon_vma's are also compatible.
385  */
can_vma_merge_right(struct vma_merge_struct * vmg,bool can_merge_left)386 static bool can_vma_merge_right(struct vma_merge_struct *vmg,
387 				bool can_merge_left)
388 {
389 	if (!vmg->next || vmg->end != vmg->next->vm_start ||
390 	    !can_vma_merge_before(vmg))
391 		return false;
392 
393 	if (!can_merge_left)
394 		return true;
395 
396 	/*
397 	 * If we can merge with prev (left) and next (right), indicating that
398 	 * each VMA's anon_vma is compatible with the proposed anon_vma, this
399 	 * does not mean prev and next are compatible with EACH OTHER.
400 	 *
401 	 * We therefore check this in addition to mergeability to either side.
402 	 */
403 	return are_anon_vmas_compatible(vmg->prev, vmg->next);
404 }
405 
406 /*
407  * Close a vm structure and free it.
408  */
remove_vma(struct vm_area_struct * vma,bool unreachable)409 void remove_vma(struct vm_area_struct *vma, bool unreachable)
410 {
411 	might_sleep();
412 	vma_close(vma);
413 	if (vma->vm_file)
414 		fput(vma->vm_file);
415 	mpol_put(vma_policy(vma));
416 	if (unreachable)
417 		__vm_area_free(vma);
418 	else
419 		vm_area_free(vma);
420 }
421 
422 /*
423  * Get rid of page table information in the indicated region.
424  *
425  * Called with the mm semaphore held.
426  */
unmap_region(struct ma_state * mas,struct vm_area_struct * vma,struct vm_area_struct * prev,struct vm_area_struct * next)427 void unmap_region(struct ma_state *mas, struct vm_area_struct *vma,
428 		struct vm_area_struct *prev, struct vm_area_struct *next)
429 {
430 	struct mm_struct *mm = vma->vm_mm;
431 	struct mmu_gather tlb;
432 
433 	tlb_gather_mmu(&tlb, mm);
434 	update_hiwater_rss(mm);
435 	unmap_vmas(&tlb, mas, vma, vma->vm_start, vma->vm_end, vma->vm_end,
436 		   /* mm_wr_locked = */ true);
437 	mas_set(mas, vma->vm_end);
438 	free_pgtables(&tlb, mas, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
439 		      next ? next->vm_start : USER_PGTABLES_CEILING,
440 		      /* mm_wr_locked = */ true);
441 	tlb_finish_mmu(&tlb);
442 }
443 
444 /*
445  * __split_vma() bypasses sysctl_max_map_count checking.  We use this where it
446  * has already been checked or doesn't make sense to fail.
447  * VMA Iterator will point to the original VMA.
448  */
449 static __must_check int
__split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)450 __split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
451 	    unsigned long addr, int new_below)
452 {
453 	struct vma_prepare vp;
454 	struct vm_area_struct *new;
455 	int err;
456 
457 	WARN_ON(vma->vm_start >= addr);
458 	WARN_ON(vma->vm_end <= addr);
459 
460 	if (vma->vm_ops && vma->vm_ops->may_split) {
461 		err = vma->vm_ops->may_split(vma, addr);
462 		if (err)
463 			return err;
464 	}
465 
466 	new = vm_area_dup(vma);
467 	if (!new)
468 		return -ENOMEM;
469 
470 	if (new_below) {
471 		new->vm_end = addr;
472 	} else {
473 		new->vm_start = addr;
474 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
475 	}
476 
477 	err = -ENOMEM;
478 	vma_iter_config(vmi, new->vm_start, new->vm_end);
479 	if (vma_iter_prealloc(vmi, new))
480 		goto out_free_vma;
481 
482 	err = vma_dup_policy(vma, new);
483 	if (err)
484 		goto out_free_vmi;
485 
486 	err = anon_vma_clone(new, vma);
487 	if (err)
488 		goto out_free_mpol;
489 
490 	if (new->vm_file)
491 		get_file(new->vm_file);
492 
493 	if (new->vm_ops && new->vm_ops->open)
494 		new->vm_ops->open(new);
495 
496 	vma_start_write(vma);
497 	vma_start_write(new);
498 
499 	init_vma_prep(&vp, vma);
500 	vp.insert = new;
501 	vma_prepare(&vp);
502 	vma_adjust_trans_huge(vma, vma->vm_start, addr, 0);
503 
504 	if (new_below) {
505 		vma->vm_start = addr;
506 		vma->vm_pgoff += (addr - new->vm_start) >> PAGE_SHIFT;
507 	} else {
508 		vma->vm_end = addr;
509 	}
510 
511 	/* vma_complete stores the new vma */
512 	vma_complete(&vp, vmi, vma->vm_mm);
513 	validate_mm(vma->vm_mm);
514 
515 	/* Success. */
516 	if (new_below)
517 		vma_next(vmi);
518 	else
519 		vma_prev(vmi);
520 
521 	return 0;
522 
523 out_free_mpol:
524 	mpol_put(vma_policy(new));
525 out_free_vmi:
526 	vma_iter_free(vmi);
527 out_free_vma:
528 	vm_area_free(new);
529 	return err;
530 }
531 
532 /*
533  * Split a vma into two pieces at address 'addr', a new vma is allocated
534  * either for the first part or the tail.
535  */
split_vma(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,int new_below)536 static int split_vma(struct vma_iterator *vmi, struct vm_area_struct *vma,
537 		     unsigned long addr, int new_below)
538 {
539 	if (vma->vm_mm->map_count >= sysctl_max_map_count)
540 		return -ENOMEM;
541 
542 	return __split_vma(vmi, vma, addr, new_below);
543 }
544 
545 /*
546  * dup_anon_vma() - Helper function to duplicate anon_vma
547  * @dst: The destination VMA
548  * @src: The source VMA
549  * @dup: Pointer to the destination VMA when successful.
550  *
551  * Returns: 0 on success.
552  */
dup_anon_vma(struct vm_area_struct * dst,struct vm_area_struct * src,struct vm_area_struct ** dup)553 static int dup_anon_vma(struct vm_area_struct *dst,
554 			struct vm_area_struct *src, struct vm_area_struct **dup)
555 {
556 	/*
557 	 * Easily overlooked: when mprotect shifts the boundary, make sure the
558 	 * expanding vma has anon_vma set if the shrinking vma had, to cover any
559 	 * anon pages imported.
560 	 */
561 	if (src->anon_vma && !dst->anon_vma) {
562 		int ret;
563 
564 		vma_assert_write_locked(dst);
565 		dst->anon_vma = src->anon_vma;
566 		ret = anon_vma_clone(dst, src);
567 		if (ret)
568 			return ret;
569 
570 		*dup = dst;
571 	}
572 
573 	return 0;
574 }
575 
576 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
validate_mm(struct mm_struct * mm)577 void validate_mm(struct mm_struct *mm)
578 {
579 	int bug = 0;
580 	int i = 0;
581 	struct vm_area_struct *vma;
582 	VMA_ITERATOR(vmi, mm, 0);
583 
584 	mt_validate(&mm->mm_mt);
585 	for_each_vma(vmi, vma) {
586 #ifdef CONFIG_DEBUG_VM_RB
587 		struct anon_vma *anon_vma = vma->anon_vma;
588 		struct anon_vma_chain *avc;
589 #endif
590 		unsigned long vmi_start, vmi_end;
591 		bool warn = 0;
592 
593 		vmi_start = vma_iter_addr(&vmi);
594 		vmi_end = vma_iter_end(&vmi);
595 		if (VM_WARN_ON_ONCE_MM(vma->vm_end != vmi_end, mm))
596 			warn = 1;
597 
598 		if (VM_WARN_ON_ONCE_MM(vma->vm_start != vmi_start, mm))
599 			warn = 1;
600 
601 		if (warn) {
602 			pr_emerg("issue in %s\n", current->comm);
603 			dump_stack();
604 			dump_vma(vma);
605 			pr_emerg("tree range: %px start %lx end %lx\n", vma,
606 				 vmi_start, vmi_end - 1);
607 			vma_iter_dump_tree(&vmi);
608 		}
609 
610 #ifdef CONFIG_DEBUG_VM_RB
611 		if (anon_vma) {
612 			anon_vma_lock_read(anon_vma);
613 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
614 				anon_vma_interval_tree_verify(avc);
615 			anon_vma_unlock_read(anon_vma);
616 		}
617 #endif
618 		/* Check for a infinite loop */
619 		if (++i > mm->map_count + 10) {
620 			i = -1;
621 			break;
622 		}
623 	}
624 	if (i != mm->map_count) {
625 		pr_emerg("map_count %d vma iterator %d\n", mm->map_count, i);
626 		bug = 1;
627 	}
628 	VM_BUG_ON_MM(bug, mm);
629 }
630 #endif /* CONFIG_DEBUG_VM_MAPLE_TREE */
631 
632 /* Actually perform the VMA merge operation. */
commit_merge(struct vma_merge_struct * vmg,struct vm_area_struct * adjust,struct vm_area_struct * remove,struct vm_area_struct * remove2,long adj_start,bool expanded)633 static int commit_merge(struct vma_merge_struct *vmg,
634 			struct vm_area_struct *adjust,
635 			struct vm_area_struct *remove,
636 			struct vm_area_struct *remove2,
637 			long adj_start,
638 			bool expanded)
639 {
640 	struct vma_prepare vp;
641 
642 	init_multi_vma_prep(&vp, vmg->vma, adjust, remove, remove2);
643 
644 	VM_WARN_ON(vp.anon_vma && adjust && adjust->anon_vma &&
645 		   vp.anon_vma != adjust->anon_vma);
646 
647 	if (expanded) {
648 		/* Note: vma iterator must be pointing to 'start'. */
649 		vma_iter_config(vmg->vmi, vmg->start, vmg->end);
650 	} else {
651 		vma_iter_config(vmg->vmi, adjust->vm_start + adj_start,
652 				adjust->vm_end);
653 	}
654 
655 	if (vma_iter_prealloc(vmg->vmi, vmg->vma))
656 		return -ENOMEM;
657 
658 	vma_prepare(&vp);
659 	vma_adjust_trans_huge(vmg->vma, vmg->start, vmg->end, adj_start);
660 	vma_set_range(vmg->vma, vmg->start, vmg->end, vmg->pgoff);
661 
662 	if (expanded)
663 		vma_iter_store(vmg->vmi, vmg->vma);
664 
665 	if (adj_start) {
666 		adjust->vm_start += adj_start;
667 		adjust->vm_pgoff += PHYS_PFN(adj_start);
668 		if (adj_start < 0) {
669 			WARN_ON(expanded);
670 			vma_iter_store(vmg->vmi, adjust);
671 		}
672 	}
673 
674 	vma_complete(&vp, vmg->vmi, vmg->vma->vm_mm);
675 
676 	return 0;
677 }
678 
679 /* We can only remove VMAs when merging if they do not have a close hook. */
can_merge_remove_vma(struct vm_area_struct * vma)680 static bool can_merge_remove_vma(struct vm_area_struct *vma)
681 {
682 	return !vma->vm_ops || !vma->vm_ops->close;
683 }
684 
685 /*
686  * vma_merge_existing_range - Attempt to merge VMAs based on a VMA having its
687  * attributes modified.
688  *
689  * @vmg: Describes the modifications being made to a VMA and associated
690  *       metadata.
691  *
692  * When the attributes of a range within a VMA change, then it might be possible
693  * for immediately adjacent VMAs to be merged into that VMA due to having
694  * identical properties.
695  *
696  * This function checks for the existence of any such mergeable VMAs and updates
697  * the maple tree describing the @vmg->vma->vm_mm address space to account for
698  * this, as well as any VMAs shrunk/expanded/deleted as a result of this merge.
699  *
700  * As part of this operation, if a merge occurs, the @vmg object will have its
701  * vma, start, end, and pgoff fields modified to execute the merge. Subsequent
702  * calls to this function should reset these fields.
703  *
704  * Returns: The merged VMA if merge succeeds, or NULL otherwise.
705  *
706  * ASSUMPTIONS:
707  * - The caller must assign the VMA to be modifed to @vmg->vma.
708  * - The caller must have set @vmg->prev to the previous VMA, if there is one.
709  * - The caller must not set @vmg->next, as we determine this.
710  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
711  * - vmi must be positioned within [@vmg->vma->vm_start, @vmg->vma->vm_end).
712  */
vma_merge_existing_range(struct vma_merge_struct * vmg)713 static __must_check struct vm_area_struct *vma_merge_existing_range(
714 		struct vma_merge_struct *vmg)
715 {
716 	struct vm_area_struct *vma = vmg->vma;
717 	struct vm_area_struct *prev = vmg->prev;
718 	struct vm_area_struct *next, *res;
719 	struct vm_area_struct *anon_dup = NULL;
720 	struct vm_area_struct *adjust = NULL;
721 	unsigned long start = vmg->start;
722 	unsigned long end = vmg->end;
723 	bool left_side = vma && start == vma->vm_start;
724 	bool right_side = vma && end == vma->vm_end;
725 	int err = 0;
726 	long adj_start = 0;
727 	bool merge_will_delete_vma, merge_will_delete_next;
728 	bool merge_left, merge_right, merge_both;
729 	bool expanded;
730 
731 	mmap_assert_write_locked(vmg->mm);
732 	VM_WARN_ON_VMG(!vma, vmg); /* We are modifying a VMA, so caller must specify. */
733 	VM_WARN_ON_VMG(vmg->next, vmg); /* We set this. */
734 	VM_WARN_ON_VMG(prev && start <= prev->vm_start, vmg);
735 	VM_WARN_ON_VMG(start >= end, vmg);
736 
737 	/*
738 	 * If vma == prev, then we are offset into a VMA. Otherwise, if we are
739 	 * not, we must span a portion of the VMA.
740 	 */
741 	VM_WARN_ON_VMG(vma && ((vma != prev && vmg->start != vma->vm_start) ||
742 			       vmg->end > vma->vm_end), vmg);
743 	/* The vmi must be positioned within vmg->vma. */
744 	VM_WARN_ON_VMG(vma && !(vma_iter_addr(vmg->vmi) >= vma->vm_start &&
745 				vma_iter_addr(vmg->vmi) < vma->vm_end), vmg);
746 
747 	vmg->state = VMA_MERGE_NOMERGE;
748 
749 	/*
750 	 * If a special mapping or if the range being modified is neither at the
751 	 * furthermost left or right side of the VMA, then we have no chance of
752 	 * merging and should abort.
753 	 */
754 	if (vmg->flags & VM_SPECIAL || (!left_side && !right_side))
755 		return NULL;
756 
757 	if (left_side)
758 		merge_left = can_vma_merge_left(vmg);
759 	else
760 		merge_left = false;
761 
762 	if (right_side) {
763 		next = vmg->next = vma_iter_next_range(vmg->vmi);
764 		vma_iter_prev_range(vmg->vmi);
765 
766 		merge_right = can_vma_merge_right(vmg, merge_left);
767 	} else {
768 		merge_right = false;
769 		next = NULL;
770 	}
771 
772 	if (merge_left)		/* If merging prev, position iterator there. */
773 		vma_prev(vmg->vmi);
774 	else if (!merge_right)	/* If we have nothing to merge, abort. */
775 		return NULL;
776 
777 	merge_both = merge_left && merge_right;
778 	/* If we span the entire VMA, a merge implies it will be deleted. */
779 	merge_will_delete_vma = left_side && right_side;
780 
781 	/*
782 	 * If we need to remove vma in its entirety but are unable to do so,
783 	 * we have no sensible recourse but to abort the merge.
784 	 */
785 	if (merge_will_delete_vma && !can_merge_remove_vma(vma))
786 		return NULL;
787 
788 	/*
789 	 * If we merge both VMAs, then next is also deleted. This implies
790 	 * merge_will_delete_vma also.
791 	 */
792 	merge_will_delete_next = merge_both;
793 
794 	/*
795 	 * If we cannot delete next, then we can reduce the operation to merging
796 	 * prev and vma (thereby deleting vma).
797 	 */
798 	if (merge_will_delete_next && !can_merge_remove_vma(next)) {
799 		merge_will_delete_next = false;
800 		merge_right = false;
801 		merge_both = false;
802 	}
803 
804 	/* No matter what happens, we will be adjusting vma. */
805 	vma_start_write(vma);
806 
807 	if (merge_left)
808 		vma_start_write(prev);
809 
810 	if (merge_right)
811 		vma_start_write(next);
812 
813 	if (merge_both) {
814 		/*
815 		 *         |<----->|
816 		 * |-------*********-------|
817 		 *   prev     vma     next
818 		 *  extend   delete  delete
819 		 */
820 
821 		vmg->vma = prev;
822 		vmg->start = prev->vm_start;
823 		vmg->end = next->vm_end;
824 		vmg->pgoff = prev->vm_pgoff;
825 
826 		/*
827 		 * We already ensured anon_vma compatibility above, so now it's
828 		 * simply a case of, if prev has no anon_vma object, which of
829 		 * next or vma contains the anon_vma we must duplicate.
830 		 */
831 		err = dup_anon_vma(prev, next->anon_vma ? next : vma, &anon_dup);
832 	} else if (merge_left) {
833 		/*
834 		 *         |<----->| OR
835 		 *         |<--------->|
836 		 * |-------*************
837 		 *   prev       vma
838 		 *  extend shrink/delete
839 		 */
840 
841 		vmg->vma = prev;
842 		vmg->start = prev->vm_start;
843 		vmg->pgoff = prev->vm_pgoff;
844 
845 		if (!merge_will_delete_vma) {
846 			adjust = vma;
847 			adj_start = vmg->end - vma->vm_start;
848 		}
849 
850 		err = dup_anon_vma(prev, vma, &anon_dup);
851 	} else { /* merge_right */
852 		/*
853 		 *     |<----->| OR
854 		 * |<--------->|
855 		 * *************-------|
856 		 *      vma       next
857 		 * shrink/delete extend
858 		 */
859 
860 		pgoff_t pglen = PHYS_PFN(vmg->end - vmg->start);
861 
862 		VM_WARN_ON_VMG(!merge_right, vmg);
863 		/* If we are offset into a VMA, then prev must be vma. */
864 		VM_WARN_ON_VMG(vmg->start > vma->vm_start && prev && vma != prev, vmg);
865 
866 		if (merge_will_delete_vma) {
867 			vmg->vma = next;
868 			vmg->end = next->vm_end;
869 			vmg->pgoff = next->vm_pgoff - pglen;
870 		} else {
871 			/*
872 			 * We shrink vma and expand next.
873 			 *
874 			 * IMPORTANT: This is the ONLY case where the final
875 			 * merged VMA is NOT vmg->vma, but rather vmg->next.
876 			 */
877 
878 			vmg->start = vma->vm_start;
879 			vmg->end = start;
880 			vmg->pgoff = vma->vm_pgoff;
881 
882 			adjust = next;
883 			adj_start = -(vma->vm_end - start);
884 		}
885 
886 		err = dup_anon_vma(next, vma, &anon_dup);
887 	}
888 
889 	if (err)
890 		goto abort;
891 
892 	/*
893 	 * In nearly all cases, we expand vmg->vma. There is one exception -
894 	 * merge_right where we partially span the VMA. In this case we shrink
895 	 * the end of vmg->vma and adjust the start of vmg->next accordingly.
896 	 */
897 	expanded = !merge_right || merge_will_delete_vma;
898 
899 	if (commit_merge(vmg, adjust,
900 			 merge_will_delete_vma ? vma : NULL,
901 			 merge_will_delete_next ? next : NULL,
902 			 adj_start, expanded)) {
903 		if (anon_dup)
904 			unlink_anon_vmas(anon_dup);
905 
906 		/*
907 		 * We've cleaned up any cloned anon_vma's, no VMAs have been
908 		 * modified, no harm no foul if the user requests that we not
909 		 * report this and just give up, leaving the VMAs unmerged.
910 		 */
911 		if (!vmg->give_up_on_oom)
912 			vmg->state = VMA_MERGE_ERROR_NOMEM;
913 		return NULL;
914 	}
915 
916 	res = merge_left ? prev : next;
917 	khugepaged_enter_vma(res, vmg->flags);
918 
919 	vmg->state = VMA_MERGE_SUCCESS;
920 	return res;
921 
922 abort:
923 	vma_iter_set(vmg->vmi, start);
924 	vma_iter_load(vmg->vmi);
925 
926 	/*
927 	 * This means we have failed to clone anon_vma's correctly, but no
928 	 * actual changes to VMAs have occurred, so no harm no foul - if the
929 	 * user doesn't want this reported and instead just wants to give up on
930 	 * the merge, allow it.
931 	 */
932 	if (!vmg->give_up_on_oom)
933 		vmg->state = VMA_MERGE_ERROR_NOMEM;
934 	return NULL;
935 }
936 
937 /*
938  * vma_merge_new_range - Attempt to merge a new VMA into address space
939  *
940  * @vmg: Describes the VMA we are adding, in the range @vmg->start to @vmg->end
941  *       (exclusive), which we try to merge with any adjacent VMAs if possible.
942  *
943  * We are about to add a VMA to the address space starting at @vmg->start and
944  * ending at @vmg->end. There are three different possible scenarios:
945  *
946  * 1. There is a VMA with identical properties immediately adjacent to the
947  *    proposed new VMA [@vmg->start, @vmg->end) either before or after it -
948  *    EXPAND that VMA:
949  *
950  * Proposed:       |-----|  or  |-----|
951  * Existing:  |----|                  |----|
952  *
953  * 2. There are VMAs with identical properties immediately adjacent to the
954  *    proposed new VMA [@vmg->start, @vmg->end) both before AND after it -
955  *    EXPAND the former and REMOVE the latter:
956  *
957  * Proposed:       |-----|
958  * Existing:  |----|     |----|
959  *
960  * 3. There are no VMAs immediately adjacent to the proposed new VMA or those
961  *    VMAs do not have identical attributes - NO MERGE POSSIBLE.
962  *
963  * In instances where we can merge, this function returns the expanded VMA which
964  * will have its range adjusted accordingly and the underlying maple tree also
965  * adjusted.
966  *
967  * Returns: In instances where no merge was possible, NULL. Otherwise, a pointer
968  *          to the VMA we expanded.
969  *
970  * This function adjusts @vmg to provide @vmg->next if not already specified,
971  * and adjusts [@vmg->start, @vmg->end) to span the expanded range.
972  *
973  * ASSUMPTIONS:
974  * - The caller must hold a WRITE lock on the mm_struct->mmap_lock.
975  * - The caller must have determined that [@vmg->start, @vmg->end) is empty,
976      other than VMAs that will be unmapped should the operation succeed.
977  * - The caller must have specified the previous vma in @vmg->prev.
978  * - The caller must have specified the next vma in @vmg->next.
979  * - The caller must have positioned the vmi at or before the gap.
980  */
vma_merge_new_range(struct vma_merge_struct * vmg)981 struct vm_area_struct *vma_merge_new_range(struct vma_merge_struct *vmg)
982 {
983 	struct vm_area_struct *prev = vmg->prev;
984 	struct vm_area_struct *next = vmg->next;
985 	unsigned long end = vmg->end;
986 	bool can_merge_left, can_merge_right;
987 	bool just_expand = vmg->merge_flags & VMG_FLAG_JUST_EXPAND;
988 
989 	mmap_assert_write_locked(vmg->mm);
990 	VM_WARN_ON_VMG(vmg->vma, vmg);
991 	/* vmi must point at or before the gap. */
992 	VM_WARN_ON_VMG(vma_iter_addr(vmg->vmi) > end, vmg);
993 
994 	vmg->state = VMA_MERGE_NOMERGE;
995 
996 	/* Special VMAs are unmergeable, also if no prev/next. */
997 	if ((vmg->flags & VM_SPECIAL) || (!prev && !next))
998 		return NULL;
999 
1000 	can_merge_left = can_vma_merge_left(vmg);
1001 	can_merge_right = !just_expand && can_vma_merge_right(vmg, can_merge_left);
1002 
1003 	/* If we can merge with the next VMA, adjust vmg accordingly. */
1004 	if (can_merge_right) {
1005 		vmg->end = next->vm_end;
1006 		vmg->vma = next;
1007 	}
1008 
1009 	/* If we can merge with the previous VMA, adjust vmg accordingly. */
1010 	if (can_merge_left) {
1011 		vmg->start = prev->vm_start;
1012 		vmg->vma = prev;
1013 		vmg->pgoff = prev->vm_pgoff;
1014 
1015 		/*
1016 		 * If this merge would result in removal of the next VMA but we
1017 		 * are not permitted to do so, reduce the operation to merging
1018 		 * prev and vma.
1019 		 */
1020 		if (can_merge_right && !can_merge_remove_vma(next))
1021 			vmg->end = end;
1022 
1023 		/* In expand-only case we are already positioned at prev. */
1024 		if (!just_expand) {
1025 			/* Equivalent to going to the previous range. */
1026 			vma_prev(vmg->vmi);
1027 		}
1028 	}
1029 
1030 	/*
1031 	 * Now try to expand adjacent VMA(s). This takes care of removing the
1032 	 * following VMA if we have VMAs on both sides.
1033 	 */
1034 	if (vmg->vma && !vma_expand(vmg)) {
1035 		khugepaged_enter_vma(vmg->vma, vmg->flags);
1036 		vmg->state = VMA_MERGE_SUCCESS;
1037 		return vmg->vma;
1038 	}
1039 
1040 	return NULL;
1041 }
1042 
1043 /*
1044  * vma_expand - Expand an existing VMA
1045  *
1046  * @vmg: Describes a VMA expansion operation.
1047  *
1048  * Expand @vma to vmg->start and vmg->end.  Can expand off the start and end.
1049  * Will expand over vmg->next if it's different from vmg->vma and vmg->end ==
1050  * vmg->next->vm_end.  Checking if the vmg->vma can expand and merge with
1051  * vmg->next needs to be handled by the caller.
1052  *
1053  * Returns: 0 on success.
1054  *
1055  * ASSUMPTIONS:
1056  * - The caller must hold a WRITE lock on vmg->vma->mm->mmap_lock.
1057  * - The caller must have set @vmg->vma and @vmg->next.
1058  */
vma_expand(struct vma_merge_struct * vmg)1059 int vma_expand(struct vma_merge_struct *vmg)
1060 {
1061 	struct vm_area_struct *anon_dup = NULL;
1062 	bool remove_next = false;
1063 	struct vm_area_struct *vma = vmg->vma;
1064 	struct vm_area_struct *next = vmg->next;
1065 
1066 	mmap_assert_write_locked(vmg->mm);
1067 
1068 	vma_start_write(vma);
1069 	if (next && (vma != next) && (vmg->end == next->vm_end)) {
1070 		int ret;
1071 
1072 		remove_next = true;
1073 		/* This should already have been checked by this point. */
1074 		VM_WARN_ON_VMG(!can_merge_remove_vma(next), vmg);
1075 		vma_start_write(next);
1076 		ret = dup_anon_vma(vma, next, &anon_dup);
1077 		if (ret)
1078 			return ret;
1079 	}
1080 
1081 	/* Not merging but overwriting any part of next is not handled. */
1082 	VM_WARN_ON_VMG(next && !remove_next &&
1083 		       next != vma && vmg->end > next->vm_start, vmg);
1084 	/* Only handles expanding */
1085 	VM_WARN_ON_VMG(vma->vm_start < vmg->start || vma->vm_end > vmg->end, vmg);
1086 
1087 	if (commit_merge(vmg, NULL, remove_next ? next : NULL, NULL, 0, true))
1088 		goto nomem;
1089 
1090 	return 0;
1091 
1092 nomem:
1093 	if (anon_dup)
1094 		unlink_anon_vmas(anon_dup);
1095 	/*
1096 	 * If the user requests that we just give upon OOM, we are safe to do so
1097 	 * here, as commit merge provides this contract to us. Nothing has been
1098 	 * changed - no harm no foul, just don't report it.
1099 	 */
1100 	if (!vmg->give_up_on_oom)
1101 		vmg->state = VMA_MERGE_ERROR_NOMEM;
1102 	return -ENOMEM;
1103 }
1104 
1105 /*
1106  * vma_shrink() - Reduce an existing VMAs memory area
1107  * @vmi: The vma iterator
1108  * @vma: The VMA to modify
1109  * @start: The new start
1110  * @end: The new end
1111  *
1112  * Returns: 0 on success, -ENOMEM otherwise
1113  */
vma_shrink(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff)1114 int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
1115 	       unsigned long start, unsigned long end, pgoff_t pgoff)
1116 {
1117 	struct vma_prepare vp;
1118 
1119 	WARN_ON((vma->vm_start != start) && (vma->vm_end != end));
1120 
1121 	if (vma->vm_start < start)
1122 		vma_iter_config(vmi, vma->vm_start, start);
1123 	else
1124 		vma_iter_config(vmi, end, vma->vm_end);
1125 
1126 	if (vma_iter_prealloc(vmi, NULL))
1127 		return -ENOMEM;
1128 
1129 	vma_start_write(vma);
1130 
1131 	init_vma_prep(&vp, vma);
1132 	vma_prepare(&vp);
1133 	vma_adjust_trans_huge(vma, start, end, 0);
1134 
1135 	vma_iter_clear(vmi);
1136 	vma_set_range(vma, start, end, pgoff);
1137 	vma_complete(&vp, vmi, vma->vm_mm);
1138 	validate_mm(vma->vm_mm);
1139 	return 0;
1140 }
1141 
vms_clear_ptes(struct vma_munmap_struct * vms,struct ma_state * mas_detach,bool mm_wr_locked)1142 static inline void vms_clear_ptes(struct vma_munmap_struct *vms,
1143 		    struct ma_state *mas_detach, bool mm_wr_locked)
1144 {
1145 	struct mmu_gather tlb;
1146 
1147 	if (!vms->clear_ptes) /* Nothing to do */
1148 		return;
1149 
1150 	/*
1151 	 * We can free page tables without write-locking mmap_lock because VMAs
1152 	 * were isolated before we downgraded mmap_lock.
1153 	 */
1154 	mas_set(mas_detach, 1);
1155 	tlb_gather_mmu(&tlb, vms->vma->vm_mm);
1156 	update_hiwater_rss(vms->vma->vm_mm);
1157 	unmap_vmas(&tlb, mas_detach, vms->vma, vms->start, vms->end,
1158 		   vms->vma_count, mm_wr_locked);
1159 
1160 	mas_set(mas_detach, 1);
1161 	/* start and end may be different if there is no prev or next vma. */
1162 	free_pgtables(&tlb, mas_detach, vms->vma, vms->unmap_start,
1163 		      vms->unmap_end, mm_wr_locked);
1164 	tlb_finish_mmu(&tlb);
1165 	vms->clear_ptes = false;
1166 }
1167 
vms_clean_up_area(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1168 static void vms_clean_up_area(struct vma_munmap_struct *vms,
1169 		struct ma_state *mas_detach)
1170 {
1171 	struct vm_area_struct *vma;
1172 
1173 	if (!vms->nr_pages)
1174 		return;
1175 
1176 	vms_clear_ptes(vms, mas_detach, true);
1177 	mas_set(mas_detach, 0);
1178 	mas_for_each(mas_detach, vma, ULONG_MAX)
1179 		vma_close(vma);
1180 }
1181 
1182 /*
1183  * vms_complete_munmap_vmas() - Finish the munmap() operation
1184  * @vms: The vma munmap struct
1185  * @mas_detach: The maple state of the detached vmas
1186  *
1187  * This updates the mm_struct, unmaps the region, frees the resources
1188  * used for the munmap() and may downgrade the lock - if requested.  Everything
1189  * needed to be done once the vma maple tree is updated.
1190  */
vms_complete_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1191 static void vms_complete_munmap_vmas(struct vma_munmap_struct *vms,
1192 		struct ma_state *mas_detach)
1193 {
1194 	struct vm_area_struct *vma;
1195 	struct mm_struct *mm;
1196 
1197 	mm = current->mm;
1198 	mm->map_count -= vms->vma_count;
1199 	mm->locked_vm -= vms->locked_vm;
1200 	if (vms->unlock)
1201 		mmap_write_downgrade(mm);
1202 
1203 	if (!vms->nr_pages)
1204 		return;
1205 
1206 	vms_clear_ptes(vms, mas_detach, !vms->unlock);
1207 	/* Update high watermark before we lower total_vm */
1208 	update_hiwater_vm(mm);
1209 	/* Stat accounting */
1210 	WRITE_ONCE(mm->total_vm, READ_ONCE(mm->total_vm) - vms->nr_pages);
1211 	/* Paranoid bookkeeping */
1212 	VM_WARN_ON(vms->exec_vm > mm->exec_vm);
1213 	VM_WARN_ON(vms->stack_vm > mm->stack_vm);
1214 	VM_WARN_ON(vms->data_vm > mm->data_vm);
1215 	mm->exec_vm -= vms->exec_vm;
1216 	mm->stack_vm -= vms->stack_vm;
1217 	mm->data_vm -= vms->data_vm;
1218 
1219 	/* Remove and clean up vmas */
1220 	mas_set(mas_detach, 0);
1221 	mas_for_each(mas_detach, vma, ULONG_MAX)
1222 		remove_vma(vma, /* unreachable = */ false);
1223 
1224 	vm_unacct_memory(vms->nr_accounted);
1225 	validate_mm(mm);
1226 	if (vms->unlock)
1227 		mmap_read_unlock(mm);
1228 
1229 	__mt_destroy(mas_detach->tree);
1230 }
1231 
1232 /*
1233  * reattach_vmas() - Undo any munmap work and free resources
1234  * @mas_detach: The maple state with the detached maple tree
1235  *
1236  * Reattach any detached vmas and free up the maple tree used to track the vmas.
1237  */
reattach_vmas(struct ma_state * mas_detach)1238 static void reattach_vmas(struct ma_state *mas_detach)
1239 {
1240 	struct vm_area_struct *vma;
1241 
1242 	mas_set(mas_detach, 0);
1243 	mas_for_each(mas_detach, vma, ULONG_MAX)
1244 		vma_mark_detached(vma, false);
1245 
1246 	__mt_destroy(mas_detach->tree);
1247 }
1248 
1249 /*
1250  * vms_gather_munmap_vmas() - Put all VMAs within a range into a maple tree
1251  * for removal at a later date.  Handles splitting first and last if necessary
1252  * and marking the vmas as isolated.
1253  *
1254  * @vms: The vma munmap struct
1255  * @mas_detach: The maple state tracking the detached tree
1256  *
1257  * Return: 0 on success, error otherwise
1258  */
vms_gather_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)1259 static int vms_gather_munmap_vmas(struct vma_munmap_struct *vms,
1260 		struct ma_state *mas_detach)
1261 {
1262 	struct vm_area_struct *next = NULL;
1263 	int error;
1264 
1265 	/*
1266 	 * If we need to split any vma, do it now to save pain later.
1267 	 * Does it split the first one?
1268 	 */
1269 	if (vms->start > vms->vma->vm_start) {
1270 
1271 		/*
1272 		 * Make sure that map_count on return from munmap() will
1273 		 * not exceed its limit; but let map_count go just above
1274 		 * its limit temporarily, to help free resources as expected.
1275 		 */
1276 		if (vms->end < vms->vma->vm_end &&
1277 		    vms->vma->vm_mm->map_count >= sysctl_max_map_count) {
1278 			error = -ENOMEM;
1279 			goto map_count_exceeded;
1280 		}
1281 
1282 		/* Don't bother splitting the VMA if we can't unmap it anyway */
1283 		if (!can_modify_vma(vms->vma)) {
1284 			error = -EPERM;
1285 			goto start_split_failed;
1286 		}
1287 
1288 		error = __split_vma(vms->vmi, vms->vma, vms->start, 1);
1289 		if (error)
1290 			goto start_split_failed;
1291 	}
1292 	vms->prev = vma_prev(vms->vmi);
1293 	if (vms->prev)
1294 		vms->unmap_start = vms->prev->vm_end;
1295 
1296 	/*
1297 	 * Detach a range of VMAs from the mm. Using next as a temp variable as
1298 	 * it is always overwritten.
1299 	 */
1300 	for_each_vma_range(*(vms->vmi), next, vms->end) {
1301 		long nrpages;
1302 
1303 		if (!can_modify_vma(next)) {
1304 			error = -EPERM;
1305 			goto modify_vma_failed;
1306 		}
1307 		/* Does it split the end? */
1308 		if (next->vm_end > vms->end) {
1309 			error = __split_vma(vms->vmi, next, vms->end, 0);
1310 			if (error)
1311 				goto end_split_failed;
1312 		}
1313 		vma_start_write(next);
1314 		mas_set(mas_detach, vms->vma_count++);
1315 		error = mas_store_gfp(mas_detach, next, GFP_KERNEL);
1316 		if (error)
1317 			goto munmap_gather_failed;
1318 
1319 		vma_mark_detached(next, true);
1320 		nrpages = vma_pages(next);
1321 
1322 		vms->nr_pages += nrpages;
1323 		if (next->vm_flags & VM_LOCKED)
1324 			vms->locked_vm += nrpages;
1325 
1326 		if (next->vm_flags & VM_ACCOUNT)
1327 			vms->nr_accounted += nrpages;
1328 
1329 		if (is_exec_mapping(next->vm_flags))
1330 			vms->exec_vm += nrpages;
1331 		else if (is_stack_mapping(next->vm_flags))
1332 			vms->stack_vm += nrpages;
1333 		else if (is_data_mapping(next->vm_flags))
1334 			vms->data_vm += nrpages;
1335 
1336 		if (vms->uf) {
1337 			/*
1338 			 * If userfaultfd_unmap_prep returns an error the vmas
1339 			 * will remain split, but userland will get a
1340 			 * highly unexpected error anyway. This is no
1341 			 * different than the case where the first of the two
1342 			 * __split_vma fails, but we don't undo the first
1343 			 * split, despite we could. This is unlikely enough
1344 			 * failure that it's not worth optimizing it for.
1345 			 */
1346 			error = userfaultfd_unmap_prep(next, vms->start,
1347 						       vms->end, vms->uf);
1348 			if (error)
1349 				goto userfaultfd_error;
1350 		}
1351 #ifdef CONFIG_DEBUG_VM_MAPLE_TREE
1352 		BUG_ON(next->vm_start < vms->start);
1353 		BUG_ON(next->vm_start > vms->end);
1354 #endif
1355 	}
1356 
1357 	vms->next = vma_next(vms->vmi);
1358 	if (vms->next)
1359 		vms->unmap_end = vms->next->vm_start;
1360 
1361 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
1362 	/* Make sure no VMAs are about to be lost. */
1363 	{
1364 		MA_STATE(test, mas_detach->tree, 0, 0);
1365 		struct vm_area_struct *vma_mas, *vma_test;
1366 		int test_count = 0;
1367 
1368 		vma_iter_set(vms->vmi, vms->start);
1369 		rcu_read_lock();
1370 		vma_test = mas_find(&test, vms->vma_count - 1);
1371 		for_each_vma_range(*(vms->vmi), vma_mas, vms->end) {
1372 			BUG_ON(vma_mas != vma_test);
1373 			test_count++;
1374 			vma_test = mas_next(&test, vms->vma_count - 1);
1375 		}
1376 		rcu_read_unlock();
1377 		BUG_ON(vms->vma_count != test_count);
1378 	}
1379 #endif
1380 
1381 	while (vma_iter_addr(vms->vmi) > vms->start)
1382 		vma_iter_prev_range(vms->vmi);
1383 
1384 	vms->clear_ptes = true;
1385 	return 0;
1386 
1387 userfaultfd_error:
1388 munmap_gather_failed:
1389 end_split_failed:
1390 modify_vma_failed:
1391 	reattach_vmas(mas_detach);
1392 start_split_failed:
1393 map_count_exceeded:
1394 	return error;
1395 }
1396 
1397 /*
1398  * init_vma_munmap() - Initializer wrapper for vma_munmap_struct
1399  * @vms: The vma munmap struct
1400  * @vmi: The vma iterator
1401  * @vma: The first vm_area_struct to munmap
1402  * @start: The aligned start address to munmap
1403  * @end: The aligned end address to munmap
1404  * @uf: The userfaultfd list_head
1405  * @unlock: Unlock after the operation.  Only unlocked on success
1406  */
init_vma_munmap(struct vma_munmap_struct * vms,struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)1407 static void init_vma_munmap(struct vma_munmap_struct *vms,
1408 		struct vma_iterator *vmi, struct vm_area_struct *vma,
1409 		unsigned long start, unsigned long end, struct list_head *uf,
1410 		bool unlock)
1411 {
1412 	vms->vmi = vmi;
1413 	vms->vma = vma;
1414 	if (vma) {
1415 		vms->start = start;
1416 		vms->end = end;
1417 	} else {
1418 		vms->start = vms->end = 0;
1419 	}
1420 	vms->unlock = unlock;
1421 	vms->uf = uf;
1422 	vms->vma_count = 0;
1423 	vms->nr_pages = vms->locked_vm = vms->nr_accounted = 0;
1424 	vms->exec_vm = vms->stack_vm = vms->data_vm = 0;
1425 	vms->unmap_start = FIRST_USER_ADDRESS;
1426 	vms->unmap_end = USER_PGTABLES_CEILING;
1427 	vms->clear_ptes = false;
1428 }
1429 
1430 /*
1431  * do_vmi_align_munmap() - munmap the aligned region from @start to @end.
1432  * @vmi: The vma iterator
1433  * @vma: The starting vm_area_struct
1434  * @mm: The mm_struct
1435  * @start: The aligned start address to munmap.
1436  * @end: The aligned end address to munmap.
1437  * @uf: The userfaultfd list_head
1438  * @unlock: Set to true to drop the mmap_lock.  unlocking only happens on
1439  * success.
1440  *
1441  * Return: 0 on success and drops the lock if so directed, error and leaves the
1442  * lock held otherwise.
1443  */
do_vmi_align_munmap(struct vma_iterator * vmi,struct vm_area_struct * vma,struct mm_struct * mm,unsigned long start,unsigned long end,struct list_head * uf,bool unlock)1444 int do_vmi_align_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
1445 		struct mm_struct *mm, unsigned long start, unsigned long end,
1446 		struct list_head *uf, bool unlock)
1447 {
1448 	struct maple_tree mt_detach;
1449 	MA_STATE(mas_detach, &mt_detach, 0, 0);
1450 	mt_init_flags(&mt_detach, vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
1451 	mt_on_stack(mt_detach);
1452 	struct vma_munmap_struct vms;
1453 	int error;
1454 
1455 	init_vma_munmap(&vms, vmi, vma, start, end, uf, unlock);
1456 	error = vms_gather_munmap_vmas(&vms, &mas_detach);
1457 	if (error)
1458 		goto gather_failed;
1459 
1460 	error = vma_iter_clear_gfp(vmi, start, end, GFP_KERNEL);
1461 	if (error)
1462 		goto clear_tree_failed;
1463 
1464 	/* Point of no return */
1465 	vms_complete_munmap_vmas(&vms, &mas_detach);
1466 	return 0;
1467 
1468 clear_tree_failed:
1469 	reattach_vmas(&mas_detach);
1470 gather_failed:
1471 	validate_mm(mm);
1472 	return error;
1473 }
1474 
1475 /*
1476  * do_vmi_munmap() - munmap a given range.
1477  * @vmi: The vma iterator
1478  * @mm: The mm_struct
1479  * @start: The start address to munmap
1480  * @len: The length of the range to munmap
1481  * @uf: The userfaultfd list_head
1482  * @unlock: set to true if the user wants to drop the mmap_lock on success
1483  *
1484  * This function takes a @mas that is either pointing to the previous VMA or set
1485  * to MA_START and sets it up to remove the mapping(s).  The @len will be
1486  * aligned.
1487  *
1488  * Return: 0 on success and drops the lock if so directed, error and leaves the
1489  * lock held otherwise.
1490  */
do_vmi_munmap(struct vma_iterator * vmi,struct mm_struct * mm,unsigned long start,size_t len,struct list_head * uf,bool unlock)1491 int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
1492 		  unsigned long start, size_t len, struct list_head *uf,
1493 		  bool unlock)
1494 {
1495 	unsigned long end;
1496 	struct vm_area_struct *vma;
1497 
1498 	if ((offset_in_page(start)) || start > TASK_SIZE || len > TASK_SIZE-start)
1499 		return -EINVAL;
1500 
1501 	end = start + PAGE_ALIGN(len);
1502 	if (end == start)
1503 		return -EINVAL;
1504 
1505 	/* Find the first overlapping VMA */
1506 	vma = vma_find(vmi, end);
1507 	if (!vma) {
1508 		if (unlock)
1509 			mmap_write_unlock(mm);
1510 		return 0;
1511 	}
1512 
1513 	return do_vmi_align_munmap(vmi, vma, mm, start, end, uf, unlock);
1514 }
1515 
1516 /*
1517  * We are about to modify one or multiple of a VMA's flags, policy, userfaultfd
1518  * context and anonymous VMA name within the range [start, end).
1519  *
1520  * As a result, we might be able to merge the newly modified VMA range with an
1521  * adjacent VMA with identical properties.
1522  *
1523  * If no merge is possible and the range does not span the entirety of the VMA,
1524  * we then need to split the VMA to accommodate the change.
1525  *
1526  * The function returns either the merged VMA, the original VMA if a split was
1527  * required instead, or an error if the split failed.
1528  */
vma_modify(struct vma_merge_struct * vmg)1529 static struct vm_area_struct *vma_modify(struct vma_merge_struct *vmg)
1530 {
1531 	struct vm_area_struct *vma = vmg->vma;
1532 	unsigned long start = vmg->start;
1533 	unsigned long end = vmg->end;
1534 	struct vm_area_struct *merged;
1535 
1536 	/* First, try to merge. */
1537 	merged = vma_merge_existing_range(vmg);
1538 	if (merged)
1539 		return merged;
1540 	if (vmg_nomem(vmg))
1541 		return ERR_PTR(-ENOMEM);
1542 
1543 	/*
1544 	 * Split can fail for reasons other than OOM, so if the user requests
1545 	 * this it's probably a mistake.
1546 	 */
1547 	VM_WARN_ON(vmg->give_up_on_oom &&
1548 		   (vma->vm_start != start || vma->vm_end != end));
1549 
1550 	/* Split any preceding portion of the VMA. */
1551 	if (vma->vm_start < start) {
1552 		int err = split_vma(vmg->vmi, vma, start, 1);
1553 
1554 		if (err)
1555 			return ERR_PTR(err);
1556 	}
1557 
1558 	/* Split any trailing portion of the VMA. */
1559 	if (vma->vm_end > end) {
1560 		int err = split_vma(vmg->vmi, vma, end, 0);
1561 
1562 		if (err)
1563 			return ERR_PTR(err);
1564 	}
1565 
1566 	return vma;
1567 }
1568 
vma_modify_flags(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long new_flags)1569 struct vm_area_struct *vma_modify_flags(
1570 	struct vma_iterator *vmi, struct vm_area_struct *prev,
1571 	struct vm_area_struct *vma, unsigned long start, unsigned long end,
1572 	unsigned long new_flags)
1573 {
1574 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1575 
1576 	vmg.flags = new_flags;
1577 
1578 	return vma_modify(&vmg);
1579 }
1580 
1581 struct vm_area_struct
vma_modify_flags_name(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long new_flags,struct anon_vma_name * new_name)1582 *vma_modify_flags_name(struct vma_iterator *vmi,
1583 		       struct vm_area_struct *prev,
1584 		       struct vm_area_struct *vma,
1585 		       unsigned long start,
1586 		       unsigned long end,
1587 		       unsigned long new_flags,
1588 		       struct anon_vma_name *new_name)
1589 {
1590 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1591 
1592 	vmg.flags = new_flags;
1593 	vmg.anon_name = new_name;
1594 
1595 	return vma_modify(&vmg);
1596 }
1597 
1598 struct vm_area_struct
vma_modify_policy(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,struct mempolicy * new_pol)1599 *vma_modify_policy(struct vma_iterator *vmi,
1600 		   struct vm_area_struct *prev,
1601 		   struct vm_area_struct *vma,
1602 		   unsigned long start, unsigned long end,
1603 		   struct mempolicy *new_pol)
1604 {
1605 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1606 
1607 	vmg.policy = new_pol;
1608 
1609 	return vma_modify(&vmg);
1610 }
1611 
1612 struct vm_area_struct
vma_modify_flags_uffd(struct vma_iterator * vmi,struct vm_area_struct * prev,struct vm_area_struct * vma,unsigned long start,unsigned long end,unsigned long new_flags,struct vm_userfaultfd_ctx new_ctx,bool give_up_on_oom)1613 *vma_modify_flags_uffd(struct vma_iterator *vmi,
1614 		       struct vm_area_struct *prev,
1615 		       struct vm_area_struct *vma,
1616 		       unsigned long start, unsigned long end,
1617 		       unsigned long new_flags,
1618 		       struct vm_userfaultfd_ctx new_ctx,
1619 		       bool give_up_on_oom)
1620 {
1621 	VMG_VMA_STATE(vmg, vmi, prev, vma, start, end);
1622 
1623 	vmg.flags = new_flags;
1624 	vmg.uffd_ctx = new_ctx;
1625 	if (give_up_on_oom)
1626 		vmg.give_up_on_oom = true;
1627 
1628 	return vma_modify(&vmg);
1629 }
1630 
1631 /*
1632  * Expand vma by delta bytes, potentially merging with an immediately adjacent
1633  * VMA with identical properties.
1634  */
vma_merge_extend(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long delta)1635 struct vm_area_struct *vma_merge_extend(struct vma_iterator *vmi,
1636 					struct vm_area_struct *vma,
1637 					unsigned long delta)
1638 {
1639 	VMG_VMA_STATE(vmg, vmi, vma, vma, vma->vm_end, vma->vm_end + delta);
1640 
1641 	vmg.next = vma_iter_next_rewind(vmi, NULL);
1642 	vmg.vma = NULL; /* We use the VMA to populate VMG fields only. */
1643 
1644 	return vma_merge_new_range(&vmg);
1645 }
1646 
unlink_file_vma_batch_init(struct unlink_vma_file_batch * vb)1647 void unlink_file_vma_batch_init(struct unlink_vma_file_batch *vb)
1648 {
1649 	vb->count = 0;
1650 }
1651 
unlink_file_vma_batch_process(struct unlink_vma_file_batch * vb)1652 static void unlink_file_vma_batch_process(struct unlink_vma_file_batch *vb)
1653 {
1654 	struct address_space *mapping;
1655 	int i;
1656 
1657 	mapping = vb->vmas[0]->vm_file->f_mapping;
1658 	i_mmap_lock_write(mapping);
1659 	for (i = 0; i < vb->count; i++) {
1660 		VM_WARN_ON_ONCE(vb->vmas[i]->vm_file->f_mapping != mapping);
1661 		__remove_shared_vm_struct(vb->vmas[i], mapping);
1662 	}
1663 	i_mmap_unlock_write(mapping);
1664 
1665 	unlink_file_vma_batch_init(vb);
1666 }
1667 
unlink_file_vma_batch_add(struct unlink_vma_file_batch * vb,struct vm_area_struct * vma)1668 void unlink_file_vma_batch_add(struct unlink_vma_file_batch *vb,
1669 			       struct vm_area_struct *vma)
1670 {
1671 	if (vma->vm_file == NULL)
1672 		return;
1673 
1674 	if ((vb->count > 0 && vb->vmas[0]->vm_file != vma->vm_file) ||
1675 	    vb->count == ARRAY_SIZE(vb->vmas))
1676 		unlink_file_vma_batch_process(vb);
1677 
1678 	vb->vmas[vb->count] = vma;
1679 	vb->count++;
1680 }
1681 
unlink_file_vma_batch_final(struct unlink_vma_file_batch * vb)1682 void unlink_file_vma_batch_final(struct unlink_vma_file_batch *vb)
1683 {
1684 	if (vb->count > 0)
1685 		unlink_file_vma_batch_process(vb);
1686 }
1687 
1688 /*
1689  * Unlink a file-based vm structure from its interval tree, to hide
1690  * vma from rmap and vmtruncate before freeing its page tables.
1691  */
unlink_file_vma(struct vm_area_struct * vma)1692 void unlink_file_vma(struct vm_area_struct *vma)
1693 {
1694 	struct file *file = vma->vm_file;
1695 
1696 	if (file) {
1697 		struct address_space *mapping = file->f_mapping;
1698 
1699 		i_mmap_lock_write(mapping);
1700 		__remove_shared_vm_struct(vma, mapping);
1701 		i_mmap_unlock_write(mapping);
1702 	}
1703 }
1704 
vma_link_file(struct vm_area_struct * vma)1705 void vma_link_file(struct vm_area_struct *vma)
1706 {
1707 	struct file *file = vma->vm_file;
1708 	struct address_space *mapping;
1709 
1710 	if (file) {
1711 		mapping = file->f_mapping;
1712 		i_mmap_lock_write(mapping);
1713 		__vma_link_file(vma, mapping);
1714 		i_mmap_unlock_write(mapping);
1715 	}
1716 }
1717 
vma_link(struct mm_struct * mm,struct vm_area_struct * vma)1718 int vma_link(struct mm_struct *mm, struct vm_area_struct *vma)
1719 {
1720 	VMA_ITERATOR(vmi, mm, 0);
1721 
1722 	vma_iter_config(&vmi, vma->vm_start, vma->vm_end);
1723 	if (vma_iter_prealloc(&vmi, vma))
1724 		return -ENOMEM;
1725 
1726 	vma_start_write(vma);
1727 	vma_iter_store(&vmi, vma);
1728 	vma_link_file(vma);
1729 	mm->map_count++;
1730 	validate_mm(mm);
1731 	return 0;
1732 }
1733 
1734 /*
1735  * Copy the vma structure to a new location in the same mm,
1736  * prior to moving page table entries, to effect an mremap move.
1737  */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff,bool * need_rmap_locks)1738 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
1739 	unsigned long addr, unsigned long len, pgoff_t pgoff,
1740 	bool *need_rmap_locks)
1741 {
1742 	struct vm_area_struct *vma = *vmap;
1743 	unsigned long vma_start = vma->vm_start;
1744 	struct mm_struct *mm = vma->vm_mm;
1745 	struct vm_area_struct *new_vma;
1746 	bool faulted_in_anon_vma = true;
1747 	VMA_ITERATOR(vmi, mm, addr);
1748 	VMG_VMA_STATE(vmg, &vmi, NULL, vma, addr, addr + len);
1749 
1750 	/*
1751 	 * If anonymous vma has not yet been faulted, update new pgoff
1752 	 * to match new location, to increase its chance of merging.
1753 	 */
1754 	if (unlikely(vma_is_anonymous(vma) && !vma->anon_vma)) {
1755 		pgoff = addr >> PAGE_SHIFT;
1756 		faulted_in_anon_vma = false;
1757 	}
1758 
1759 	new_vma = find_vma_prev(mm, addr, &vmg.prev);
1760 	if (new_vma && new_vma->vm_start < addr + len)
1761 		return NULL;	/* should never get here */
1762 
1763 	vmg.vma = NULL; /* New VMA range. */
1764 	vmg.pgoff = pgoff;
1765 	vmg.next = vma_iter_next_rewind(&vmi, NULL);
1766 	new_vma = vma_merge_new_range(&vmg);
1767 
1768 	if (new_vma) {
1769 		/*
1770 		 * Source vma may have been merged into new_vma
1771 		 */
1772 		if (unlikely(vma_start >= new_vma->vm_start &&
1773 			     vma_start < new_vma->vm_end)) {
1774 			/*
1775 			 * The only way we can get a vma_merge with
1776 			 * self during an mremap is if the vma hasn't
1777 			 * been faulted in yet and we were allowed to
1778 			 * reset the dst vma->vm_pgoff to the
1779 			 * destination address of the mremap to allow
1780 			 * the merge to happen. mremap must change the
1781 			 * vm_pgoff linearity between src and dst vmas
1782 			 * (in turn preventing a vma_merge) to be
1783 			 * safe. It is only safe to keep the vm_pgoff
1784 			 * linear if there are no pages mapped yet.
1785 			 */
1786 			VM_BUG_ON_VMA(faulted_in_anon_vma, new_vma);
1787 			*vmap = vma = new_vma;
1788 		}
1789 		*need_rmap_locks = (new_vma->vm_pgoff <= vma->vm_pgoff);
1790 	} else {
1791 		new_vma = vm_area_dup(vma);
1792 		if (!new_vma)
1793 			goto out;
1794 		vma_set_range(new_vma, addr, addr + len, pgoff);
1795 		if (vma_dup_policy(vma, new_vma))
1796 			goto out_free_vma;
1797 		if (anon_vma_clone(new_vma, vma))
1798 			goto out_free_mempol;
1799 		if (new_vma->vm_file)
1800 			get_file(new_vma->vm_file);
1801 		if (new_vma->vm_ops && new_vma->vm_ops->open)
1802 			new_vma->vm_ops->open(new_vma);
1803 		if (vma_link(mm, new_vma))
1804 			goto out_vma_link;
1805 		*need_rmap_locks = false;
1806 	}
1807 	return new_vma;
1808 
1809 out_vma_link:
1810 	vma_close(new_vma);
1811 
1812 	if (new_vma->vm_file)
1813 		fput(new_vma->vm_file);
1814 
1815 	unlink_anon_vmas(new_vma);
1816 out_free_mempol:
1817 	mpol_put(vma_policy(new_vma));
1818 out_free_vma:
1819 	vm_area_free(new_vma);
1820 out:
1821 	return NULL;
1822 }
1823 
1824 /*
1825  * Rough compatibility check to quickly see if it's even worth looking
1826  * at sharing an anon_vma.
1827  *
1828  * They need to have the same vm_file, and the flags can only differ
1829  * in things that mprotect may change.
1830  *
1831  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
1832  * we can merge the two vma's. For example, we refuse to merge a vma if
1833  * there is a vm_ops->close() function, because that indicates that the
1834  * driver is doing some kind of reference counting. But that doesn't
1835  * really matter for the anon_vma sharing case.
1836  */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)1837 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
1838 {
1839 	return a->vm_end == b->vm_start &&
1840 		mpol_equal(vma_policy(a), vma_policy(b)) &&
1841 		a->vm_file == b->vm_file &&
1842 		!((a->vm_flags ^ b->vm_flags) & ~(VM_ACCESS_FLAGS | VM_SOFTDIRTY)) &&
1843 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
1844 }
1845 
1846 /*
1847  * Do some basic sanity checking to see if we can re-use the anon_vma
1848  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
1849  * the same as 'old', the other will be the new one that is trying
1850  * to share the anon_vma.
1851  *
1852  * NOTE! This runs with mmap_lock held for reading, so it is possible that
1853  * the anon_vma of 'old' is concurrently in the process of being set up
1854  * by another page fault trying to merge _that_. But that's ok: if it
1855  * is being set up, that automatically means that it will be a singleton
1856  * acceptable for merging, so we can do all of this optimistically. But
1857  * we do that READ_ONCE() to make sure that we never re-load the pointer.
1858  *
1859  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
1860  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
1861  * is to return an anon_vma that is "complex" due to having gone through
1862  * a fork).
1863  *
1864  * We also make sure that the two vma's are compatible (adjacent,
1865  * and with the same memory policies). That's all stable, even with just
1866  * a read lock on the mmap_lock.
1867  */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)1868 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old,
1869 					  struct vm_area_struct *a,
1870 					  struct vm_area_struct *b)
1871 {
1872 	if (anon_vma_compatible(a, b)) {
1873 		struct anon_vma *anon_vma = READ_ONCE(old->anon_vma);
1874 
1875 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
1876 			return anon_vma;
1877 	}
1878 	return NULL;
1879 }
1880 
1881 /*
1882  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
1883  * neighbouring vmas for a suitable anon_vma, before it goes off
1884  * to allocate a new anon_vma.  It checks because a repetitive
1885  * sequence of mprotects and faults may otherwise lead to distinct
1886  * anon_vmas being allocated, preventing vma merge in subsequent
1887  * mprotect.
1888  */
find_mergeable_anon_vma(struct vm_area_struct * vma)1889 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
1890 {
1891 	struct anon_vma *anon_vma = NULL;
1892 	struct vm_area_struct *prev, *next;
1893 	VMA_ITERATOR(vmi, vma->vm_mm, vma->vm_end);
1894 
1895 	/* Try next first. */
1896 	next = vma_iter_load(&vmi);
1897 	if (next) {
1898 		anon_vma = reusable_anon_vma(next, vma, next);
1899 		if (anon_vma)
1900 			return anon_vma;
1901 	}
1902 
1903 	prev = vma_prev(&vmi);
1904 	VM_BUG_ON_VMA(prev != vma, vma);
1905 	prev = vma_prev(&vmi);
1906 	/* Try prev next. */
1907 	if (prev)
1908 		anon_vma = reusable_anon_vma(prev, prev, vma);
1909 
1910 	/*
1911 	 * We might reach here with anon_vma == NULL if we can't find
1912 	 * any reusable anon_vma.
1913 	 * There's no absolute need to look only at touching neighbours:
1914 	 * we could search further afield for "compatible" anon_vmas.
1915 	 * But it would probably just be a waste of time searching,
1916 	 * or lead to too many vmas hanging off the same anon_vma.
1917 	 * We're trying to allow mprotect remerging later on,
1918 	 * not trying to minimize memory used for anon_vmas.
1919 	 */
1920 	return anon_vma;
1921 }
1922 
vm_ops_needs_writenotify(const struct vm_operations_struct * vm_ops)1923 static bool vm_ops_needs_writenotify(const struct vm_operations_struct *vm_ops)
1924 {
1925 	return vm_ops && (vm_ops->page_mkwrite || vm_ops->pfn_mkwrite);
1926 }
1927 
vma_is_shared_writable(struct vm_area_struct * vma)1928 static bool vma_is_shared_writable(struct vm_area_struct *vma)
1929 {
1930 	return (vma->vm_flags & (VM_WRITE | VM_SHARED)) ==
1931 		(VM_WRITE | VM_SHARED);
1932 }
1933 
vma_fs_can_writeback(struct vm_area_struct * vma)1934 static bool vma_fs_can_writeback(struct vm_area_struct *vma)
1935 {
1936 	/* No managed pages to writeback. */
1937 	if (vma->vm_flags & VM_PFNMAP)
1938 		return false;
1939 
1940 	return vma->vm_file && vma->vm_file->f_mapping &&
1941 		mapping_can_writeback(vma->vm_file->f_mapping);
1942 }
1943 
1944 /*
1945  * Does this VMA require the underlying folios to have their dirty state
1946  * tracked?
1947  */
vma_needs_dirty_tracking(struct vm_area_struct * vma)1948 bool vma_needs_dirty_tracking(struct vm_area_struct *vma)
1949 {
1950 	/* Only shared, writable VMAs require dirty tracking. */
1951 	if (!vma_is_shared_writable(vma))
1952 		return false;
1953 
1954 	/* Does the filesystem need to be notified? */
1955 	if (vm_ops_needs_writenotify(vma->vm_ops))
1956 		return true;
1957 
1958 	/*
1959 	 * Even if the filesystem doesn't indicate a need for writenotify, if it
1960 	 * can writeback, dirty tracking is still required.
1961 	 */
1962 	return vma_fs_can_writeback(vma);
1963 }
1964 
1965 /*
1966  * Some shared mappings will want the pages marked read-only
1967  * to track write events. If so, we'll downgrade vm_page_prot
1968  * to the private version (using protection_map[] without the
1969  * VM_SHARED bit).
1970  */
vma_wants_writenotify(struct vm_area_struct * vma,pgprot_t vm_page_prot)1971 bool vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot)
1972 {
1973 	/* If it was private or non-writable, the write bit is already clear */
1974 	if (!vma_is_shared_writable(vma))
1975 		return false;
1976 
1977 	/* The backer wishes to know when pages are first written to? */
1978 	if (vm_ops_needs_writenotify(vma->vm_ops))
1979 		return true;
1980 
1981 	/* The open routine did something to the protections that pgprot_modify
1982 	 * won't preserve? */
1983 	if (pgprot_val(vm_page_prot) !=
1984 	    pgprot_val(vm_pgprot_modify(vm_page_prot, vma->vm_flags)))
1985 		return false;
1986 
1987 	/*
1988 	 * Do we need to track softdirty? hugetlb does not support softdirty
1989 	 * tracking yet.
1990 	 */
1991 	if (vma_soft_dirty_enabled(vma) && !is_vm_hugetlb_page(vma))
1992 		return true;
1993 
1994 	/* Do we need write faults for uffd-wp tracking? */
1995 	if (userfaultfd_wp(vma))
1996 		return true;
1997 
1998 	/* Can the mapping track the dirty pages? */
1999 	return vma_fs_can_writeback(vma);
2000 }
2001 
2002 static DEFINE_MUTEX(mm_all_locks_mutex);
2003 
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)2004 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2005 {
2006 	if (!test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2007 		/*
2008 		 * The LSB of head.next can't change from under us
2009 		 * because we hold the mm_all_locks_mutex.
2010 		 */
2011 		down_write_nest_lock(&anon_vma->root->rwsem, &mm->mmap_lock);
2012 		/*
2013 		 * We can safely modify head.next after taking the
2014 		 * anon_vma->root->rwsem. If some other vma in this mm shares
2015 		 * the same anon_vma we won't take it again.
2016 		 *
2017 		 * No need of atomic instructions here, head.next
2018 		 * can't change from under us thanks to the
2019 		 * anon_vma->root->rwsem.
2020 		 */
2021 		if (__test_and_set_bit(0, (unsigned long *)
2022 				       &anon_vma->root->rb_root.rb_root.rb_node))
2023 			BUG();
2024 	}
2025 }
2026 
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)2027 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2028 {
2029 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2030 		/*
2031 		 * AS_MM_ALL_LOCKS can't change from under us because
2032 		 * we hold the mm_all_locks_mutex.
2033 		 *
2034 		 * Operations on ->flags have to be atomic because
2035 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2036 		 * mm_all_locks_mutex, there may be other cpus
2037 		 * changing other bitflags in parallel to us.
2038 		 */
2039 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2040 			BUG();
2041 		down_write_nest_lock(&mapping->i_mmap_rwsem, &mm->mmap_lock);
2042 	}
2043 }
2044 
2045 /*
2046  * This operation locks against the VM for all pte/vma/mm related
2047  * operations that could ever happen on a certain mm. This includes
2048  * vmtruncate, try_to_unmap, and all page faults.
2049  *
2050  * The caller must take the mmap_lock in write mode before calling
2051  * mm_take_all_locks(). The caller isn't allowed to release the
2052  * mmap_lock until mm_drop_all_locks() returns.
2053  *
2054  * mmap_lock in write mode is required in order to block all operations
2055  * that could modify pagetables and free pages without need of
2056  * altering the vma layout. It's also needed in write mode to avoid new
2057  * anon_vmas to be associated with existing vmas.
2058  *
2059  * A single task can't take more than one mm_take_all_locks() in a row
2060  * or it would deadlock.
2061  *
2062  * The LSB in anon_vma->rb_root.rb_node and the AS_MM_ALL_LOCKS bitflag in
2063  * mapping->flags avoid to take the same lock twice, if more than one
2064  * vma in this mm is backed by the same anon_vma or address_space.
2065  *
2066  * We take locks in following order, accordingly to comment at beginning
2067  * of mm/rmap.c:
2068  *   - all hugetlbfs_i_mmap_rwsem_key locks (aka mapping->i_mmap_rwsem for
2069  *     hugetlb mapping);
2070  *   - all vmas marked locked
2071  *   - all i_mmap_rwsem locks;
2072  *   - all anon_vma->rwseml
2073  *
2074  * We can take all locks within these types randomly because the VM code
2075  * doesn't nest them and we protected from parallel mm_take_all_locks() by
2076  * mm_all_locks_mutex.
2077  *
2078  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2079  * that may have to take thousand of locks.
2080  *
2081  * mm_take_all_locks() can fail if it's interrupted by signals.
2082  */
mm_take_all_locks(struct mm_struct * mm)2083 int mm_take_all_locks(struct mm_struct *mm)
2084 {
2085 	struct vm_area_struct *vma;
2086 	struct anon_vma_chain *avc;
2087 	VMA_ITERATOR(vmi, mm, 0);
2088 
2089 	mmap_assert_write_locked(mm);
2090 
2091 	mutex_lock(&mm_all_locks_mutex);
2092 
2093 	/*
2094 	 * vma_start_write() does not have a complement in mm_drop_all_locks()
2095 	 * because vma_start_write() is always asymmetrical; it marks a VMA as
2096 	 * being written to until mmap_write_unlock() or mmap_write_downgrade()
2097 	 * is reached.
2098 	 */
2099 	for_each_vma(vmi, vma) {
2100 		if (signal_pending(current))
2101 			goto out_unlock;
2102 		vma_start_write(vma);
2103 	}
2104 
2105 	vma_iter_init(&vmi, mm, 0);
2106 	for_each_vma(vmi, vma) {
2107 		if (signal_pending(current))
2108 			goto out_unlock;
2109 		if (vma->vm_file && vma->vm_file->f_mapping &&
2110 				is_vm_hugetlb_page(vma))
2111 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2112 	}
2113 
2114 	vma_iter_init(&vmi, mm, 0);
2115 	for_each_vma(vmi, vma) {
2116 		if (signal_pending(current))
2117 			goto out_unlock;
2118 		if (vma->vm_file && vma->vm_file->f_mapping &&
2119 				!is_vm_hugetlb_page(vma))
2120 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2121 	}
2122 
2123 	vma_iter_init(&vmi, mm, 0);
2124 	for_each_vma(vmi, vma) {
2125 		if (signal_pending(current))
2126 			goto out_unlock;
2127 		if (vma->anon_vma)
2128 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2129 				vm_lock_anon_vma(mm, avc->anon_vma);
2130 	}
2131 
2132 	return 0;
2133 
2134 out_unlock:
2135 	mm_drop_all_locks(mm);
2136 	return -EINTR;
2137 }
2138 
vm_unlock_anon_vma(struct anon_vma * anon_vma)2139 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2140 {
2141 	if (test_bit(0, (unsigned long *) &anon_vma->root->rb_root.rb_root.rb_node)) {
2142 		/*
2143 		 * The LSB of head.next can't change to 0 from under
2144 		 * us because we hold the mm_all_locks_mutex.
2145 		 *
2146 		 * We must however clear the bitflag before unlocking
2147 		 * the vma so the users using the anon_vma->rb_root will
2148 		 * never see our bitflag.
2149 		 *
2150 		 * No need of atomic instructions here, head.next
2151 		 * can't change from under us until we release the
2152 		 * anon_vma->root->rwsem.
2153 		 */
2154 		if (!__test_and_clear_bit(0, (unsigned long *)
2155 					  &anon_vma->root->rb_root.rb_root.rb_node))
2156 			BUG();
2157 		anon_vma_unlock_write(anon_vma);
2158 	}
2159 }
2160 
vm_unlock_mapping(struct address_space * mapping)2161 static void vm_unlock_mapping(struct address_space *mapping)
2162 {
2163 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2164 		/*
2165 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2166 		 * because we hold the mm_all_locks_mutex.
2167 		 */
2168 		i_mmap_unlock_write(mapping);
2169 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2170 					&mapping->flags))
2171 			BUG();
2172 	}
2173 }
2174 
2175 /*
2176  * The mmap_lock cannot be released by the caller until
2177  * mm_drop_all_locks() returns.
2178  */
mm_drop_all_locks(struct mm_struct * mm)2179 void mm_drop_all_locks(struct mm_struct *mm)
2180 {
2181 	struct vm_area_struct *vma;
2182 	struct anon_vma_chain *avc;
2183 	VMA_ITERATOR(vmi, mm, 0);
2184 
2185 	mmap_assert_write_locked(mm);
2186 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2187 
2188 	for_each_vma(vmi, vma) {
2189 		if (vma->anon_vma)
2190 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2191 				vm_unlock_anon_vma(avc->anon_vma);
2192 		if (vma->vm_file && vma->vm_file->f_mapping)
2193 			vm_unlock_mapping(vma->vm_file->f_mapping);
2194 	}
2195 
2196 	mutex_unlock(&mm_all_locks_mutex);
2197 }
2198 
2199 /*
2200  * We account for memory if it's a private writeable mapping,
2201  * not hugepages and VM_NORESERVE wasn't set.
2202  */
accountable_mapping(struct file * file,vm_flags_t vm_flags)2203 static bool accountable_mapping(struct file *file, vm_flags_t vm_flags)
2204 {
2205 	/*
2206 	 * hugetlb has its own accounting separate from the core VM
2207 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
2208 	 */
2209 	if (file && is_file_hugepages(file))
2210 		return false;
2211 
2212 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
2213 }
2214 
2215 /*
2216  * vms_abort_munmap_vmas() - Undo as much as possible from an aborted munmap()
2217  * operation.
2218  * @vms: The vma unmap structure
2219  * @mas_detach: The maple state with the detached maple tree
2220  *
2221  * Reattach any detached vmas, free up the maple tree used to track the vmas.
2222  * If that's not possible because the ptes are cleared (and vm_ops->closed() may
2223  * have been called), then a NULL is written over the vmas and the vmas are
2224  * removed (munmap() completed).
2225  */
vms_abort_munmap_vmas(struct vma_munmap_struct * vms,struct ma_state * mas_detach)2226 static void vms_abort_munmap_vmas(struct vma_munmap_struct *vms,
2227 		struct ma_state *mas_detach)
2228 {
2229 	struct ma_state *mas = &vms->vmi->mas;
2230 
2231 	if (!vms->nr_pages)
2232 		return;
2233 
2234 	if (vms->clear_ptes)
2235 		return reattach_vmas(mas_detach);
2236 
2237 	/*
2238 	 * Aborting cannot just call the vm_ops open() because they are often
2239 	 * not symmetrical and state data has been lost.  Resort to the old
2240 	 * failure method of leaving a gap where the MAP_FIXED mapping failed.
2241 	 */
2242 	mas_set_range(mas, vms->start, vms->end - 1);
2243 	mas_store_gfp(mas, NULL, GFP_KERNEL|__GFP_NOFAIL);
2244 	/* Clean up the insertion of the unfortunate gap */
2245 	vms_complete_munmap_vmas(vms, mas_detach);
2246 }
2247 
2248 /*
2249  * __mmap_prepare() - Prepare to gather any overlapping VMAs that need to be
2250  * unmapped once the map operation is completed, check limits, account mapping
2251  * and clean up any pre-existing VMAs.
2252  *
2253  * @map: Mapping state.
2254  * @uf:  Userfaultfd context list.
2255  *
2256  * Returns: 0 on success, error code otherwise.
2257  */
__mmap_prepare(struct mmap_state * map,struct list_head * uf)2258 static int __mmap_prepare(struct mmap_state *map, struct list_head *uf)
2259 {
2260 	int error;
2261 	struct vma_iterator *vmi = map->vmi;
2262 	struct vma_munmap_struct *vms = &map->vms;
2263 
2264 	/* Find the first overlapping VMA and initialise unmap state. */
2265 	vms->vma = vma_find(vmi, map->end);
2266 	init_vma_munmap(vms, vmi, vms->vma, map->addr, map->end, uf,
2267 			/* unlock = */ false);
2268 
2269 	/* OK, we have overlapping VMAs - prepare to unmap them. */
2270 	if (vms->vma) {
2271 		mt_init_flags(&map->mt_detach,
2272 			      vmi->mas.tree->ma_flags & MT_FLAGS_LOCK_MASK);
2273 		mt_on_stack(map->mt_detach);
2274 		mas_init(&map->mas_detach, &map->mt_detach, /* addr = */ 0);
2275 		/* Prepare to unmap any existing mapping in the area */
2276 		error = vms_gather_munmap_vmas(vms, &map->mas_detach);
2277 		if (error) {
2278 			/* On error VMAs will already have been reattached. */
2279 			vms->nr_pages = 0;
2280 			return error;
2281 		}
2282 
2283 		map->next = vms->next;
2284 		map->prev = vms->prev;
2285 	} else {
2286 		map->next = vma_iter_next_rewind(vmi, &map->prev);
2287 	}
2288 
2289 	/* Check against address space limit. */
2290 	if (!may_expand_vm(map->mm, map->flags, map->pglen - vms->nr_pages))
2291 		return -ENOMEM;
2292 
2293 	/* Private writable mapping: check memory availability. */
2294 	if (accountable_mapping(map->file, map->flags)) {
2295 		map->charged = map->pglen;
2296 		map->charged -= vms->nr_accounted;
2297 		if (map->charged) {
2298 			error = security_vm_enough_memory_mm(map->mm, map->charged);
2299 			if (error)
2300 				return error;
2301 		}
2302 
2303 		vms->nr_accounted = 0;
2304 		map->flags |= VM_ACCOUNT;
2305 	}
2306 
2307 	/*
2308 	 * Clear PTEs while the vma is still in the tree so that rmap
2309 	 * cannot race with the freeing later in the truncate scenario.
2310 	 * This is also needed for mmap_file(), which is why vm_ops
2311 	 * close function is called.
2312 	 */
2313 	vms_clean_up_area(vms, &map->mas_detach);
2314 
2315 	return 0;
2316 }
2317 
2318 
__mmap_new_file_vma(struct mmap_state * map,struct vm_area_struct * vma)2319 static int __mmap_new_file_vma(struct mmap_state *map,
2320 			       struct vm_area_struct *vma)
2321 {
2322 	struct vma_iterator *vmi = map->vmi;
2323 	int error;
2324 
2325 	vma->vm_file = get_file(map->file);
2326 	error = mmap_file(vma->vm_file, vma);
2327 	if (error) {
2328 		fput(vma->vm_file);
2329 		vma->vm_file = NULL;
2330 
2331 		vma_iter_set(vmi, vma->vm_end);
2332 		/* Undo any partial mapping done by a device driver. */
2333 		unmap_region(&vmi->mas, vma, map->prev, map->next);
2334 
2335 		return error;
2336 	}
2337 
2338 	/* Drivers cannot alter the address of the VMA. */
2339 	WARN_ON_ONCE(map->addr != vma->vm_start);
2340 	/*
2341 	 * Drivers should not permit writability when previously it was
2342 	 * disallowed.
2343 	 */
2344 	VM_WARN_ON_ONCE(map->flags != vma->vm_flags &&
2345 			!(map->flags & VM_MAYWRITE) &&
2346 			(vma->vm_flags & VM_MAYWRITE));
2347 
2348 	/* If the flags change (and are mergeable), let's retry later. */
2349 	map->retry_merge = vma->vm_flags != map->flags && !(vma->vm_flags & VM_SPECIAL);
2350 	map->flags = vma->vm_flags;
2351 
2352 	return 0;
2353 }
2354 
2355 /*
2356  * __mmap_new_vma() - Allocate a new VMA for the region, as merging was not
2357  * possible.
2358  *
2359  * @map:  Mapping state.
2360  * @vmap: Output pointer for the new VMA.
2361  *
2362  * Returns: Zero on success, or an error.
2363  */
__mmap_new_vma(struct mmap_state * map,struct vm_area_struct ** vmap)2364 static int __mmap_new_vma(struct mmap_state *map, struct vm_area_struct **vmap)
2365 {
2366 	struct vma_iterator *vmi = map->vmi;
2367 	int error = 0;
2368 	struct vm_area_struct *vma;
2369 
2370 	/*
2371 	 * Determine the object being mapped and call the appropriate
2372 	 * specific mapper. the address has already been validated, but
2373 	 * not unmapped, but the maps are removed from the list.
2374 	 */
2375 	vma = vm_area_alloc(map->mm);
2376 	if (!vma)
2377 		return -ENOMEM;
2378 
2379 	vma_iter_config(vmi, map->addr, map->end);
2380 	vma_set_range(vma, map->addr, map->end, map->pgoff);
2381 	vm_flags_init(vma, map->flags);
2382 	vma->vm_page_prot = vm_get_page_prot(map->flags);
2383 
2384 	if (vma_iter_prealloc(vmi, vma)) {
2385 		error = -ENOMEM;
2386 		goto free_vma;
2387 	}
2388 
2389 	if (map->file)
2390 		error = __mmap_new_file_vma(map, vma);
2391 	else if (map->flags & VM_SHARED)
2392 		error = shmem_zero_setup(vma);
2393 	else
2394 		vma_set_anonymous(vma);
2395 
2396 	if (error)
2397 		goto free_iter_vma;
2398 
2399 #ifdef CONFIG_SPARC64
2400 	/* TODO: Fix SPARC ADI! */
2401 	WARN_ON_ONCE(!arch_validate_flags(map->flags));
2402 #endif
2403 
2404 	/* Lock the VMA since it is modified after insertion into VMA tree */
2405 	vma_start_write(vma);
2406 	vma_iter_store(vmi, vma);
2407 	map->mm->map_count++;
2408 	vma_link_file(vma);
2409 
2410 	/*
2411 	 * vma_merge_new_range() calls khugepaged_enter_vma() too, the below
2412 	 * call covers the non-merge case.
2413 	 */
2414 	if (!vma_is_anonymous(vma))
2415 		khugepaged_enter_vma(vma, map->flags);
2416 	ksm_add_vma(vma);
2417 	*vmap = vma;
2418 	return 0;
2419 
2420 free_iter_vma:
2421 	vma_iter_free(vmi);
2422 free_vma:
2423 	vm_area_free(vma);
2424 	return error;
2425 }
2426 
2427 /*
2428  * __mmap_complete() - Unmap any VMAs we overlap, account memory mapping
2429  *                     statistics, handle locking and finalise the VMA.
2430  *
2431  * @map: Mapping state.
2432  * @vma: Merged or newly allocated VMA for the mmap()'d region.
2433  */
__mmap_complete(struct mmap_state * map,struct vm_area_struct * vma)2434 static void __mmap_complete(struct mmap_state *map, struct vm_area_struct *vma)
2435 {
2436 	struct mm_struct *mm = map->mm;
2437 	unsigned long vm_flags = vma->vm_flags;
2438 
2439 	perf_event_mmap(vma);
2440 
2441 	/* Unmap any existing mapping in the area. */
2442 	vms_complete_munmap_vmas(&map->vms, &map->mas_detach);
2443 
2444 	vm_stat_account(mm, vma->vm_flags, map->pglen);
2445 	if (vm_flags & VM_LOCKED) {
2446 		if ((vm_flags & VM_SPECIAL) || vma_is_dax(vma) ||
2447 					is_vm_hugetlb_page(vma) ||
2448 					vma == get_gate_vma(mm))
2449 			vm_flags_clear(vma, VM_LOCKED_MASK);
2450 		else
2451 			mm->locked_vm += map->pglen;
2452 	}
2453 
2454 	if (vma->vm_file)
2455 		uprobe_mmap(vma);
2456 
2457 	/*
2458 	 * New (or expanded) vma always get soft dirty status.
2459 	 * Otherwise user-space soft-dirty page tracker won't
2460 	 * be able to distinguish situation when vma area unmapped,
2461 	 * then new mapped in-place (which must be aimed as
2462 	 * a completely new data area).
2463 	 */
2464 	vm_flags_set(vma, VM_SOFTDIRTY);
2465 
2466 	vma_set_page_prot(vma);
2467 }
2468 
__mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2469 static unsigned long __mmap_region(struct file *file, unsigned long addr,
2470 		unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2471 		struct list_head *uf)
2472 {
2473 	struct mm_struct *mm = current->mm;
2474 	struct vm_area_struct *vma = NULL;
2475 	int error;
2476 	VMA_ITERATOR(vmi, mm, addr);
2477 	MMAP_STATE(map, mm, &vmi, addr, len, pgoff, vm_flags, file);
2478 
2479 	error = __mmap_prepare(&map, uf);
2480 	if (error)
2481 		goto abort_munmap;
2482 
2483 	/* Attempt to merge with adjacent VMAs... */
2484 	if (map.prev || map.next) {
2485 		VMG_MMAP_STATE(vmg, &map, /* vma = */ NULL);
2486 
2487 		vma = vma_merge_new_range(&vmg);
2488 	}
2489 
2490 	/* ...but if we can't, allocate a new VMA. */
2491 	if (!vma) {
2492 		error = __mmap_new_vma(&map, &vma);
2493 		if (error)
2494 			goto unacct_error;
2495 	}
2496 
2497 	/* If flags changed, we might be able to merge, so try again. */
2498 	if (map.retry_merge) {
2499 		struct vm_area_struct *merged;
2500 		VMG_MMAP_STATE(vmg, &map, vma);
2501 
2502 		vma_iter_config(map.vmi, map.addr, map.end);
2503 		merged = vma_merge_existing_range(&vmg);
2504 		if (merged)
2505 			vma = merged;
2506 	}
2507 
2508 	__mmap_complete(&map, vma);
2509 
2510 	return addr;
2511 
2512 	/* Accounting was done by __mmap_prepare(). */
2513 unacct_error:
2514 	if (map.charged)
2515 		vm_unacct_memory(map.charged);
2516 abort_munmap:
2517 	vms_abort_munmap_vmas(&map.vms, &map.mas_detach);
2518 	return error;
2519 }
2520 
2521 /**
2522  * mmap_region() - Actually perform the userland mapping of a VMA into
2523  * current->mm with known, aligned and overflow-checked @addr and @len, and
2524  * correctly determined VMA flags @vm_flags and page offset @pgoff.
2525  *
2526  * This is an internal memory management function, and should not be used
2527  * directly.
2528  *
2529  * The caller must write-lock current->mm->mmap_lock.
2530  *
2531  * @file: If a file-backed mapping, a pointer to the struct file describing the
2532  * file to be mapped, otherwise NULL.
2533  * @addr: The page-aligned address at which to perform the mapping.
2534  * @len: The page-aligned, non-zero, length of the mapping.
2535  * @vm_flags: The VMA flags which should be applied to the mapping.
2536  * @pgoff: If @file is specified, the page offset into the file, if not then
2537  * the virtual page offset in memory of the anonymous mapping.
2538  * @uf: Optionally, a pointer to a list head used for tracking userfaultfd unmap
2539  * events.
2540  *
2541  * Returns: Either an error, or the address at which the requested mapping has
2542  * been performed.
2543  */
mmap_region(struct file * file,unsigned long addr,unsigned long len,vm_flags_t vm_flags,unsigned long pgoff,struct list_head * uf)2544 unsigned long mmap_region(struct file *file, unsigned long addr,
2545 			  unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2546 			  struct list_head *uf)
2547 {
2548 	unsigned long ret;
2549 	bool writable_file_mapping = false;
2550 
2551 	mmap_assert_write_locked(current->mm);
2552 
2553 	/* Check to see if MDWE is applicable. */
2554 	if (map_deny_write_exec(vm_flags, vm_flags))
2555 		return -EACCES;
2556 
2557 	/* Allow architectures to sanity-check the vm_flags. */
2558 	if (!arch_validate_flags(vm_flags))
2559 		return -EINVAL;
2560 
2561 	/* Map writable and ensure this isn't a sealed memfd. */
2562 	if (file && is_shared_maywrite(vm_flags)) {
2563 		int error = mapping_map_writable(file->f_mapping);
2564 
2565 		if (error)
2566 			return error;
2567 		writable_file_mapping = true;
2568 	}
2569 
2570 	ret = __mmap_region(file, addr, len, vm_flags, pgoff, uf);
2571 
2572 	/* Clear our write mapping regardless of error. */
2573 	if (writable_file_mapping)
2574 		mapping_unmap_writable(file->f_mapping);
2575 
2576 	validate_mm(current->mm);
2577 	return ret;
2578 }
2579 
2580 /*
2581  * do_brk_flags() - Increase the brk vma if the flags match.
2582  * @vmi: The vma iterator
2583  * @addr: The start address
2584  * @len: The length of the increase
2585  * @vma: The vma,
2586  * @flags: The VMA Flags
2587  *
2588  * Extend the brk VMA from addr to addr + len.  If the VMA is NULL or the flags
2589  * do not match then create a new anonymous VMA.  Eventually we may be able to
2590  * do some brk-specific accounting here.
2591  */
do_brk_flags(struct vma_iterator * vmi,struct vm_area_struct * vma,unsigned long addr,unsigned long len,unsigned long flags)2592 int do_brk_flags(struct vma_iterator *vmi, struct vm_area_struct *vma,
2593 		 unsigned long addr, unsigned long len, unsigned long flags)
2594 {
2595 	struct mm_struct *mm = current->mm;
2596 
2597 	/*
2598 	 * Check against address space limits by the changed size
2599 	 * Note: This happens *after* clearing old mappings in some code paths.
2600 	 */
2601 	flags |= VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2602 	if (!may_expand_vm(mm, flags, len >> PAGE_SHIFT))
2603 		return -ENOMEM;
2604 
2605 	if (mm->map_count > sysctl_max_map_count)
2606 		return -ENOMEM;
2607 
2608 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2609 		return -ENOMEM;
2610 
2611 	/*
2612 	 * Expand the existing vma if possible; Note that singular lists do not
2613 	 * occur after forking, so the expand will only happen on new VMAs.
2614 	 */
2615 	if (vma && vma->vm_end == addr) {
2616 		VMG_STATE(vmg, mm, vmi, addr, addr + len, flags, PHYS_PFN(addr));
2617 
2618 		vmg.prev = vma;
2619 		/* vmi is positioned at prev, which this mode expects. */
2620 		vmg.merge_flags = VMG_FLAG_JUST_EXPAND;
2621 
2622 		if (vma_merge_new_range(&vmg))
2623 			goto out;
2624 		else if (vmg_nomem(&vmg))
2625 			goto unacct_fail;
2626 	}
2627 
2628 	if (vma)
2629 		vma_iter_next_range(vmi);
2630 	/* create a vma struct for an anonymous mapping */
2631 	vma = vm_area_alloc(mm);
2632 	if (!vma)
2633 		goto unacct_fail;
2634 
2635 	vma_set_anonymous(vma);
2636 	vma_set_range(vma, addr, addr + len, addr >> PAGE_SHIFT);
2637 	vm_flags_init(vma, flags);
2638 	vma->vm_page_prot = vm_get_page_prot(flags);
2639 	vma_start_write(vma);
2640 	if (vma_iter_store_gfp(vmi, vma, GFP_KERNEL))
2641 		goto mas_store_fail;
2642 
2643 	mm->map_count++;
2644 	validate_mm(mm);
2645 	ksm_add_vma(vma);
2646 out:
2647 	perf_event_mmap(vma);
2648 	mm->total_vm += len >> PAGE_SHIFT;
2649 	mm->data_vm += len >> PAGE_SHIFT;
2650 	if (flags & VM_LOCKED)
2651 		mm->locked_vm += (len >> PAGE_SHIFT);
2652 	vm_flags_set(vma, VM_SOFTDIRTY);
2653 	return 0;
2654 
2655 mas_store_fail:
2656 	vm_area_free(vma);
2657 unacct_fail:
2658 	vm_unacct_memory(len >> PAGE_SHIFT);
2659 	return -ENOMEM;
2660 }
2661 
2662 /**
2663  * unmapped_area() - Find an area between the low_limit and the high_limit with
2664  * the correct alignment and offset, all from @info. Note: current->mm is used
2665  * for the search.
2666  *
2667  * @info: The unmapped area information including the range [low_limit -
2668  * high_limit), the alignment offset and mask.
2669  *
2670  * Return: A memory address or -ENOMEM.
2671  */
unmapped_area(struct vm_unmapped_area_info * info)2672 unsigned long unmapped_area(struct vm_unmapped_area_info *info)
2673 {
2674 	unsigned long length, gap;
2675 	unsigned long low_limit, high_limit;
2676 	struct vm_area_struct *tmp;
2677 	VMA_ITERATOR(vmi, current->mm, 0);
2678 
2679 	/* Adjust search length to account for worst case alignment overhead */
2680 	length = info->length + info->align_mask + info->start_gap;
2681 	if (length < info->length)
2682 		return -ENOMEM;
2683 
2684 	low_limit = info->low_limit;
2685 	if (low_limit < mmap_min_addr)
2686 		low_limit = mmap_min_addr;
2687 	high_limit = info->high_limit;
2688 retry:
2689 	if (vma_iter_area_lowest(&vmi, low_limit, high_limit, length))
2690 		return -ENOMEM;
2691 
2692 	/*
2693 	 * Adjust for the gap first so it doesn't interfere with the
2694 	 * later alignment. The first step is the minimum needed to
2695 	 * fulill the start gap, the next steps is the minimum to align
2696 	 * that. It is the minimum needed to fulill both.
2697 	 */
2698 	gap = vma_iter_addr(&vmi) + info->start_gap;
2699 	gap += (info->align_offset - gap) & info->align_mask;
2700 	tmp = vma_next(&vmi);
2701 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2702 		if (vm_start_gap(tmp) < gap + length - 1) {
2703 			low_limit = tmp->vm_end;
2704 			vma_iter_reset(&vmi);
2705 			goto retry;
2706 		}
2707 	} else {
2708 		tmp = vma_prev(&vmi);
2709 		if (tmp && vm_end_gap(tmp) > gap) {
2710 			low_limit = vm_end_gap(tmp);
2711 			vma_iter_reset(&vmi);
2712 			goto retry;
2713 		}
2714 	}
2715 
2716 	return gap;
2717 }
2718 
2719 /**
2720  * unmapped_area_topdown() - Find an area between the low_limit and the
2721  * high_limit with the correct alignment and offset at the highest available
2722  * address, all from @info. Note: current->mm is used for the search.
2723  *
2724  * @info: The unmapped area information including the range [low_limit -
2725  * high_limit), the alignment offset and mask.
2726  *
2727  * Return: A memory address or -ENOMEM.
2728  */
unmapped_area_topdown(struct vm_unmapped_area_info * info)2729 unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info)
2730 {
2731 	unsigned long length, gap, gap_end;
2732 	unsigned long low_limit, high_limit;
2733 	struct vm_area_struct *tmp;
2734 	VMA_ITERATOR(vmi, current->mm, 0);
2735 
2736 	/* Adjust search length to account for worst case alignment overhead */
2737 	length = info->length + info->align_mask + info->start_gap;
2738 	if (length < info->length)
2739 		return -ENOMEM;
2740 
2741 	low_limit = info->low_limit;
2742 	if (low_limit < mmap_min_addr)
2743 		low_limit = mmap_min_addr;
2744 	high_limit = info->high_limit;
2745 retry:
2746 	if (vma_iter_area_highest(&vmi, low_limit, high_limit, length))
2747 		return -ENOMEM;
2748 
2749 	gap = vma_iter_end(&vmi) - info->length;
2750 	gap -= (gap - info->align_offset) & info->align_mask;
2751 	gap_end = vma_iter_end(&vmi);
2752 	tmp = vma_next(&vmi);
2753 	if (tmp && (tmp->vm_flags & VM_STARTGAP_FLAGS)) { /* Avoid prev check if possible */
2754 		if (vm_start_gap(tmp) < gap_end) {
2755 			high_limit = vm_start_gap(tmp);
2756 			vma_iter_reset(&vmi);
2757 			goto retry;
2758 		}
2759 	} else {
2760 		tmp = vma_prev(&vmi);
2761 		if (tmp && vm_end_gap(tmp) > gap) {
2762 			high_limit = tmp->vm_start;
2763 			vma_iter_reset(&vmi);
2764 			goto retry;
2765 		}
2766 	}
2767 
2768 	return gap;
2769 }
2770 
2771 /*
2772  * Verify that the stack growth is acceptable and
2773  * update accounting. This is shared with both the
2774  * grow-up and grow-down cases.
2775  */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)2776 static int acct_stack_growth(struct vm_area_struct *vma,
2777 			     unsigned long size, unsigned long grow)
2778 {
2779 	struct mm_struct *mm = vma->vm_mm;
2780 	unsigned long new_start;
2781 
2782 	/* address space limit tests */
2783 	if (!may_expand_vm(mm, vma->vm_flags, grow))
2784 		return -ENOMEM;
2785 
2786 	/* Stack limit test */
2787 	if (size > rlimit(RLIMIT_STACK))
2788 		return -ENOMEM;
2789 
2790 	/* mlock limit tests */
2791 	if (!mlock_future_ok(mm, vma->vm_flags, grow << PAGE_SHIFT))
2792 		return -ENOMEM;
2793 
2794 	/* Check to ensure the stack will not grow into a hugetlb-only region */
2795 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
2796 			vma->vm_end - size;
2797 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
2798 		return -EFAULT;
2799 
2800 	/*
2801 	 * Overcommit..  This must be the final test, as it will
2802 	 * update security statistics.
2803 	 */
2804 	if (security_vm_enough_memory_mm(mm, grow))
2805 		return -ENOMEM;
2806 
2807 	return 0;
2808 }
2809 
2810 #if defined(CONFIG_STACK_GROWSUP)
2811 /*
2812  * PA-RISC uses this for its stack.
2813  * vma is the last one with address > vma->vm_end.  Have to extend vma.
2814  */
expand_upwards(struct vm_area_struct * vma,unsigned long address)2815 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
2816 {
2817 	struct mm_struct *mm = vma->vm_mm;
2818 	struct vm_area_struct *next;
2819 	unsigned long gap_addr;
2820 	int error = 0;
2821 	VMA_ITERATOR(vmi, mm, vma->vm_start);
2822 
2823 	if (!(vma->vm_flags & VM_GROWSUP))
2824 		return -EFAULT;
2825 
2826 	mmap_assert_write_locked(mm);
2827 
2828 	/* Guard against exceeding limits of the address space. */
2829 	address &= PAGE_MASK;
2830 	if (address >= (TASK_SIZE & PAGE_MASK))
2831 		return -ENOMEM;
2832 	address += PAGE_SIZE;
2833 
2834 	/* Enforce stack_guard_gap */
2835 	gap_addr = address + stack_guard_gap;
2836 
2837 	/* Guard against overflow */
2838 	if (gap_addr < address || gap_addr > TASK_SIZE)
2839 		gap_addr = TASK_SIZE;
2840 
2841 	next = find_vma_intersection(mm, vma->vm_end, gap_addr);
2842 	if (next && vma_is_accessible(next)) {
2843 		if (!(next->vm_flags & VM_GROWSUP))
2844 			return -ENOMEM;
2845 		/* Check that both stack segments have the same anon_vma? */
2846 	}
2847 
2848 	if (next)
2849 		vma_iter_prev_range_limit(&vmi, address);
2850 
2851 	vma_iter_config(&vmi, vma->vm_start, address);
2852 	if (vma_iter_prealloc(&vmi, vma))
2853 		return -ENOMEM;
2854 
2855 	/* We must make sure the anon_vma is allocated. */
2856 	if (unlikely(anon_vma_prepare(vma))) {
2857 		vma_iter_free(&vmi);
2858 		return -ENOMEM;
2859 	}
2860 
2861 	/* Lock the VMA before expanding to prevent concurrent page faults */
2862 	vma_start_write(vma);
2863 	/* We update the anon VMA tree. */
2864 	anon_vma_lock_write(vma->anon_vma);
2865 
2866 	/* Somebody else might have raced and expanded it already */
2867 	if (address > vma->vm_end) {
2868 		unsigned long size, grow;
2869 
2870 		size = address - vma->vm_start;
2871 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
2872 
2873 		error = -ENOMEM;
2874 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
2875 			error = acct_stack_growth(vma, size, grow);
2876 			if (!error) {
2877 				if (vma->vm_flags & VM_LOCKED)
2878 					mm->locked_vm += grow;
2879 				vm_stat_account(mm, vma->vm_flags, grow);
2880 				anon_vma_interval_tree_pre_update_vma(vma);
2881 				vma->vm_end = address;
2882 				/* Overwrite old entry in mtree. */
2883 				vma_iter_store(&vmi, vma);
2884 				anon_vma_interval_tree_post_update_vma(vma);
2885 
2886 				perf_event_mmap(vma);
2887 			}
2888 		}
2889 	}
2890 	anon_vma_unlock_write(vma->anon_vma);
2891 	vma_iter_free(&vmi);
2892 	validate_mm(mm);
2893 	return error;
2894 }
2895 #endif /* CONFIG_STACK_GROWSUP */
2896 
2897 /*
2898  * vma is the first one with address < vma->vm_start.  Have to extend vma.
2899  * mmap_lock held for writing.
2900  */
expand_downwards(struct vm_area_struct * vma,unsigned long address)2901 int expand_downwards(struct vm_area_struct *vma, unsigned long address)
2902 {
2903 	struct mm_struct *mm = vma->vm_mm;
2904 	struct vm_area_struct *prev;
2905 	int error = 0;
2906 	VMA_ITERATOR(vmi, mm, vma->vm_start);
2907 
2908 	if (!(vma->vm_flags & VM_GROWSDOWN))
2909 		return -EFAULT;
2910 
2911 	mmap_assert_write_locked(mm);
2912 
2913 	address &= PAGE_MASK;
2914 	if (address < mmap_min_addr || address < FIRST_USER_ADDRESS)
2915 		return -EPERM;
2916 
2917 	/* Enforce stack_guard_gap */
2918 	prev = vma_prev(&vmi);
2919 	/* Check that both stack segments have the same anon_vma? */
2920 	if (prev) {
2921 		if (!(prev->vm_flags & VM_GROWSDOWN) &&
2922 		    vma_is_accessible(prev) &&
2923 		    (address - prev->vm_end < stack_guard_gap))
2924 			return -ENOMEM;
2925 	}
2926 
2927 	if (prev)
2928 		vma_iter_next_range_limit(&vmi, vma->vm_start);
2929 
2930 	vma_iter_config(&vmi, address, vma->vm_end);
2931 	if (vma_iter_prealloc(&vmi, vma))
2932 		return -ENOMEM;
2933 
2934 	/* We must make sure the anon_vma is allocated. */
2935 	if (unlikely(anon_vma_prepare(vma))) {
2936 		vma_iter_free(&vmi);
2937 		return -ENOMEM;
2938 	}
2939 
2940 	/* Lock the VMA before expanding to prevent concurrent page faults */
2941 	vma_start_write(vma);
2942 	/* We update the anon VMA tree. */
2943 	anon_vma_lock_write(vma->anon_vma);
2944 
2945 	/* Somebody else might have raced and expanded it already */
2946 	if (address < vma->vm_start) {
2947 		unsigned long size, grow;
2948 
2949 		size = vma->vm_end - address;
2950 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
2951 
2952 		error = -ENOMEM;
2953 		if (grow <= vma->vm_pgoff) {
2954 			error = acct_stack_growth(vma, size, grow);
2955 			if (!error) {
2956 				if (vma->vm_flags & VM_LOCKED)
2957 					mm->locked_vm += grow;
2958 				vm_stat_account(mm, vma->vm_flags, grow);
2959 				anon_vma_interval_tree_pre_update_vma(vma);
2960 				vma->vm_start = address;
2961 				vma->vm_pgoff -= grow;
2962 				/* Overwrite old entry in mtree. */
2963 				vma_iter_store(&vmi, vma);
2964 				anon_vma_interval_tree_post_update_vma(vma);
2965 
2966 				perf_event_mmap(vma);
2967 			}
2968 		}
2969 	}
2970 	anon_vma_unlock_write(vma->anon_vma);
2971 	vma_iter_free(&vmi);
2972 	validate_mm(mm);
2973 	return error;
2974 }
2975 
__vm_munmap(unsigned long start,size_t len,bool unlock)2976 int __vm_munmap(unsigned long start, size_t len, bool unlock)
2977 {
2978 	int ret;
2979 	struct mm_struct *mm = current->mm;
2980 	LIST_HEAD(uf);
2981 	VMA_ITERATOR(vmi, mm, start);
2982 
2983 	if (mmap_write_lock_killable(mm))
2984 		return -EINTR;
2985 
2986 	ret = do_vmi_munmap(&vmi, mm, start, len, &uf, unlock);
2987 	if (ret || !unlock)
2988 		mmap_write_unlock(mm);
2989 
2990 	userfaultfd_unmap_complete(mm, &uf);
2991 	return ret;
2992 }
2993