1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/page-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
11 * 10Apr2002 Andrew Morton
12 * Initial version
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42
43 #include "internal.h"
44
45 /*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48 #define MAX_PAUSE max(HZ/5, 1)
49
50 /*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
56 /*
57 * Estimate write bandwidth or update dirty limit at 200ms intervals.
58 */
59 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
61 #define RATELIMIT_CALC_SHIFT 10
62
63 /*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67 static long ratelimit_pages = 32;
68
69 /* The following parameters are exported via /proc/sys/vm */
70
71 /*
72 * Start background writeback (via writeback threads) at this percentage
73 */
74 static int dirty_background_ratio = 10;
75
76 /*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
80 static unsigned long dirty_background_bytes;
81
82 /*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
86 static int vm_highmem_is_dirtyable;
87
88 /*
89 * The generator of dirty data starts writeback at this percentage
90 */
91 static int vm_dirty_ratio = 20;
92
93 /*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
97 static unsigned long vm_dirty_bytes;
98
99 /*
100 * The interval between `kupdate'-style writebacks
101 */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
106 /*
107 * The longest time for which data is allowed to remain dirty
108 */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111 /*
112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113 * a full sync is triggered after this time elapses without any disk activity.
114 */
115 int laptop_mode;
116
117 EXPORT_SYMBOL(laptop_mode);
118
119 /* End of sysctl-exported parameters */
120
121 struct wb_domain global_wb_domain;
122
123 /*
124 * Length of period for aging writeout fractions of bdis. This is an
125 * arbitrarily chosen number. The longer the period, the slower fractions will
126 * reflect changes in current writeout rate.
127 */
128 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
129
130 #ifdef CONFIG_CGROUP_WRITEBACK
131
132 #define GDTC_INIT(__wb) .wb = (__wb), \
133 .dom = &global_wb_domain, \
134 .wb_completions = &(__wb)->completions
135
136 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
137
138 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
139 .dom = mem_cgroup_wb_domain(__wb), \
140 .wb_completions = &(__wb)->memcg_completions, \
141 .gdtc = __gdtc
142
mdtc_valid(struct dirty_throttle_control * dtc)143 static bool mdtc_valid(struct dirty_throttle_control *dtc)
144 {
145 return dtc->dom;
146 }
147
dtc_dom(struct dirty_throttle_control * dtc)148 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
149 {
150 return dtc->dom;
151 }
152
mdtc_gdtc(struct dirty_throttle_control * mdtc)153 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
154 {
155 return mdtc->gdtc;
156 }
157
wb_memcg_completions(struct bdi_writeback * wb)158 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
159 {
160 return &wb->memcg_completions;
161 }
162
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)163 static void wb_min_max_ratio(struct bdi_writeback *wb,
164 unsigned long *minp, unsigned long *maxp)
165 {
166 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
167 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
168 unsigned long long min = wb->bdi->min_ratio;
169 unsigned long long max = wb->bdi->max_ratio;
170
171 /*
172 * @wb may already be clean by the time control reaches here and
173 * the total may not include its bw.
174 */
175 if (this_bw < tot_bw) {
176 if (min) {
177 min *= this_bw;
178 min = div64_ul(min, tot_bw);
179 }
180 if (max < 100 * BDI_RATIO_SCALE) {
181 max *= this_bw;
182 max = div64_ul(max, tot_bw);
183 }
184 }
185
186 *minp = min;
187 *maxp = max;
188 }
189
190 #else /* CONFIG_CGROUP_WRITEBACK */
191
192 #define GDTC_INIT(__wb) .wb = (__wb), \
193 .wb_completions = &(__wb)->completions
194 #define GDTC_INIT_NO_WB
195 #define MDTC_INIT(__wb, __gdtc)
196
mdtc_valid(struct dirty_throttle_control * dtc)197 static bool mdtc_valid(struct dirty_throttle_control *dtc)
198 {
199 return false;
200 }
201
dtc_dom(struct dirty_throttle_control * dtc)202 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
203 {
204 return &global_wb_domain;
205 }
206
mdtc_gdtc(struct dirty_throttle_control * mdtc)207 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
208 {
209 return NULL;
210 }
211
wb_memcg_completions(struct bdi_writeback * wb)212 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
213 {
214 return NULL;
215 }
216
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)217 static void wb_min_max_ratio(struct bdi_writeback *wb,
218 unsigned long *minp, unsigned long *maxp)
219 {
220 *minp = wb->bdi->min_ratio;
221 *maxp = wb->bdi->max_ratio;
222 }
223
224 #endif /* CONFIG_CGROUP_WRITEBACK */
225
226 /*
227 * In a memory zone, there is a certain amount of pages we consider
228 * available for the page cache, which is essentially the number of
229 * free and reclaimable pages, minus some zone reserves to protect
230 * lowmem and the ability to uphold the zone's watermarks without
231 * requiring writeback.
232 *
233 * This number of dirtyable pages is the base value of which the
234 * user-configurable dirty ratio is the effective number of pages that
235 * are allowed to be actually dirtied. Per individual zone, or
236 * globally by using the sum of dirtyable pages over all zones.
237 *
238 * Because the user is allowed to specify the dirty limit globally as
239 * absolute number of bytes, calculating the per-zone dirty limit can
240 * require translating the configured limit into a percentage of
241 * global dirtyable memory first.
242 */
243
244 /**
245 * node_dirtyable_memory - number of dirtyable pages in a node
246 * @pgdat: the node
247 *
248 * Return: the node's number of pages potentially available for dirty
249 * page cache. This is the base value for the per-node dirty limits.
250 */
node_dirtyable_memory(struct pglist_data * pgdat)251 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
252 {
253 unsigned long nr_pages = 0;
254 int z;
255
256 for (z = 0; z < MAX_NR_ZONES; z++) {
257 struct zone *zone = pgdat->node_zones + z;
258
259 if (!populated_zone(zone))
260 continue;
261
262 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
263 }
264
265 /*
266 * Pages reserved for the kernel should not be considered
267 * dirtyable, to prevent a situation where reclaim has to
268 * clean pages in order to balance the zones.
269 */
270 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
271
272 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
273 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
274
275 return nr_pages;
276 }
277
highmem_dirtyable_memory(unsigned long total)278 static unsigned long highmem_dirtyable_memory(unsigned long total)
279 {
280 #ifdef CONFIG_HIGHMEM
281 int node;
282 unsigned long x = 0;
283 int i;
284
285 for_each_node_state(node, N_HIGH_MEMORY) {
286 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
287 struct zone *z;
288 unsigned long nr_pages;
289
290 if (!is_highmem_idx(i))
291 continue;
292
293 z = &NODE_DATA(node)->node_zones[i];
294 if (!populated_zone(z))
295 continue;
296
297 nr_pages = zone_page_state(z, NR_FREE_PAGES);
298 /* watch for underflows */
299 nr_pages -= min(nr_pages, high_wmark_pages(z));
300 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
301 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
302 x += nr_pages;
303 }
304 }
305
306 /*
307 * Make sure that the number of highmem pages is never larger
308 * than the number of the total dirtyable memory. This can only
309 * occur in very strange VM situations but we want to make sure
310 * that this does not occur.
311 */
312 return min(x, total);
313 #else
314 return 0;
315 #endif
316 }
317
318 /**
319 * global_dirtyable_memory - number of globally dirtyable pages
320 *
321 * Return: the global number of pages potentially available for dirty
322 * page cache. This is the base value for the global dirty limits.
323 */
global_dirtyable_memory(void)324 static unsigned long global_dirtyable_memory(void)
325 {
326 unsigned long x;
327
328 x = global_zone_page_state(NR_FREE_PAGES);
329 /*
330 * Pages reserved for the kernel should not be considered
331 * dirtyable, to prevent a situation where reclaim has to
332 * clean pages in order to balance the zones.
333 */
334 x -= min(x, totalreserve_pages);
335
336 x += global_node_page_state(NR_INACTIVE_FILE);
337 x += global_node_page_state(NR_ACTIVE_FILE);
338
339 if (!vm_highmem_is_dirtyable)
340 x -= highmem_dirtyable_memory(x);
341
342 return x + 1; /* Ensure that we never return 0 */
343 }
344
345 /**
346 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
347 * @dtc: dirty_throttle_control of interest
348 *
349 * Calculate @dtc->thresh and ->bg_thresh considering
350 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
351 * must ensure that @dtc->avail is set before calling this function. The
352 * dirty limits will be lifted by 1/4 for real-time tasks.
353 */
domain_dirty_limits(struct dirty_throttle_control * dtc)354 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
355 {
356 const unsigned long available_memory = dtc->avail;
357 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
358 unsigned long bytes = vm_dirty_bytes;
359 unsigned long bg_bytes = dirty_background_bytes;
360 /* convert ratios to per-PAGE_SIZE for higher precision */
361 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
362 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
363 unsigned long thresh;
364 unsigned long bg_thresh;
365 struct task_struct *tsk;
366
367 /* gdtc is !NULL iff @dtc is for memcg domain */
368 if (gdtc) {
369 unsigned long global_avail = gdtc->avail;
370
371 /*
372 * The byte settings can't be applied directly to memcg
373 * domains. Convert them to ratios by scaling against
374 * globally available memory. As the ratios are in
375 * per-PAGE_SIZE, they can be obtained by dividing bytes by
376 * number of pages.
377 */
378 if (bytes)
379 ratio = min(DIV_ROUND_UP(bytes, global_avail),
380 PAGE_SIZE);
381 if (bg_bytes)
382 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
383 PAGE_SIZE);
384 bytes = bg_bytes = 0;
385 }
386
387 if (bytes)
388 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
389 else
390 thresh = (ratio * available_memory) / PAGE_SIZE;
391
392 if (bg_bytes)
393 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
394 else
395 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
396
397 tsk = current;
398 if (rt_or_dl_task(tsk)) {
399 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
400 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
401 }
402 /*
403 * Dirty throttling logic assumes the limits in page units fit into
404 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
405 */
406 if (thresh > UINT_MAX)
407 thresh = UINT_MAX;
408 /* This makes sure bg_thresh is within 32-bits as well */
409 if (bg_thresh >= thresh)
410 bg_thresh = thresh / 2;
411 dtc->thresh = thresh;
412 dtc->bg_thresh = bg_thresh;
413
414 /* we should eventually report the domain in the TP */
415 if (!gdtc)
416 trace_global_dirty_state(bg_thresh, thresh);
417 }
418
419 /**
420 * global_dirty_limits - background-writeback and dirty-throttling thresholds
421 * @pbackground: out parameter for bg_thresh
422 * @pdirty: out parameter for thresh
423 *
424 * Calculate bg_thresh and thresh for global_wb_domain. See
425 * domain_dirty_limits() for details.
426 */
global_dirty_limits(unsigned long * pbackground,unsigned long * pdirty)427 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
428 {
429 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
430
431 gdtc.avail = global_dirtyable_memory();
432 domain_dirty_limits(&gdtc);
433
434 *pbackground = gdtc.bg_thresh;
435 *pdirty = gdtc.thresh;
436 }
437
438 /**
439 * node_dirty_limit - maximum number of dirty pages allowed in a node
440 * @pgdat: the node
441 *
442 * Return: the maximum number of dirty pages allowed in a node, based
443 * on the node's dirtyable memory.
444 */
node_dirty_limit(struct pglist_data * pgdat)445 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
446 {
447 unsigned long node_memory = node_dirtyable_memory(pgdat);
448 struct task_struct *tsk = current;
449 unsigned long dirty;
450
451 if (vm_dirty_bytes)
452 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
453 node_memory / global_dirtyable_memory();
454 else
455 dirty = vm_dirty_ratio * node_memory / 100;
456
457 if (rt_or_dl_task(tsk))
458 dirty += dirty / 4;
459
460 /*
461 * Dirty throttling logic assumes the limits in page units fit into
462 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
463 */
464 return min_t(unsigned long, dirty, UINT_MAX);
465 }
466
467 /**
468 * node_dirty_ok - tells whether a node is within its dirty limits
469 * @pgdat: the node to check
470 *
471 * Return: %true when the dirty pages in @pgdat are within the node's
472 * dirty limit, %false if the limit is exceeded.
473 */
node_dirty_ok(struct pglist_data * pgdat)474 bool node_dirty_ok(struct pglist_data *pgdat)
475 {
476 unsigned long limit = node_dirty_limit(pgdat);
477 unsigned long nr_pages = 0;
478
479 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
480 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
481
482 return nr_pages <= limit;
483 }
484
485 #ifdef CONFIG_SYSCTL
dirty_background_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)486 static int dirty_background_ratio_handler(const struct ctl_table *table, int write,
487 void *buffer, size_t *lenp, loff_t *ppos)
488 {
489 int ret;
490
491 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
492 if (ret == 0 && write)
493 dirty_background_bytes = 0;
494 return ret;
495 }
496
dirty_background_bytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)497 static int dirty_background_bytes_handler(const struct ctl_table *table, int write,
498 void *buffer, size_t *lenp, loff_t *ppos)
499 {
500 int ret;
501 unsigned long old_bytes = dirty_background_bytes;
502
503 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
504 if (ret == 0 && write) {
505 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
506 UINT_MAX) {
507 dirty_background_bytes = old_bytes;
508 return -ERANGE;
509 }
510 dirty_background_ratio = 0;
511 }
512 return ret;
513 }
514
dirty_ratio_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)515 static int dirty_ratio_handler(const struct ctl_table *table, int write, void *buffer,
516 size_t *lenp, loff_t *ppos)
517 {
518 int old_ratio = vm_dirty_ratio;
519 int ret;
520
521 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
522 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
523 writeback_set_ratelimit();
524 vm_dirty_bytes = 0;
525 }
526 return ret;
527 }
528
dirty_bytes_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)529 static int dirty_bytes_handler(const struct ctl_table *table, int write,
530 void *buffer, size_t *lenp, loff_t *ppos)
531 {
532 unsigned long old_bytes = vm_dirty_bytes;
533 int ret;
534
535 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
536 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
537 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
538 vm_dirty_bytes = old_bytes;
539 return -ERANGE;
540 }
541 writeback_set_ratelimit();
542 vm_dirty_ratio = 0;
543 }
544 return ret;
545 }
546 #endif
547
wp_next_time(unsigned long cur_time)548 static unsigned long wp_next_time(unsigned long cur_time)
549 {
550 cur_time += VM_COMPLETIONS_PERIOD_LEN;
551 /* 0 has a special meaning... */
552 if (!cur_time)
553 return 1;
554 return cur_time;
555 }
556
wb_domain_writeout_add(struct wb_domain * dom,struct fprop_local_percpu * completions,unsigned int max_prop_frac,long nr)557 static void wb_domain_writeout_add(struct wb_domain *dom,
558 struct fprop_local_percpu *completions,
559 unsigned int max_prop_frac, long nr)
560 {
561 __fprop_add_percpu_max(&dom->completions, completions,
562 max_prop_frac, nr);
563 /* First event after period switching was turned off? */
564 if (unlikely(!dom->period_time)) {
565 /*
566 * We can race with other wb_domain_writeout_add calls here but
567 * it does not cause any harm since the resulting time when
568 * timer will fire and what is in writeout_period_time will be
569 * roughly the same.
570 */
571 dom->period_time = wp_next_time(jiffies);
572 mod_timer(&dom->period_timer, dom->period_time);
573 }
574 }
575
576 /*
577 * Increment @wb's writeout completion count and the global writeout
578 * completion count. Called from __folio_end_writeback().
579 */
__wb_writeout_add(struct bdi_writeback * wb,long nr)580 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
581 {
582 struct wb_domain *cgdom;
583
584 wb_stat_mod(wb, WB_WRITTEN, nr);
585 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
586 wb->bdi->max_prop_frac, nr);
587
588 cgdom = mem_cgroup_wb_domain(wb);
589 if (cgdom)
590 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
591 wb->bdi->max_prop_frac, nr);
592 }
593
wb_writeout_inc(struct bdi_writeback * wb)594 void wb_writeout_inc(struct bdi_writeback *wb)
595 {
596 unsigned long flags;
597
598 local_irq_save(flags);
599 __wb_writeout_add(wb, 1);
600 local_irq_restore(flags);
601 }
602 EXPORT_SYMBOL_GPL(wb_writeout_inc);
603
604 /*
605 * On idle system, we can be called long after we scheduled because we use
606 * deferred timers so count with missed periods.
607 */
writeout_period(struct timer_list * t)608 static void writeout_period(struct timer_list *t)
609 {
610 struct wb_domain *dom = from_timer(dom, t, period_timer);
611 int miss_periods = (jiffies - dom->period_time) /
612 VM_COMPLETIONS_PERIOD_LEN;
613
614 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
615 dom->period_time = wp_next_time(dom->period_time +
616 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
617 mod_timer(&dom->period_timer, dom->period_time);
618 } else {
619 /*
620 * Aging has zeroed all fractions. Stop wasting CPU on period
621 * updates.
622 */
623 dom->period_time = 0;
624 }
625 }
626
wb_domain_init(struct wb_domain * dom,gfp_t gfp)627 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
628 {
629 memset(dom, 0, sizeof(*dom));
630
631 spin_lock_init(&dom->lock);
632
633 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
634
635 dom->dirty_limit_tstamp = jiffies;
636
637 return fprop_global_init(&dom->completions, gfp);
638 }
639
640 #ifdef CONFIG_CGROUP_WRITEBACK
wb_domain_exit(struct wb_domain * dom)641 void wb_domain_exit(struct wb_domain *dom)
642 {
643 del_timer_sync(&dom->period_timer);
644 fprop_global_destroy(&dom->completions);
645 }
646 #endif
647
648 /*
649 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
650 * registered backing devices, which, for obvious reasons, can not
651 * exceed 100%.
652 */
653 static unsigned int bdi_min_ratio;
654
bdi_check_pages_limit(unsigned long pages)655 static int bdi_check_pages_limit(unsigned long pages)
656 {
657 unsigned long max_dirty_pages = global_dirtyable_memory();
658
659 if (pages > max_dirty_pages)
660 return -EINVAL;
661
662 return 0;
663 }
664
bdi_ratio_from_pages(unsigned long pages)665 static unsigned long bdi_ratio_from_pages(unsigned long pages)
666 {
667 unsigned long background_thresh;
668 unsigned long dirty_thresh;
669 unsigned long ratio;
670
671 global_dirty_limits(&background_thresh, &dirty_thresh);
672 if (!dirty_thresh)
673 return -EINVAL;
674 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
675
676 return ratio;
677 }
678
bdi_get_bytes(unsigned int ratio)679 static u64 bdi_get_bytes(unsigned int ratio)
680 {
681 unsigned long background_thresh;
682 unsigned long dirty_thresh;
683 u64 bytes;
684
685 global_dirty_limits(&background_thresh, &dirty_thresh);
686 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
687
688 return bytes;
689 }
690
__bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)691 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
692 {
693 unsigned int delta;
694 int ret = 0;
695
696 if (min_ratio > 100 * BDI_RATIO_SCALE)
697 return -EINVAL;
698
699 spin_lock_bh(&bdi_lock);
700 if (min_ratio > bdi->max_ratio) {
701 ret = -EINVAL;
702 } else {
703 if (min_ratio < bdi->min_ratio) {
704 delta = bdi->min_ratio - min_ratio;
705 bdi_min_ratio -= delta;
706 bdi->min_ratio = min_ratio;
707 } else {
708 delta = min_ratio - bdi->min_ratio;
709 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
710 bdi_min_ratio += delta;
711 bdi->min_ratio = min_ratio;
712 } else {
713 ret = -EINVAL;
714 }
715 }
716 }
717 spin_unlock_bh(&bdi_lock);
718
719 return ret;
720 }
721
__bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)722 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
723 {
724 int ret = 0;
725
726 if (max_ratio > 100 * BDI_RATIO_SCALE)
727 return -EINVAL;
728
729 spin_lock_bh(&bdi_lock);
730 if (bdi->min_ratio > max_ratio) {
731 ret = -EINVAL;
732 } else {
733 bdi->max_ratio = max_ratio;
734 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) /
735 (100 * BDI_RATIO_SCALE);
736 }
737 spin_unlock_bh(&bdi_lock);
738
739 return ret;
740 }
741
bdi_set_min_ratio_no_scale(struct backing_dev_info * bdi,unsigned int min_ratio)742 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
743 {
744 return __bdi_set_min_ratio(bdi, min_ratio);
745 }
746
bdi_set_max_ratio_no_scale(struct backing_dev_info * bdi,unsigned int max_ratio)747 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
748 {
749 return __bdi_set_max_ratio(bdi, max_ratio);
750 }
751
bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)752 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
753 {
754 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
755 }
756
bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)757 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
758 {
759 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
760 }
761 EXPORT_SYMBOL(bdi_set_max_ratio);
762
bdi_get_min_bytes(struct backing_dev_info * bdi)763 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
764 {
765 return bdi_get_bytes(bdi->min_ratio);
766 }
767
bdi_set_min_bytes(struct backing_dev_info * bdi,u64 min_bytes)768 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
769 {
770 int ret;
771 unsigned long pages = min_bytes >> PAGE_SHIFT;
772 long min_ratio;
773
774 ret = bdi_check_pages_limit(pages);
775 if (ret)
776 return ret;
777
778 min_ratio = bdi_ratio_from_pages(pages);
779 if (min_ratio < 0)
780 return min_ratio;
781 return __bdi_set_min_ratio(bdi, min_ratio);
782 }
783
bdi_get_max_bytes(struct backing_dev_info * bdi)784 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
785 {
786 return bdi_get_bytes(bdi->max_ratio);
787 }
788
bdi_set_max_bytes(struct backing_dev_info * bdi,u64 max_bytes)789 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
790 {
791 int ret;
792 unsigned long pages = max_bytes >> PAGE_SHIFT;
793 long max_ratio;
794
795 ret = bdi_check_pages_limit(pages);
796 if (ret)
797 return ret;
798
799 max_ratio = bdi_ratio_from_pages(pages);
800 if (max_ratio < 0)
801 return max_ratio;
802 return __bdi_set_max_ratio(bdi, max_ratio);
803 }
804
bdi_set_strict_limit(struct backing_dev_info * bdi,unsigned int strict_limit)805 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
806 {
807 if (strict_limit > 1)
808 return -EINVAL;
809
810 spin_lock_bh(&bdi_lock);
811 if (strict_limit)
812 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
813 else
814 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
815 spin_unlock_bh(&bdi_lock);
816
817 return 0;
818 }
819
dirty_freerun_ceiling(unsigned long thresh,unsigned long bg_thresh)820 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
821 unsigned long bg_thresh)
822 {
823 return (thresh + bg_thresh) / 2;
824 }
825
hard_dirty_limit(struct wb_domain * dom,unsigned long thresh)826 static unsigned long hard_dirty_limit(struct wb_domain *dom,
827 unsigned long thresh)
828 {
829 return max(thresh, dom->dirty_limit);
830 }
831
832 /*
833 * Memory which can be further allocated to a memcg domain is capped by
834 * system-wide clean memory excluding the amount being used in the domain.
835 */
mdtc_calc_avail(struct dirty_throttle_control * mdtc,unsigned long filepages,unsigned long headroom)836 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
837 unsigned long filepages, unsigned long headroom)
838 {
839 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
840 unsigned long clean = filepages - min(filepages, mdtc->dirty);
841 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
842 unsigned long other_clean = global_clean - min(global_clean, clean);
843
844 mdtc->avail = filepages + min(headroom, other_clean);
845 }
846
dtc_is_global(struct dirty_throttle_control * dtc)847 static inline bool dtc_is_global(struct dirty_throttle_control *dtc)
848 {
849 return mdtc_gdtc(dtc) == NULL;
850 }
851
852 /*
853 * Dirty background will ignore pages being written as we're trying to
854 * decide whether to put more under writeback.
855 */
domain_dirty_avail(struct dirty_throttle_control * dtc,bool include_writeback)856 static void domain_dirty_avail(struct dirty_throttle_control *dtc,
857 bool include_writeback)
858 {
859 if (dtc_is_global(dtc)) {
860 dtc->avail = global_dirtyable_memory();
861 dtc->dirty = global_node_page_state(NR_FILE_DIRTY);
862 if (include_writeback)
863 dtc->dirty += global_node_page_state(NR_WRITEBACK);
864 } else {
865 unsigned long filepages = 0, headroom = 0, writeback = 0;
866
867 mem_cgroup_wb_stats(dtc->wb, &filepages, &headroom, &dtc->dirty,
868 &writeback);
869 if (include_writeback)
870 dtc->dirty += writeback;
871 mdtc_calc_avail(dtc, filepages, headroom);
872 }
873 }
874
875 /**
876 * __wb_calc_thresh - @wb's share of dirty threshold
877 * @dtc: dirty_throttle_context of interest
878 * @thresh: dirty throttling or dirty background threshold of wb_domain in @dtc
879 *
880 * Note that balance_dirty_pages() will only seriously take dirty throttling
881 * threshold as a hard limit when sleeping max_pause per page is not enough
882 * to keep the dirty pages under control. For example, when the device is
883 * completely stalled due to some error conditions, or when there are 1000
884 * dd tasks writing to a slow 10MB/s USB key.
885 * In the other normal situations, it acts more gently by throttling the tasks
886 * more (rather than completely block them) when the wb dirty pages go high.
887 *
888 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
889 * - starving fast devices
890 * - piling up dirty pages (that will take long time to sync) on slow devices
891 *
892 * The wb's share of dirty limit will be adapting to its throughput and
893 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
894 *
895 * Return: @wb's dirty limit in pages. For dirty throttling limit, the term
896 * "dirty" in the context of dirty balancing includes all PG_dirty and
897 * PG_writeback pages.
898 */
__wb_calc_thresh(struct dirty_throttle_control * dtc,unsigned long thresh)899 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc,
900 unsigned long thresh)
901 {
902 struct wb_domain *dom = dtc_dom(dtc);
903 struct bdi_writeback *wb = dtc->wb;
904 u64 wb_thresh;
905 u64 wb_max_thresh;
906 unsigned long numerator, denominator;
907 unsigned long wb_min_ratio, wb_max_ratio;
908
909 /*
910 * Calculate this wb's share of the thresh ratio.
911 */
912 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
913 &numerator, &denominator);
914
915 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
916 wb_thresh *= numerator;
917 wb_thresh = div64_ul(wb_thresh, denominator);
918
919 wb_min_max_ratio(wb, &wb_min_ratio, &wb_max_ratio);
920
921 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
922
923 /*
924 * It's very possible that wb_thresh is close to 0 not because the
925 * device is slow, but that it has remained inactive for long time.
926 * Honour such devices a reasonable good (hopefully IO efficient)
927 * threshold, so that the occasional writes won't be blocked and active
928 * writes can rampup the threshold quickly.
929 */
930 if (thresh > dtc->dirty) {
931 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT))
932 wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 100);
933 else
934 wb_thresh = max(wb_thresh, (thresh - dtc->dirty) / 8);
935 }
936
937 wb_max_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
938 if (wb_thresh > wb_max_thresh)
939 wb_thresh = wb_max_thresh;
940
941 return wb_thresh;
942 }
943
wb_calc_thresh(struct bdi_writeback * wb,unsigned long thresh)944 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
945 {
946 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
947
948 domain_dirty_avail(&gdtc, true);
949 return __wb_calc_thresh(&gdtc, thresh);
950 }
951
cgwb_calc_thresh(struct bdi_writeback * wb)952 unsigned long cgwb_calc_thresh(struct bdi_writeback *wb)
953 {
954 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
955 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
956
957 domain_dirty_avail(&gdtc, true);
958 domain_dirty_avail(&mdtc, true);
959 domain_dirty_limits(&mdtc);
960
961 return __wb_calc_thresh(&mdtc, mdtc.thresh);
962 }
963
964 /*
965 * setpoint - dirty 3
966 * f(dirty) := 1.0 + (----------------)
967 * limit - setpoint
968 *
969 * it's a 3rd order polynomial that subjects to
970 *
971 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
972 * (2) f(setpoint) = 1.0 => the balance point
973 * (3) f(limit) = 0 => the hard limit
974 * (4) df/dx <= 0 => negative feedback control
975 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
976 * => fast response on large errors; small oscillation near setpoint
977 */
pos_ratio_polynom(unsigned long setpoint,unsigned long dirty,unsigned long limit)978 static long long pos_ratio_polynom(unsigned long setpoint,
979 unsigned long dirty,
980 unsigned long limit)
981 {
982 long long pos_ratio;
983 long x;
984
985 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
986 (limit - setpoint) | 1);
987 pos_ratio = x;
988 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
989 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
990 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
991
992 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
993 }
994
995 /*
996 * Dirty position control.
997 *
998 * (o) global/bdi setpoints
999 *
1000 * We want the dirty pages be balanced around the global/wb setpoints.
1001 * When the number of dirty pages is higher/lower than the setpoint, the
1002 * dirty position control ratio (and hence task dirty ratelimit) will be
1003 * decreased/increased to bring the dirty pages back to the setpoint.
1004 *
1005 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
1006 *
1007 * if (dirty < setpoint) scale up pos_ratio
1008 * if (dirty > setpoint) scale down pos_ratio
1009 *
1010 * if (wb_dirty < wb_setpoint) scale up pos_ratio
1011 * if (wb_dirty > wb_setpoint) scale down pos_ratio
1012 *
1013 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
1014 *
1015 * (o) global control line
1016 *
1017 * ^ pos_ratio
1018 * |
1019 * | |<===== global dirty control scope ======>|
1020 * 2.0 * * * * * * *
1021 * | .*
1022 * | . *
1023 * | . *
1024 * | . *
1025 * | . *
1026 * | . *
1027 * 1.0 ................................*
1028 * | . . *
1029 * | . . *
1030 * | . . *
1031 * | . . *
1032 * | . . *
1033 * 0 +------------.------------------.----------------------*------------->
1034 * freerun^ setpoint^ limit^ dirty pages
1035 *
1036 * (o) wb control line
1037 *
1038 * ^ pos_ratio
1039 * |
1040 * | *
1041 * | *
1042 * | *
1043 * | *
1044 * | * |<=========== span ============>|
1045 * 1.0 .......................*
1046 * | . *
1047 * | . *
1048 * | . *
1049 * | . *
1050 * | . *
1051 * | . *
1052 * | . *
1053 * | . *
1054 * | . *
1055 * | . *
1056 * | . *
1057 * 1/4 ...............................................* * * * * * * * * * * *
1058 * | . .
1059 * | . .
1060 * | . .
1061 * 0 +----------------------.-------------------------------.------------->
1062 * wb_setpoint^ x_intercept^
1063 *
1064 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1065 * be smoothly throttled down to normal if it starts high in situations like
1066 * - start writing to a slow SD card and a fast disk at the same time. The SD
1067 * card's wb_dirty may rush to many times higher than wb_setpoint.
1068 * - the wb dirty thresh drops quickly due to change of JBOD workload
1069 */
wb_position_ratio(struct dirty_throttle_control * dtc)1070 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1071 {
1072 struct bdi_writeback *wb = dtc->wb;
1073 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1074 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1075 unsigned long limit = dtc->limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1076 unsigned long wb_thresh = dtc->wb_thresh;
1077 unsigned long x_intercept;
1078 unsigned long setpoint; /* dirty pages' target balance point */
1079 unsigned long wb_setpoint;
1080 unsigned long span;
1081 long long pos_ratio; /* for scaling up/down the rate limit */
1082 long x;
1083
1084 dtc->pos_ratio = 0;
1085
1086 if (unlikely(dtc->dirty >= limit))
1087 return;
1088
1089 /*
1090 * global setpoint
1091 *
1092 * See comment for pos_ratio_polynom().
1093 */
1094 setpoint = (freerun + limit) / 2;
1095 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1096
1097 /*
1098 * The strictlimit feature is a tool preventing mistrusted filesystems
1099 * from growing a large number of dirty pages before throttling. For
1100 * such filesystems balance_dirty_pages always checks wb counters
1101 * against wb limits. Even if global "nr_dirty" is under "freerun".
1102 * This is especially important for fuse which sets bdi->max_ratio to
1103 * 1% by default. Without strictlimit feature, fuse writeback may
1104 * consume arbitrary amount of RAM because it is accounted in
1105 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1106 *
1107 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1108 * two values: wb_dirty and wb_thresh. Let's consider an example:
1109 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1110 * limits are set by default to 10% and 20% (background and throttle).
1111 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1112 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1113 * about ~6K pages (as the average of background and throttle wb
1114 * limits). The 3rd order polynomial will provide positive feedback if
1115 * wb_dirty is under wb_setpoint and vice versa.
1116 *
1117 * Note, that we cannot use global counters in these calculations
1118 * because we want to throttle process writing to a strictlimit wb
1119 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1120 * in the example above).
1121 */
1122 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1123 long long wb_pos_ratio;
1124
1125 if (dtc->wb_dirty >= wb_thresh)
1126 return;
1127
1128 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1129 dtc->wb_bg_thresh);
1130
1131 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1132 return;
1133
1134 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1135 wb_thresh);
1136
1137 /*
1138 * Typically, for strictlimit case, wb_setpoint << setpoint
1139 * and pos_ratio >> wb_pos_ratio. In the other words global
1140 * state ("dirty") is not limiting factor and we have to
1141 * make decision based on wb counters. But there is an
1142 * important case when global pos_ratio should get precedence:
1143 * global limits are exceeded (e.g. due to activities on other
1144 * wb's) while given strictlimit wb is below limit.
1145 *
1146 * "pos_ratio * wb_pos_ratio" would work for the case above,
1147 * but it would look too non-natural for the case of all
1148 * activity in the system coming from a single strictlimit wb
1149 * with bdi->max_ratio == 100%.
1150 *
1151 * Note that min() below somewhat changes the dynamics of the
1152 * control system. Normally, pos_ratio value can be well over 3
1153 * (when globally we are at freerun and wb is well below wb
1154 * setpoint). Now the maximum pos_ratio in the same situation
1155 * is 2. We might want to tweak this if we observe the control
1156 * system is too slow to adapt.
1157 */
1158 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1159 return;
1160 }
1161
1162 /*
1163 * We have computed basic pos_ratio above based on global situation. If
1164 * the wb is over/under its share of dirty pages, we want to scale
1165 * pos_ratio further down/up. That is done by the following mechanism.
1166 */
1167
1168 /*
1169 * wb setpoint
1170 *
1171 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1172 *
1173 * x_intercept - wb_dirty
1174 * := --------------------------
1175 * x_intercept - wb_setpoint
1176 *
1177 * The main wb control line is a linear function that subjects to
1178 *
1179 * (1) f(wb_setpoint) = 1.0
1180 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1181 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1182 *
1183 * For single wb case, the dirty pages are observed to fluctuate
1184 * regularly within range
1185 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1186 * for various filesystems, where (2) can yield in a reasonable 12.5%
1187 * fluctuation range for pos_ratio.
1188 *
1189 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1190 * own size, so move the slope over accordingly and choose a slope that
1191 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1192 */
1193 if (unlikely(wb_thresh > dtc->thresh))
1194 wb_thresh = dtc->thresh;
1195 /*
1196 * scale global setpoint to wb's:
1197 * wb_setpoint = setpoint * wb_thresh / thresh
1198 */
1199 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1200 wb_setpoint = setpoint * (u64)x >> 16;
1201 /*
1202 * Use span=(8*write_bw) in single wb case as indicated by
1203 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1204 *
1205 * wb_thresh thresh - wb_thresh
1206 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1207 * thresh thresh
1208 */
1209 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1210 x_intercept = wb_setpoint + span;
1211
1212 if (dtc->wb_dirty < x_intercept - span / 4) {
1213 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1214 (x_intercept - wb_setpoint) | 1);
1215 } else
1216 pos_ratio /= 4;
1217
1218 /*
1219 * wb reserve area, safeguard against dirty pool underrun and disk idle
1220 * It may push the desired control point of global dirty pages higher
1221 * than setpoint.
1222 */
1223 x_intercept = wb_thresh / 2;
1224 if (dtc->wb_dirty < x_intercept) {
1225 if (dtc->wb_dirty > x_intercept / 8)
1226 pos_ratio = div_u64(pos_ratio * x_intercept,
1227 dtc->wb_dirty);
1228 else
1229 pos_ratio *= 8;
1230 }
1231
1232 dtc->pos_ratio = pos_ratio;
1233 }
1234
wb_update_write_bandwidth(struct bdi_writeback * wb,unsigned long elapsed,unsigned long written)1235 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1236 unsigned long elapsed,
1237 unsigned long written)
1238 {
1239 const unsigned long period = roundup_pow_of_two(3 * HZ);
1240 unsigned long avg = wb->avg_write_bandwidth;
1241 unsigned long old = wb->write_bandwidth;
1242 u64 bw;
1243
1244 /*
1245 * bw = written * HZ / elapsed
1246 *
1247 * bw * elapsed + write_bandwidth * (period - elapsed)
1248 * write_bandwidth = ---------------------------------------------------
1249 * period
1250 *
1251 * @written may have decreased due to folio_redirty_for_writepage().
1252 * Avoid underflowing @bw calculation.
1253 */
1254 bw = written - min(written, wb->written_stamp);
1255 bw *= HZ;
1256 if (unlikely(elapsed > period)) {
1257 bw = div64_ul(bw, elapsed);
1258 avg = bw;
1259 goto out;
1260 }
1261 bw += (u64)wb->write_bandwidth * (period - elapsed);
1262 bw >>= ilog2(period);
1263
1264 /*
1265 * one more level of smoothing, for filtering out sudden spikes
1266 */
1267 if (avg > old && old >= (unsigned long)bw)
1268 avg -= (avg - old) >> 3;
1269
1270 if (avg < old && old <= (unsigned long)bw)
1271 avg += (old - avg) >> 3;
1272
1273 out:
1274 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1275 avg = max(avg, 1LU);
1276 if (wb_has_dirty_io(wb)) {
1277 long delta = avg - wb->avg_write_bandwidth;
1278 WARN_ON_ONCE(atomic_long_add_return(delta,
1279 &wb->bdi->tot_write_bandwidth) <= 0);
1280 }
1281 wb->write_bandwidth = bw;
1282 WRITE_ONCE(wb->avg_write_bandwidth, avg);
1283 }
1284
update_dirty_limit(struct dirty_throttle_control * dtc)1285 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1286 {
1287 struct wb_domain *dom = dtc_dom(dtc);
1288 unsigned long thresh = dtc->thresh;
1289 unsigned long limit = dom->dirty_limit;
1290
1291 /*
1292 * Follow up in one step.
1293 */
1294 if (limit < thresh) {
1295 limit = thresh;
1296 goto update;
1297 }
1298
1299 /*
1300 * Follow down slowly. Use the higher one as the target, because thresh
1301 * may drop below dirty. This is exactly the reason to introduce
1302 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1303 */
1304 thresh = max(thresh, dtc->dirty);
1305 if (limit > thresh) {
1306 limit -= (limit - thresh) >> 5;
1307 goto update;
1308 }
1309 return;
1310 update:
1311 dom->dirty_limit = limit;
1312 }
1313
domain_update_dirty_limit(struct dirty_throttle_control * dtc,unsigned long now)1314 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1315 unsigned long now)
1316 {
1317 struct wb_domain *dom = dtc_dom(dtc);
1318
1319 /*
1320 * check locklessly first to optimize away locking for the most time
1321 */
1322 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1323 return;
1324
1325 spin_lock(&dom->lock);
1326 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1327 update_dirty_limit(dtc);
1328 dom->dirty_limit_tstamp = now;
1329 }
1330 spin_unlock(&dom->lock);
1331 }
1332
1333 /*
1334 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1335 *
1336 * Normal wb tasks will be curbed at or below it in long term.
1337 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1338 */
wb_update_dirty_ratelimit(struct dirty_throttle_control * dtc,unsigned long dirtied,unsigned long elapsed)1339 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1340 unsigned long dirtied,
1341 unsigned long elapsed)
1342 {
1343 struct bdi_writeback *wb = dtc->wb;
1344 unsigned long dirty = dtc->dirty;
1345 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1346 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1347 unsigned long setpoint = (freerun + limit) / 2;
1348 unsigned long write_bw = wb->avg_write_bandwidth;
1349 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1350 unsigned long dirty_rate;
1351 unsigned long task_ratelimit;
1352 unsigned long balanced_dirty_ratelimit;
1353 unsigned long step;
1354 unsigned long x;
1355 unsigned long shift;
1356
1357 /*
1358 * The dirty rate will match the writeout rate in long term, except
1359 * when dirty pages are truncated by userspace or re-dirtied by FS.
1360 */
1361 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1362
1363 /*
1364 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1365 */
1366 task_ratelimit = (u64)dirty_ratelimit *
1367 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1368 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1369
1370 /*
1371 * A linear estimation of the "balanced" throttle rate. The theory is,
1372 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1373 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1374 * formula will yield the balanced rate limit (write_bw / N).
1375 *
1376 * Note that the expanded form is not a pure rate feedback:
1377 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1378 * but also takes pos_ratio into account:
1379 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1380 *
1381 * (1) is not realistic because pos_ratio also takes part in balancing
1382 * the dirty rate. Consider the state
1383 * pos_ratio = 0.5 (3)
1384 * rate = 2 * (write_bw / N) (4)
1385 * If (1) is used, it will stuck in that state! Because each dd will
1386 * be throttled at
1387 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1388 * yielding
1389 * dirty_rate = N * task_ratelimit = write_bw (6)
1390 * put (6) into (1) we get
1391 * rate_(i+1) = rate_(i) (7)
1392 *
1393 * So we end up using (2) to always keep
1394 * rate_(i+1) ~= (write_bw / N) (8)
1395 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1396 * pos_ratio is able to drive itself to 1.0, which is not only where
1397 * the dirty count meet the setpoint, but also where the slope of
1398 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1399 */
1400 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1401 dirty_rate | 1);
1402 /*
1403 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1404 */
1405 if (unlikely(balanced_dirty_ratelimit > write_bw))
1406 balanced_dirty_ratelimit = write_bw;
1407
1408 /*
1409 * We could safely do this and return immediately:
1410 *
1411 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1412 *
1413 * However to get a more stable dirty_ratelimit, the below elaborated
1414 * code makes use of task_ratelimit to filter out singular points and
1415 * limit the step size.
1416 *
1417 * The below code essentially only uses the relative value of
1418 *
1419 * task_ratelimit - dirty_ratelimit
1420 * = (pos_ratio - 1) * dirty_ratelimit
1421 *
1422 * which reflects the direction and size of dirty position error.
1423 */
1424
1425 /*
1426 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1427 * task_ratelimit is on the same side of dirty_ratelimit, too.
1428 * For example, when
1429 * - dirty_ratelimit > balanced_dirty_ratelimit
1430 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1431 * lowering dirty_ratelimit will help meet both the position and rate
1432 * control targets. Otherwise, don't update dirty_ratelimit if it will
1433 * only help meet the rate target. After all, what the users ultimately
1434 * feel and care are stable dirty rate and small position error.
1435 *
1436 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1437 * and filter out the singular points of balanced_dirty_ratelimit. Which
1438 * keeps jumping around randomly and can even leap far away at times
1439 * due to the small 200ms estimation period of dirty_rate (we want to
1440 * keep that period small to reduce time lags).
1441 */
1442 step = 0;
1443
1444 /*
1445 * For strictlimit case, calculations above were based on wb counters
1446 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1447 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1448 * Hence, to calculate "step" properly, we have to use wb_dirty as
1449 * "dirty" and wb_setpoint as "setpoint".
1450 */
1451 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1452 dirty = dtc->wb_dirty;
1453 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1454 }
1455
1456 if (dirty < setpoint) {
1457 x = min3(wb->balanced_dirty_ratelimit,
1458 balanced_dirty_ratelimit, task_ratelimit);
1459 if (dirty_ratelimit < x)
1460 step = x - dirty_ratelimit;
1461 } else {
1462 x = max3(wb->balanced_dirty_ratelimit,
1463 balanced_dirty_ratelimit, task_ratelimit);
1464 if (dirty_ratelimit > x)
1465 step = dirty_ratelimit - x;
1466 }
1467
1468 /*
1469 * Don't pursue 100% rate matching. It's impossible since the balanced
1470 * rate itself is constantly fluctuating. So decrease the track speed
1471 * when it gets close to the target. Helps eliminate pointless tremors.
1472 */
1473 shift = dirty_ratelimit / (2 * step + 1);
1474 if (shift < BITS_PER_LONG)
1475 step = DIV_ROUND_UP(step >> shift, 8);
1476 else
1477 step = 0;
1478
1479 if (dirty_ratelimit < balanced_dirty_ratelimit)
1480 dirty_ratelimit += step;
1481 else
1482 dirty_ratelimit -= step;
1483
1484 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1485 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1486
1487 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1488 }
1489
__wb_update_bandwidth(struct dirty_throttle_control * gdtc,struct dirty_throttle_control * mdtc,bool update_ratelimit)1490 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1491 struct dirty_throttle_control *mdtc,
1492 bool update_ratelimit)
1493 {
1494 struct bdi_writeback *wb = gdtc->wb;
1495 unsigned long now = jiffies;
1496 unsigned long elapsed;
1497 unsigned long dirtied;
1498 unsigned long written;
1499
1500 spin_lock(&wb->list_lock);
1501
1502 /*
1503 * Lockless checks for elapsed time are racy and delayed update after
1504 * IO completion doesn't do it at all (to make sure written pages are
1505 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1506 * division errors.
1507 */
1508 elapsed = max(now - wb->bw_time_stamp, 1UL);
1509 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1510 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1511
1512 if (update_ratelimit) {
1513 domain_update_dirty_limit(gdtc, now);
1514 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1515
1516 /*
1517 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1518 * compiler has no way to figure that out. Help it.
1519 */
1520 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1521 domain_update_dirty_limit(mdtc, now);
1522 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1523 }
1524 }
1525 wb_update_write_bandwidth(wb, elapsed, written);
1526
1527 wb->dirtied_stamp = dirtied;
1528 wb->written_stamp = written;
1529 WRITE_ONCE(wb->bw_time_stamp, now);
1530 spin_unlock(&wb->list_lock);
1531 }
1532
wb_update_bandwidth(struct bdi_writeback * wb)1533 void wb_update_bandwidth(struct bdi_writeback *wb)
1534 {
1535 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1536
1537 __wb_update_bandwidth(&gdtc, NULL, false);
1538 }
1539
1540 /* Interval after which we consider wb idle and don't estimate bandwidth */
1541 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1542
wb_bandwidth_estimate_start(struct bdi_writeback * wb)1543 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1544 {
1545 unsigned long now = jiffies;
1546 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1547
1548 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1549 !atomic_read(&wb->writeback_inodes)) {
1550 spin_lock(&wb->list_lock);
1551 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1552 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1553 WRITE_ONCE(wb->bw_time_stamp, now);
1554 spin_unlock(&wb->list_lock);
1555 }
1556 }
1557
1558 /*
1559 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1560 * will look to see if it needs to start dirty throttling.
1561 *
1562 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1563 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1564 * (the number of pages we may dirty without exceeding the dirty limits).
1565 */
dirty_poll_interval(unsigned long dirty,unsigned long thresh)1566 static unsigned long dirty_poll_interval(unsigned long dirty,
1567 unsigned long thresh)
1568 {
1569 if (thresh > dirty)
1570 return 1UL << (ilog2(thresh - dirty) >> 1);
1571
1572 return 1;
1573 }
1574
wb_max_pause(struct bdi_writeback * wb,unsigned long wb_dirty)1575 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1576 unsigned long wb_dirty)
1577 {
1578 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1579 unsigned long t;
1580
1581 /*
1582 * Limit pause time for small memory systems. If sleeping for too long
1583 * time, a small pool of dirty/writeback pages may go empty and disk go
1584 * idle.
1585 *
1586 * 8 serves as the safety ratio.
1587 */
1588 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1589 t++;
1590
1591 return min_t(unsigned long, t, MAX_PAUSE);
1592 }
1593
wb_min_pause(struct bdi_writeback * wb,long max_pause,unsigned long task_ratelimit,unsigned long dirty_ratelimit,int * nr_dirtied_pause)1594 static long wb_min_pause(struct bdi_writeback *wb,
1595 long max_pause,
1596 unsigned long task_ratelimit,
1597 unsigned long dirty_ratelimit,
1598 int *nr_dirtied_pause)
1599 {
1600 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1601 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1602 long t; /* target pause */
1603 long pause; /* estimated next pause */
1604 int pages; /* target nr_dirtied_pause */
1605
1606 /* target for 10ms pause on 1-dd case */
1607 t = max(1, HZ / 100);
1608
1609 /*
1610 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1611 * overheads.
1612 *
1613 * (N * 10ms) on 2^N concurrent tasks.
1614 */
1615 if (hi > lo)
1616 t += (hi - lo) * (10 * HZ) / 1024;
1617
1618 /*
1619 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1620 * on the much more stable dirty_ratelimit. However the next pause time
1621 * will be computed based on task_ratelimit and the two rate limits may
1622 * depart considerably at some time. Especially if task_ratelimit goes
1623 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1624 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1625 * result task_ratelimit won't be executed faithfully, which could
1626 * eventually bring down dirty_ratelimit.
1627 *
1628 * We apply two rules to fix it up:
1629 * 1) try to estimate the next pause time and if necessary, use a lower
1630 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1631 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1632 * 2) limit the target pause time to max_pause/2, so that the normal
1633 * small fluctuations of task_ratelimit won't trigger rule (1) and
1634 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1635 */
1636 t = min(t, 1 + max_pause / 2);
1637 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1638
1639 /*
1640 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1641 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1642 * When the 16 consecutive reads are often interrupted by some dirty
1643 * throttling pause during the async writes, cfq will go into idles
1644 * (deadline is fine). So push nr_dirtied_pause as high as possible
1645 * until reaches DIRTY_POLL_THRESH=32 pages.
1646 */
1647 if (pages < DIRTY_POLL_THRESH) {
1648 t = max_pause;
1649 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1650 if (pages > DIRTY_POLL_THRESH) {
1651 pages = DIRTY_POLL_THRESH;
1652 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1653 }
1654 }
1655
1656 pause = HZ * pages / (task_ratelimit + 1);
1657 if (pause > max_pause) {
1658 t = max_pause;
1659 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1660 }
1661
1662 *nr_dirtied_pause = pages;
1663 /*
1664 * The minimal pause time will normally be half the target pause time.
1665 */
1666 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1667 }
1668
wb_dirty_limits(struct dirty_throttle_control * dtc)1669 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1670 {
1671 struct bdi_writeback *wb = dtc->wb;
1672 unsigned long wb_reclaimable;
1673
1674 /*
1675 * wb_thresh is not treated as some limiting factor as
1676 * dirty_thresh, due to reasons
1677 * - in JBOD setup, wb_thresh can fluctuate a lot
1678 * - in a system with HDD and USB key, the USB key may somehow
1679 * go into state (wb_dirty >> wb_thresh) either because
1680 * wb_dirty starts high, or because wb_thresh drops low.
1681 * In this case we don't want to hard throttle the USB key
1682 * dirtiers for 100 seconds until wb_dirty drops under
1683 * wb_thresh. Instead the auxiliary wb control line in
1684 * wb_position_ratio() will let the dirtier task progress
1685 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1686 */
1687 dtc->wb_thresh = __wb_calc_thresh(dtc, dtc->thresh);
1688 dtc->wb_bg_thresh = dtc->thresh ?
1689 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1690
1691 /*
1692 * In order to avoid the stacked BDI deadlock we need
1693 * to ensure we accurately count the 'dirty' pages when
1694 * the threshold is low.
1695 *
1696 * Otherwise it would be possible to get thresh+n pages
1697 * reported dirty, even though there are thresh-m pages
1698 * actually dirty; with m+n sitting in the percpu
1699 * deltas.
1700 */
1701 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1702 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1703 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1704 } else {
1705 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1706 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1707 }
1708 }
1709
domain_poll_intv(struct dirty_throttle_control * dtc,bool strictlimit)1710 static unsigned long domain_poll_intv(struct dirty_throttle_control *dtc,
1711 bool strictlimit)
1712 {
1713 unsigned long dirty, thresh;
1714
1715 if (strictlimit) {
1716 dirty = dtc->wb_dirty;
1717 thresh = dtc->wb_thresh;
1718 } else {
1719 dirty = dtc->dirty;
1720 thresh = dtc->thresh;
1721 }
1722
1723 return dirty_poll_interval(dirty, thresh);
1724 }
1725
1726 /*
1727 * Throttle it only when the background writeback cannot catch-up. This avoids
1728 * (excessively) small writeouts when the wb limits are ramping up in case of
1729 * !strictlimit.
1730 *
1731 * In strictlimit case make decision based on the wb counters and limits. Small
1732 * writeouts when the wb limits are ramping up are the price we consciously pay
1733 * for strictlimit-ing.
1734 */
domain_dirty_freerun(struct dirty_throttle_control * dtc,bool strictlimit)1735 static void domain_dirty_freerun(struct dirty_throttle_control *dtc,
1736 bool strictlimit)
1737 {
1738 unsigned long dirty, thresh, bg_thresh;
1739
1740 if (unlikely(strictlimit)) {
1741 wb_dirty_limits(dtc);
1742 dirty = dtc->wb_dirty;
1743 thresh = dtc->wb_thresh;
1744 bg_thresh = dtc->wb_bg_thresh;
1745 } else {
1746 dirty = dtc->dirty;
1747 thresh = dtc->thresh;
1748 bg_thresh = dtc->bg_thresh;
1749 }
1750 dtc->freerun = dirty <= dirty_freerun_ceiling(thresh, bg_thresh);
1751 }
1752
balance_domain_limits(struct dirty_throttle_control * dtc,bool strictlimit)1753 static void balance_domain_limits(struct dirty_throttle_control *dtc,
1754 bool strictlimit)
1755 {
1756 domain_dirty_avail(dtc, true);
1757 domain_dirty_limits(dtc);
1758 domain_dirty_freerun(dtc, strictlimit);
1759 }
1760
wb_dirty_freerun(struct dirty_throttle_control * dtc,bool strictlimit)1761 static void wb_dirty_freerun(struct dirty_throttle_control *dtc,
1762 bool strictlimit)
1763 {
1764 dtc->freerun = false;
1765
1766 /* was already handled in domain_dirty_freerun */
1767 if (strictlimit)
1768 return;
1769
1770 wb_dirty_limits(dtc);
1771 /*
1772 * LOCAL_THROTTLE tasks must not be throttled when below the per-wb
1773 * freerun ceiling.
1774 */
1775 if (!(current->flags & PF_LOCAL_THROTTLE))
1776 return;
1777
1778 dtc->freerun = dtc->wb_dirty <
1779 dirty_freerun_ceiling(dtc->wb_thresh, dtc->wb_bg_thresh);
1780 }
1781
wb_dirty_exceeded(struct dirty_throttle_control * dtc,bool strictlimit)1782 static inline void wb_dirty_exceeded(struct dirty_throttle_control *dtc,
1783 bool strictlimit)
1784 {
1785 dtc->dirty_exceeded = (dtc->wb_dirty > dtc->wb_thresh) &&
1786 ((dtc->dirty > dtc->thresh) || strictlimit);
1787 }
1788
1789 /*
1790 * The limits fields dirty_exceeded and pos_ratio won't be updated if wb is
1791 * in freerun state. Please don't use these invalid fields in freerun case.
1792 */
balance_wb_limits(struct dirty_throttle_control * dtc,bool strictlimit)1793 static void balance_wb_limits(struct dirty_throttle_control *dtc,
1794 bool strictlimit)
1795 {
1796 wb_dirty_freerun(dtc, strictlimit);
1797 if (dtc->freerun)
1798 return;
1799
1800 wb_dirty_exceeded(dtc, strictlimit);
1801 wb_position_ratio(dtc);
1802 }
1803
1804 /*
1805 * balance_dirty_pages() must be called by processes which are generating dirty
1806 * data. It looks at the number of dirty pages in the machine and will force
1807 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1808 * If we're over `background_thresh' then the writeback threads are woken to
1809 * perform some writeout.
1810 */
balance_dirty_pages(struct bdi_writeback * wb,unsigned long pages_dirtied,unsigned int flags)1811 static int balance_dirty_pages(struct bdi_writeback *wb,
1812 unsigned long pages_dirtied, unsigned int flags)
1813 {
1814 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1815 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1816 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1817 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1818 &mdtc_stor : NULL;
1819 struct dirty_throttle_control *sdtc;
1820 unsigned long nr_dirty;
1821 long period;
1822 long pause;
1823 long max_pause;
1824 long min_pause;
1825 int nr_dirtied_pause;
1826 unsigned long task_ratelimit;
1827 unsigned long dirty_ratelimit;
1828 struct backing_dev_info *bdi = wb->bdi;
1829 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1830 unsigned long start_time = jiffies;
1831 int ret = 0;
1832
1833 for (;;) {
1834 unsigned long now = jiffies;
1835
1836 nr_dirty = global_node_page_state(NR_FILE_DIRTY);
1837
1838 balance_domain_limits(gdtc, strictlimit);
1839 if (mdtc) {
1840 /*
1841 * If @wb belongs to !root memcg, repeat the same
1842 * basic calculations for the memcg domain.
1843 */
1844 balance_domain_limits(mdtc, strictlimit);
1845 }
1846
1847 /*
1848 * In laptop mode, we wait until hitting the higher threshold
1849 * before starting background writeout, and then write out all
1850 * the way down to the lower threshold. So slow writers cause
1851 * minimal disk activity.
1852 *
1853 * In normal mode, we start background writeout at the lower
1854 * background_thresh, to keep the amount of dirty memory low.
1855 */
1856 if (!laptop_mode && nr_dirty > gdtc->bg_thresh &&
1857 !writeback_in_progress(wb))
1858 wb_start_background_writeback(wb);
1859
1860 /*
1861 * If memcg domain is in effect, @dirty should be under
1862 * both global and memcg freerun ceilings.
1863 */
1864 if (gdtc->freerun && (!mdtc || mdtc->freerun)) {
1865 unsigned long intv;
1866 unsigned long m_intv;
1867
1868 free_running:
1869 intv = domain_poll_intv(gdtc, strictlimit);
1870 m_intv = ULONG_MAX;
1871
1872 current->dirty_paused_when = now;
1873 current->nr_dirtied = 0;
1874 if (mdtc)
1875 m_intv = domain_poll_intv(mdtc, strictlimit);
1876 current->nr_dirtied_pause = min(intv, m_intv);
1877 break;
1878 }
1879
1880 /* Start writeback even when in laptop mode */
1881 if (unlikely(!writeback_in_progress(wb)))
1882 wb_start_background_writeback(wb);
1883
1884 mem_cgroup_flush_foreign(wb);
1885
1886 /*
1887 * Calculate global domain's pos_ratio and select the
1888 * global dtc by default.
1889 */
1890 balance_wb_limits(gdtc, strictlimit);
1891 if (gdtc->freerun)
1892 goto free_running;
1893 sdtc = gdtc;
1894
1895 if (mdtc) {
1896 /*
1897 * If memcg domain is in effect, calculate its
1898 * pos_ratio. @wb should satisfy constraints from
1899 * both global and memcg domains. Choose the one
1900 * w/ lower pos_ratio.
1901 */
1902 balance_wb_limits(mdtc, strictlimit);
1903 if (mdtc->freerun)
1904 goto free_running;
1905 if (mdtc->pos_ratio < gdtc->pos_ratio)
1906 sdtc = mdtc;
1907 }
1908
1909 wb->dirty_exceeded = gdtc->dirty_exceeded ||
1910 (mdtc && mdtc->dirty_exceeded);
1911 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1912 BANDWIDTH_INTERVAL))
1913 __wb_update_bandwidth(gdtc, mdtc, true);
1914
1915 /* throttle according to the chosen dtc */
1916 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1917 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1918 RATELIMIT_CALC_SHIFT;
1919 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1920 min_pause = wb_min_pause(wb, max_pause,
1921 task_ratelimit, dirty_ratelimit,
1922 &nr_dirtied_pause);
1923
1924 if (unlikely(task_ratelimit == 0)) {
1925 period = max_pause;
1926 pause = max_pause;
1927 goto pause;
1928 }
1929 period = HZ * pages_dirtied / task_ratelimit;
1930 pause = period;
1931 if (current->dirty_paused_when)
1932 pause -= now - current->dirty_paused_when;
1933 /*
1934 * For less than 1s think time (ext3/4 may block the dirtier
1935 * for up to 800ms from time to time on 1-HDD; so does xfs,
1936 * however at much less frequency), try to compensate it in
1937 * future periods by updating the virtual time; otherwise just
1938 * do a reset, as it may be a light dirtier.
1939 */
1940 if (pause < min_pause) {
1941 trace_balance_dirty_pages(wb,
1942 sdtc,
1943 dirty_ratelimit,
1944 task_ratelimit,
1945 pages_dirtied,
1946 period,
1947 min(pause, 0L),
1948 start_time);
1949 if (pause < -HZ) {
1950 current->dirty_paused_when = now;
1951 current->nr_dirtied = 0;
1952 } else if (period) {
1953 current->dirty_paused_when += period;
1954 current->nr_dirtied = 0;
1955 } else if (current->nr_dirtied_pause <= pages_dirtied)
1956 current->nr_dirtied_pause += pages_dirtied;
1957 break;
1958 }
1959 if (unlikely(pause > max_pause)) {
1960 /* for occasional dropped task_ratelimit */
1961 now += min(pause - max_pause, max_pause);
1962 pause = max_pause;
1963 }
1964
1965 pause:
1966 trace_balance_dirty_pages(wb,
1967 sdtc,
1968 dirty_ratelimit,
1969 task_ratelimit,
1970 pages_dirtied,
1971 period,
1972 pause,
1973 start_time);
1974 if (flags & BDP_ASYNC) {
1975 ret = -EAGAIN;
1976 break;
1977 }
1978 __set_current_state(TASK_KILLABLE);
1979 bdi->last_bdp_sleep = jiffies;
1980 io_schedule_timeout(pause);
1981
1982 current->dirty_paused_when = now + pause;
1983 current->nr_dirtied = 0;
1984 current->nr_dirtied_pause = nr_dirtied_pause;
1985
1986 /*
1987 * This is typically equal to (dirty < thresh) and can also
1988 * keep "1000+ dd on a slow USB stick" under control.
1989 */
1990 if (task_ratelimit)
1991 break;
1992
1993 /*
1994 * In the case of an unresponsive NFS server and the NFS dirty
1995 * pages exceeds dirty_thresh, give the other good wb's a pipe
1996 * to go through, so that tasks on them still remain responsive.
1997 *
1998 * In theory 1 page is enough to keep the consumer-producer
1999 * pipe going: the flusher cleans 1 page => the task dirties 1
2000 * more page. However wb_dirty has accounting errors. So use
2001 * the larger and more IO friendly wb_stat_error.
2002 */
2003 if (sdtc->wb_dirty <= wb_stat_error())
2004 break;
2005
2006 if (fatal_signal_pending(current))
2007 break;
2008 }
2009 return ret;
2010 }
2011
2012 static DEFINE_PER_CPU(int, bdp_ratelimits);
2013
2014 /*
2015 * Normal tasks are throttled by
2016 * loop {
2017 * dirty tsk->nr_dirtied_pause pages;
2018 * take a snap in balance_dirty_pages();
2019 * }
2020 * However there is a worst case. If every task exit immediately when dirtied
2021 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
2022 * called to throttle the page dirties. The solution is to save the not yet
2023 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
2024 * randomly into the running tasks. This works well for the above worst case,
2025 * as the new task will pick up and accumulate the old task's leaked dirty
2026 * count and eventually get throttled.
2027 */
2028 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
2029
2030 /**
2031 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
2032 * @mapping: address_space which was dirtied.
2033 * @flags: BDP flags.
2034 *
2035 * Processes which are dirtying memory should call in here once for each page
2036 * which was newly dirtied. The function will periodically check the system's
2037 * dirty state and will initiate writeback if needed.
2038 *
2039 * See balance_dirty_pages_ratelimited() for details.
2040 *
2041 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2042 * indicate that memory is out of balance and the caller must wait
2043 * for I/O to complete. Otherwise, it will return 0 to indicate
2044 * that either memory was already in balance, or it was able to sleep
2045 * until the amount of dirty memory returned to balance.
2046 */
balance_dirty_pages_ratelimited_flags(struct address_space * mapping,unsigned int flags)2047 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2048 unsigned int flags)
2049 {
2050 struct inode *inode = mapping->host;
2051 struct backing_dev_info *bdi = inode_to_bdi(inode);
2052 struct bdi_writeback *wb = NULL;
2053 int ratelimit;
2054 int ret = 0;
2055 int *p;
2056
2057 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2058 return ret;
2059
2060 if (inode_cgwb_enabled(inode))
2061 wb = wb_get_create_current(bdi, GFP_KERNEL);
2062 if (!wb)
2063 wb = &bdi->wb;
2064
2065 ratelimit = current->nr_dirtied_pause;
2066 if (wb->dirty_exceeded)
2067 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2068
2069 preempt_disable();
2070 /*
2071 * This prevents one CPU to accumulate too many dirtied pages without
2072 * calling into balance_dirty_pages(), which can happen when there are
2073 * 1000+ tasks, all of them start dirtying pages at exactly the same
2074 * time, hence all honoured too large initial task->nr_dirtied_pause.
2075 */
2076 p = this_cpu_ptr(&bdp_ratelimits);
2077 if (unlikely(current->nr_dirtied >= ratelimit))
2078 *p = 0;
2079 else if (unlikely(*p >= ratelimit_pages)) {
2080 *p = 0;
2081 ratelimit = 0;
2082 }
2083 /*
2084 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2085 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2086 * the dirty throttling and livelock other long-run dirtiers.
2087 */
2088 p = this_cpu_ptr(&dirty_throttle_leaks);
2089 if (*p > 0 && current->nr_dirtied < ratelimit) {
2090 unsigned long nr_pages_dirtied;
2091 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2092 *p -= nr_pages_dirtied;
2093 current->nr_dirtied += nr_pages_dirtied;
2094 }
2095 preempt_enable();
2096
2097 if (unlikely(current->nr_dirtied >= ratelimit))
2098 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2099
2100 wb_put(wb);
2101 return ret;
2102 }
2103 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2104
2105 /**
2106 * balance_dirty_pages_ratelimited - balance dirty memory state.
2107 * @mapping: address_space which was dirtied.
2108 *
2109 * Processes which are dirtying memory should call in here once for each page
2110 * which was newly dirtied. The function will periodically check the system's
2111 * dirty state and will initiate writeback if needed.
2112 *
2113 * Once we're over the dirty memory limit we decrease the ratelimiting
2114 * by a lot, to prevent individual processes from overshooting the limit
2115 * by (ratelimit_pages) each.
2116 */
balance_dirty_pages_ratelimited(struct address_space * mapping)2117 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2118 {
2119 balance_dirty_pages_ratelimited_flags(mapping, 0);
2120 }
2121 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2122
2123 /*
2124 * Similar to wb_dirty_limits, wb_bg_dirty_limits also calculates dirty
2125 * and thresh, but it's for background writeback.
2126 */
wb_bg_dirty_limits(struct dirty_throttle_control * dtc)2127 static void wb_bg_dirty_limits(struct dirty_throttle_control *dtc)
2128 {
2129 struct bdi_writeback *wb = dtc->wb;
2130
2131 dtc->wb_bg_thresh = __wb_calc_thresh(dtc, dtc->bg_thresh);
2132 if (dtc->wb_bg_thresh < 2 * wb_stat_error())
2133 dtc->wb_dirty = wb_stat_sum(wb, WB_RECLAIMABLE);
2134 else
2135 dtc->wb_dirty = wb_stat(wb, WB_RECLAIMABLE);
2136 }
2137
domain_over_bg_thresh(struct dirty_throttle_control * dtc)2138 static bool domain_over_bg_thresh(struct dirty_throttle_control *dtc)
2139 {
2140 domain_dirty_avail(dtc, false);
2141 domain_dirty_limits(dtc);
2142 if (dtc->dirty > dtc->bg_thresh)
2143 return true;
2144
2145 wb_bg_dirty_limits(dtc);
2146 if (dtc->wb_dirty > dtc->wb_bg_thresh)
2147 return true;
2148
2149 return false;
2150 }
2151
2152 /**
2153 * wb_over_bg_thresh - does @wb need to be written back?
2154 * @wb: bdi_writeback of interest
2155 *
2156 * Determines whether background writeback should keep writing @wb or it's
2157 * clean enough.
2158 *
2159 * Return: %true if writeback should continue.
2160 */
wb_over_bg_thresh(struct bdi_writeback * wb)2161 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2162 {
2163 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
2164 struct dirty_throttle_control mdtc = { MDTC_INIT(wb, &gdtc) };
2165
2166 if (domain_over_bg_thresh(&gdtc))
2167 return true;
2168
2169 if (mdtc_valid(&mdtc))
2170 return domain_over_bg_thresh(&mdtc);
2171
2172 return false;
2173 }
2174
2175 #ifdef CONFIG_SYSCTL
2176 /*
2177 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2178 */
dirty_writeback_centisecs_handler(const struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2179 static int dirty_writeback_centisecs_handler(const struct ctl_table *table, int write,
2180 void *buffer, size_t *length, loff_t *ppos)
2181 {
2182 unsigned int old_interval = dirty_writeback_interval;
2183 int ret;
2184
2185 ret = proc_dointvec(table, write, buffer, length, ppos);
2186
2187 /*
2188 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2189 * and a different non-zero value will wakeup the writeback threads.
2190 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2191 * iterate over all bdis and wbs.
2192 * The reason we do this is to make the change take effect immediately.
2193 */
2194 if (!ret && write && dirty_writeback_interval &&
2195 dirty_writeback_interval != old_interval)
2196 wakeup_flusher_threads(WB_REASON_PERIODIC);
2197
2198 return ret;
2199 }
2200 #endif
2201
laptop_mode_timer_fn(struct timer_list * t)2202 void laptop_mode_timer_fn(struct timer_list *t)
2203 {
2204 struct backing_dev_info *backing_dev_info =
2205 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2206
2207 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2208 }
2209
2210 /*
2211 * We've spun up the disk and we're in laptop mode: schedule writeback
2212 * of all dirty data a few seconds from now. If the flush is already scheduled
2213 * then push it back - the user is still using the disk.
2214 */
laptop_io_completion(struct backing_dev_info * info)2215 void laptop_io_completion(struct backing_dev_info *info)
2216 {
2217 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2218 }
2219
2220 /*
2221 * We're in laptop mode and we've just synced. The sync's writes will have
2222 * caused another writeback to be scheduled by laptop_io_completion.
2223 * Nothing needs to be written back anymore, so we unschedule the writeback.
2224 */
laptop_sync_completion(void)2225 void laptop_sync_completion(void)
2226 {
2227 struct backing_dev_info *bdi;
2228
2229 rcu_read_lock();
2230
2231 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2232 del_timer(&bdi->laptop_mode_wb_timer);
2233
2234 rcu_read_unlock();
2235 }
2236
2237 /*
2238 * If ratelimit_pages is too high then we can get into dirty-data overload
2239 * if a large number of processes all perform writes at the same time.
2240 *
2241 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2242 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2243 * thresholds.
2244 */
2245
writeback_set_ratelimit(void)2246 void writeback_set_ratelimit(void)
2247 {
2248 struct wb_domain *dom = &global_wb_domain;
2249 unsigned long background_thresh;
2250 unsigned long dirty_thresh;
2251
2252 global_dirty_limits(&background_thresh, &dirty_thresh);
2253 dom->dirty_limit = dirty_thresh;
2254 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2255 if (ratelimit_pages < 16)
2256 ratelimit_pages = 16;
2257 }
2258
page_writeback_cpu_online(unsigned int cpu)2259 static int page_writeback_cpu_online(unsigned int cpu)
2260 {
2261 writeback_set_ratelimit();
2262 return 0;
2263 }
2264
2265 #ifdef CONFIG_SYSCTL
2266
2267 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2268 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2269
2270 static const struct ctl_table vm_page_writeback_sysctls[] = {
2271 {
2272 .procname = "dirty_background_ratio",
2273 .data = &dirty_background_ratio,
2274 .maxlen = sizeof(dirty_background_ratio),
2275 .mode = 0644,
2276 .proc_handler = dirty_background_ratio_handler,
2277 .extra1 = SYSCTL_ZERO,
2278 .extra2 = SYSCTL_ONE_HUNDRED,
2279 },
2280 {
2281 .procname = "dirty_background_bytes",
2282 .data = &dirty_background_bytes,
2283 .maxlen = sizeof(dirty_background_bytes),
2284 .mode = 0644,
2285 .proc_handler = dirty_background_bytes_handler,
2286 .extra1 = SYSCTL_LONG_ONE,
2287 },
2288 {
2289 .procname = "dirty_ratio",
2290 .data = &vm_dirty_ratio,
2291 .maxlen = sizeof(vm_dirty_ratio),
2292 .mode = 0644,
2293 .proc_handler = dirty_ratio_handler,
2294 .extra1 = SYSCTL_ZERO,
2295 .extra2 = SYSCTL_ONE_HUNDRED,
2296 },
2297 {
2298 .procname = "dirty_bytes",
2299 .data = &vm_dirty_bytes,
2300 .maxlen = sizeof(vm_dirty_bytes),
2301 .mode = 0644,
2302 .proc_handler = dirty_bytes_handler,
2303 .extra1 = (void *)&dirty_bytes_min,
2304 },
2305 {
2306 .procname = "dirty_writeback_centisecs",
2307 .data = &dirty_writeback_interval,
2308 .maxlen = sizeof(dirty_writeback_interval),
2309 .mode = 0644,
2310 .proc_handler = dirty_writeback_centisecs_handler,
2311 },
2312 {
2313 .procname = "dirty_expire_centisecs",
2314 .data = &dirty_expire_interval,
2315 .maxlen = sizeof(dirty_expire_interval),
2316 .mode = 0644,
2317 .proc_handler = proc_dointvec_minmax,
2318 .extra1 = SYSCTL_ZERO,
2319 },
2320 #ifdef CONFIG_HIGHMEM
2321 {
2322 .procname = "highmem_is_dirtyable",
2323 .data = &vm_highmem_is_dirtyable,
2324 .maxlen = sizeof(vm_highmem_is_dirtyable),
2325 .mode = 0644,
2326 .proc_handler = proc_dointvec_minmax,
2327 .extra1 = SYSCTL_ZERO,
2328 .extra2 = SYSCTL_ONE,
2329 },
2330 #endif
2331 {
2332 .procname = "laptop_mode",
2333 .data = &laptop_mode,
2334 .maxlen = sizeof(laptop_mode),
2335 .mode = 0644,
2336 .proc_handler = proc_dointvec_jiffies,
2337 },
2338 };
2339 #endif
2340
2341 /*
2342 * Called early on to tune the page writeback dirty limits.
2343 *
2344 * We used to scale dirty pages according to how total memory
2345 * related to pages that could be allocated for buffers.
2346 *
2347 * However, that was when we used "dirty_ratio" to scale with
2348 * all memory, and we don't do that any more. "dirty_ratio"
2349 * is now applied to total non-HIGHPAGE memory, and as such we can't
2350 * get into the old insane situation any more where we had
2351 * large amounts of dirty pages compared to a small amount of
2352 * non-HIGHMEM memory.
2353 *
2354 * But we might still want to scale the dirty_ratio by how
2355 * much memory the box has..
2356 */
page_writeback_init(void)2357 void __init page_writeback_init(void)
2358 {
2359 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2360
2361 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2362 page_writeback_cpu_online, NULL);
2363 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2364 page_writeback_cpu_online);
2365 #ifdef CONFIG_SYSCTL
2366 register_sysctl_init("vm", vm_page_writeback_sysctls);
2367 #endif
2368 }
2369
2370 /**
2371 * tag_pages_for_writeback - tag pages to be written by writeback
2372 * @mapping: address space structure to write
2373 * @start: starting page index
2374 * @end: ending page index (inclusive)
2375 *
2376 * This function scans the page range from @start to @end (inclusive) and tags
2377 * all pages that have DIRTY tag set with a special TOWRITE tag. The caller
2378 * can then use the TOWRITE tag to identify pages eligible for writeback.
2379 * This mechanism is used to avoid livelocking of writeback by a process
2380 * steadily creating new dirty pages in the file (thus it is important for this
2381 * function to be quick so that it can tag pages faster than a dirtying process
2382 * can create them).
2383 */
tag_pages_for_writeback(struct address_space * mapping,pgoff_t start,pgoff_t end)2384 void tag_pages_for_writeback(struct address_space *mapping,
2385 pgoff_t start, pgoff_t end)
2386 {
2387 XA_STATE(xas, &mapping->i_pages, start);
2388 unsigned int tagged = 0;
2389 void *page;
2390
2391 xas_lock_irq(&xas);
2392 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2393 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2394 if (++tagged % XA_CHECK_SCHED)
2395 continue;
2396
2397 xas_pause(&xas);
2398 xas_unlock_irq(&xas);
2399 cond_resched();
2400 xas_lock_irq(&xas);
2401 }
2402 xas_unlock_irq(&xas);
2403 }
2404 EXPORT_SYMBOL(tag_pages_for_writeback);
2405
folio_prepare_writeback(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio)2406 static bool folio_prepare_writeback(struct address_space *mapping,
2407 struct writeback_control *wbc, struct folio *folio)
2408 {
2409 /*
2410 * Folio truncated or invalidated. We can freely skip it then,
2411 * even for data integrity operations: the folio has disappeared
2412 * concurrently, so there could be no real expectation of this
2413 * data integrity operation even if there is now a new, dirty
2414 * folio at the same pagecache index.
2415 */
2416 if (unlikely(folio->mapping != mapping))
2417 return false;
2418
2419 /*
2420 * Did somebody else write it for us?
2421 */
2422 if (!folio_test_dirty(folio))
2423 return false;
2424
2425 if (folio_test_writeback(folio)) {
2426 if (wbc->sync_mode == WB_SYNC_NONE)
2427 return false;
2428 folio_wait_writeback(folio);
2429 }
2430 BUG_ON(folio_test_writeback(folio));
2431
2432 if (!folio_clear_dirty_for_io(folio))
2433 return false;
2434
2435 return true;
2436 }
2437
wbc_to_tag(struct writeback_control * wbc)2438 static xa_mark_t wbc_to_tag(struct writeback_control *wbc)
2439 {
2440 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2441 return PAGECACHE_TAG_TOWRITE;
2442 return PAGECACHE_TAG_DIRTY;
2443 }
2444
wbc_end(struct writeback_control * wbc)2445 static pgoff_t wbc_end(struct writeback_control *wbc)
2446 {
2447 if (wbc->range_cyclic)
2448 return -1;
2449 return wbc->range_end >> PAGE_SHIFT;
2450 }
2451
writeback_get_folio(struct address_space * mapping,struct writeback_control * wbc)2452 static struct folio *writeback_get_folio(struct address_space *mapping,
2453 struct writeback_control *wbc)
2454 {
2455 struct folio *folio;
2456
2457 retry:
2458 folio = folio_batch_next(&wbc->fbatch);
2459 if (!folio) {
2460 folio_batch_release(&wbc->fbatch);
2461 cond_resched();
2462 filemap_get_folios_tag(mapping, &wbc->index, wbc_end(wbc),
2463 wbc_to_tag(wbc), &wbc->fbatch);
2464 folio = folio_batch_next(&wbc->fbatch);
2465 if (!folio)
2466 return NULL;
2467 }
2468
2469 folio_lock(folio);
2470 if (unlikely(!folio_prepare_writeback(mapping, wbc, folio))) {
2471 folio_unlock(folio);
2472 goto retry;
2473 }
2474
2475 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2476 return folio;
2477 }
2478
2479 /**
2480 * writeback_iter - iterate folio of a mapping for writeback
2481 * @mapping: address space structure to write
2482 * @wbc: writeback context
2483 * @folio: previously iterated folio (%NULL to start)
2484 * @error: in-out pointer for writeback errors (see below)
2485 *
2486 * This function returns the next folio for the writeback operation described by
2487 * @wbc on @mapping and should be called in a while loop in the ->writepages
2488 * implementation.
2489 *
2490 * To start the writeback operation, %NULL is passed in the @folio argument, and
2491 * for every subsequent iteration the folio returned previously should be passed
2492 * back in.
2493 *
2494 * If there was an error in the per-folio writeback inside the writeback_iter()
2495 * loop, @error should be set to the error value.
2496 *
2497 * Once the writeback described in @wbc has finished, this function will return
2498 * %NULL and if there was an error in any iteration restore it to @error.
2499 *
2500 * Note: callers should not manually break out of the loop using break or goto
2501 * but must keep calling writeback_iter() until it returns %NULL.
2502 *
2503 * Return: the folio to write or %NULL if the loop is done.
2504 */
writeback_iter(struct address_space * mapping,struct writeback_control * wbc,struct folio * folio,int * error)2505 struct folio *writeback_iter(struct address_space *mapping,
2506 struct writeback_control *wbc, struct folio *folio, int *error)
2507 {
2508 if (!folio) {
2509 folio_batch_init(&wbc->fbatch);
2510 wbc->saved_err = *error = 0;
2511
2512 /*
2513 * For range cyclic writeback we remember where we stopped so
2514 * that we can continue where we stopped.
2515 *
2516 * For non-cyclic writeback we always start at the beginning of
2517 * the passed in range.
2518 */
2519 if (wbc->range_cyclic)
2520 wbc->index = mapping->writeback_index;
2521 else
2522 wbc->index = wbc->range_start >> PAGE_SHIFT;
2523
2524 /*
2525 * To avoid livelocks when other processes dirty new pages, we
2526 * first tag pages which should be written back and only then
2527 * start writing them.
2528 *
2529 * For data-integrity writeback we have to be careful so that we
2530 * do not miss some pages (e.g., because some other process has
2531 * cleared the TOWRITE tag we set). The rule we follow is that
2532 * TOWRITE tag can be cleared only by the process clearing the
2533 * DIRTY tag (and submitting the page for I/O).
2534 */
2535 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2536 tag_pages_for_writeback(mapping, wbc->index,
2537 wbc_end(wbc));
2538 } else {
2539 wbc->nr_to_write -= folio_nr_pages(folio);
2540
2541 WARN_ON_ONCE(*error > 0);
2542
2543 /*
2544 * For integrity writeback we have to keep going until we have
2545 * written all the folios we tagged for writeback above, even if
2546 * we run past wbc->nr_to_write or encounter errors.
2547 * We stash away the first error we encounter in wbc->saved_err
2548 * so that it can be retrieved when we're done. This is because
2549 * the file system may still have state to clear for each folio.
2550 *
2551 * For background writeback we exit as soon as we run past
2552 * wbc->nr_to_write or encounter the first error.
2553 */
2554 if (wbc->sync_mode == WB_SYNC_ALL) {
2555 if (*error && !wbc->saved_err)
2556 wbc->saved_err = *error;
2557 } else {
2558 if (*error || wbc->nr_to_write <= 0)
2559 goto done;
2560 }
2561 }
2562
2563 folio = writeback_get_folio(mapping, wbc);
2564 if (!folio) {
2565 /*
2566 * To avoid deadlocks between range_cyclic writeback and callers
2567 * that hold pages in PageWriteback to aggregate I/O until
2568 * the writeback iteration finishes, we do not loop back to the
2569 * start of the file. Doing so causes a page lock/page
2570 * writeback access order inversion - we should only ever lock
2571 * multiple pages in ascending page->index order, and looping
2572 * back to the start of the file violates that rule and causes
2573 * deadlocks.
2574 */
2575 if (wbc->range_cyclic)
2576 mapping->writeback_index = 0;
2577
2578 /*
2579 * Return the first error we encountered (if there was any) to
2580 * the caller.
2581 */
2582 *error = wbc->saved_err;
2583 }
2584 return folio;
2585
2586 done:
2587 if (wbc->range_cyclic)
2588 mapping->writeback_index = folio_next_index(folio);
2589 folio_batch_release(&wbc->fbatch);
2590 return NULL;
2591 }
2592 EXPORT_SYMBOL_GPL(writeback_iter);
2593
2594 /**
2595 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2596 * @mapping: address space structure to write
2597 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2598 * @writepage: function called for each page
2599 * @data: data passed to writepage function
2600 *
2601 * Return: %0 on success, negative error code otherwise
2602 *
2603 * Note: please use writeback_iter() instead.
2604 */
write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data)2605 int write_cache_pages(struct address_space *mapping,
2606 struct writeback_control *wbc, writepage_t writepage,
2607 void *data)
2608 {
2609 struct folio *folio = NULL;
2610 int error;
2611
2612 while ((folio = writeback_iter(mapping, wbc, folio, &error))) {
2613 error = writepage(folio, wbc, data);
2614 if (error == AOP_WRITEPAGE_ACTIVATE) {
2615 folio_unlock(folio);
2616 error = 0;
2617 }
2618 }
2619
2620 return error;
2621 }
2622 EXPORT_SYMBOL(write_cache_pages);
2623
writeback_use_writepage(struct address_space * mapping,struct writeback_control * wbc)2624 static int writeback_use_writepage(struct address_space *mapping,
2625 struct writeback_control *wbc)
2626 {
2627 struct folio *folio = NULL;
2628 struct blk_plug plug;
2629 int err;
2630
2631 blk_start_plug(&plug);
2632 while ((folio = writeback_iter(mapping, wbc, folio, &err))) {
2633 err = mapping->a_ops->writepage(&folio->page, wbc);
2634 if (err == AOP_WRITEPAGE_ACTIVATE) {
2635 folio_unlock(folio);
2636 err = 0;
2637 }
2638 mapping_set_error(mapping, err);
2639 }
2640 blk_finish_plug(&plug);
2641
2642 return err;
2643 }
2644
do_writepages(struct address_space * mapping,struct writeback_control * wbc)2645 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2646 {
2647 int ret;
2648 struct bdi_writeback *wb;
2649
2650 if (wbc->nr_to_write <= 0)
2651 return 0;
2652 wb = inode_to_wb_wbc(mapping->host, wbc);
2653 wb_bandwidth_estimate_start(wb);
2654 while (1) {
2655 if (mapping->a_ops->writepages) {
2656 ret = mapping->a_ops->writepages(mapping, wbc);
2657 } else if (mapping->a_ops->writepage) {
2658 ret = writeback_use_writepage(mapping, wbc);
2659 } else {
2660 /* deal with chardevs and other special files */
2661 ret = 0;
2662 }
2663 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2664 break;
2665
2666 /*
2667 * Lacking an allocation context or the locality or writeback
2668 * state of any of the inode's pages, throttle based on
2669 * writeback activity on the local node. It's as good a
2670 * guess as any.
2671 */
2672 reclaim_throttle(NODE_DATA(numa_node_id()),
2673 VMSCAN_THROTTLE_WRITEBACK);
2674 }
2675 /*
2676 * Usually few pages are written by now from those we've just submitted
2677 * but if there's constant writeback being submitted, this makes sure
2678 * writeback bandwidth is updated once in a while.
2679 */
2680 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2681 BANDWIDTH_INTERVAL))
2682 wb_update_bandwidth(wb);
2683 return ret;
2684 }
2685
2686 /*
2687 * For address_spaces which do not use buffers nor write back.
2688 */
noop_dirty_folio(struct address_space * mapping,struct folio * folio)2689 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2690 {
2691 if (!folio_test_dirty(folio))
2692 return !folio_test_set_dirty(folio);
2693 return false;
2694 }
2695 EXPORT_SYMBOL(noop_dirty_folio);
2696
2697 /*
2698 * Helper function for set_page_dirty family.
2699 *
2700 * NOTE: This relies on being atomic wrt interrupts.
2701 */
folio_account_dirtied(struct folio * folio,struct address_space * mapping)2702 static void folio_account_dirtied(struct folio *folio,
2703 struct address_space *mapping)
2704 {
2705 struct inode *inode = mapping->host;
2706
2707 trace_writeback_dirty_folio(folio, mapping);
2708
2709 if (mapping_can_writeback(mapping)) {
2710 struct bdi_writeback *wb;
2711 long nr = folio_nr_pages(folio);
2712
2713 inode_attach_wb(inode, folio);
2714 wb = inode_to_wb(inode);
2715
2716 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2717 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2718 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2719 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2720 wb_stat_mod(wb, WB_DIRTIED, nr);
2721 task_io_account_write(nr * PAGE_SIZE);
2722 current->nr_dirtied += nr;
2723 __this_cpu_add(bdp_ratelimits, nr);
2724
2725 mem_cgroup_track_foreign_dirty(folio, wb);
2726 }
2727 }
2728
2729 /*
2730 * Helper function for deaccounting dirty page without writeback.
2731 *
2732 */
folio_account_cleaned(struct folio * folio,struct bdi_writeback * wb)2733 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2734 {
2735 long nr = folio_nr_pages(folio);
2736
2737 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2738 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2739 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2740 task_io_account_cancelled_write(nr * PAGE_SIZE);
2741 }
2742
2743 /*
2744 * Mark the folio dirty, and set it dirty in the page cache.
2745 *
2746 * If warn is true, then emit a warning if the folio is not uptodate and has
2747 * not been truncated.
2748 *
2749 * It is the caller's responsibility to prevent the folio from being truncated
2750 * while this function is in progress, although it may have been truncated
2751 * before this function is called. Most callers have the folio locked.
2752 * A few have the folio blocked from truncation through other means (e.g.
2753 * zap_vma_pages() has it mapped and is holding the page table lock).
2754 * When called from mark_buffer_dirty(), the filesystem should hold a
2755 * reference to the buffer_head that is being marked dirty, which causes
2756 * try_to_free_buffers() to fail.
2757 */
__folio_mark_dirty(struct folio * folio,struct address_space * mapping,int warn)2758 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2759 int warn)
2760 {
2761 unsigned long flags;
2762
2763 xa_lock_irqsave(&mapping->i_pages, flags);
2764 if (folio->mapping) { /* Race with truncate? */
2765 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2766 folio_account_dirtied(folio, mapping);
2767 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2768 PAGECACHE_TAG_DIRTY);
2769 }
2770 xa_unlock_irqrestore(&mapping->i_pages, flags);
2771 }
2772
2773 /**
2774 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2775 * @mapping: Address space this folio belongs to.
2776 * @folio: Folio to be marked as dirty.
2777 *
2778 * Filesystems which do not use buffer heads should call this function
2779 * from their dirty_folio address space operation. It ignores the
2780 * contents of folio_get_private(), so if the filesystem marks individual
2781 * blocks as dirty, the filesystem should handle that itself.
2782 *
2783 * This is also sometimes used by filesystems which use buffer_heads when
2784 * a single buffer is being dirtied: we want to set the folio dirty in
2785 * that case, but not all the buffers. This is a "bottom-up" dirtying,
2786 * whereas block_dirty_folio() is a "top-down" dirtying.
2787 *
2788 * The caller must ensure this doesn't race with truncation. Most will
2789 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2790 * folio mapped and the pte lock held, which also locks out truncation.
2791 */
filemap_dirty_folio(struct address_space * mapping,struct folio * folio)2792 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2793 {
2794 if (folio_test_set_dirty(folio))
2795 return false;
2796
2797 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2798
2799 if (mapping->host) {
2800 /* !PageAnon && !swapper_space */
2801 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2802 }
2803 return true;
2804 }
2805 EXPORT_SYMBOL(filemap_dirty_folio);
2806
2807 /**
2808 * folio_redirty_for_writepage - Decline to write a dirty folio.
2809 * @wbc: The writeback control.
2810 * @folio: The folio.
2811 *
2812 * When a writepage implementation decides that it doesn't want to write
2813 * @folio for some reason, it should call this function, unlock @folio and
2814 * return 0.
2815 *
2816 * Return: True if we redirtied the folio. False if someone else dirtied
2817 * it first.
2818 */
folio_redirty_for_writepage(struct writeback_control * wbc,struct folio * folio)2819 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2820 struct folio *folio)
2821 {
2822 struct address_space *mapping = folio->mapping;
2823 long nr = folio_nr_pages(folio);
2824 bool ret;
2825
2826 wbc->pages_skipped += nr;
2827 ret = filemap_dirty_folio(mapping, folio);
2828 if (mapping && mapping_can_writeback(mapping)) {
2829 struct inode *inode = mapping->host;
2830 struct bdi_writeback *wb;
2831 struct wb_lock_cookie cookie = {};
2832
2833 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2834 current->nr_dirtied -= nr;
2835 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2836 wb_stat_mod(wb, WB_DIRTIED, -nr);
2837 unlocked_inode_to_wb_end(inode, &cookie);
2838 }
2839 return ret;
2840 }
2841 EXPORT_SYMBOL(folio_redirty_for_writepage);
2842
2843 /**
2844 * folio_mark_dirty - Mark a folio as being modified.
2845 * @folio: The folio.
2846 *
2847 * The folio may not be truncated while this function is running.
2848 * Holding the folio lock is sufficient to prevent truncation, but some
2849 * callers cannot acquire a sleeping lock. These callers instead hold
2850 * the page table lock for a page table which contains at least one page
2851 * in this folio. Truncation will block on the page table lock as it
2852 * unmaps pages before removing the folio from its mapping.
2853 *
2854 * Return: True if the folio was newly dirtied, false if it was already dirty.
2855 */
folio_mark_dirty(struct folio * folio)2856 bool folio_mark_dirty(struct folio *folio)
2857 {
2858 struct address_space *mapping = folio_mapping(folio);
2859
2860 if (likely(mapping)) {
2861 /*
2862 * readahead/folio_deactivate could remain
2863 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2864 * About readahead, if the folio is written, the flags would be
2865 * reset. So no problem.
2866 * About folio_deactivate, if the folio is redirtied,
2867 * the flag will be reset. So no problem. but if the
2868 * folio is used by readahead it will confuse readahead
2869 * and make it restart the size rampup process. But it's
2870 * a trivial problem.
2871 */
2872 if (folio_test_reclaim(folio))
2873 folio_clear_reclaim(folio);
2874 return mapping->a_ops->dirty_folio(mapping, folio);
2875 }
2876
2877 return noop_dirty_folio(mapping, folio);
2878 }
2879 EXPORT_SYMBOL(folio_mark_dirty);
2880
2881 /*
2882 * folio_mark_dirty() is racy if the caller has no reference against
2883 * folio->mapping->host, and if the folio is unlocked. This is because another
2884 * CPU could truncate the folio off the mapping and then free the mapping.
2885 *
2886 * Usually, the folio _is_ locked, or the caller is a user-space process which
2887 * holds a reference on the inode by having an open file.
2888 *
2889 * In other cases, the folio should be locked before running folio_mark_dirty().
2890 */
folio_mark_dirty_lock(struct folio * folio)2891 bool folio_mark_dirty_lock(struct folio *folio)
2892 {
2893 bool ret;
2894
2895 folio_lock(folio);
2896 ret = folio_mark_dirty(folio);
2897 folio_unlock(folio);
2898 return ret;
2899 }
2900 EXPORT_SYMBOL(folio_mark_dirty_lock);
2901
2902 /*
2903 * This cancels just the dirty bit on the kernel page itself, it does NOT
2904 * actually remove dirty bits on any mmap's that may be around. It also
2905 * leaves the page tagged dirty, so any sync activity will still find it on
2906 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2907 * look at the dirty bits in the VM.
2908 *
2909 * Doing this should *normally* only ever be done when a page is truncated,
2910 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2911 * this when it notices that somebody has cleaned out all the buffers on a
2912 * page without actually doing it through the VM. Can you say "ext3 is
2913 * horribly ugly"? Thought you could.
2914 */
__folio_cancel_dirty(struct folio * folio)2915 void __folio_cancel_dirty(struct folio *folio)
2916 {
2917 struct address_space *mapping = folio_mapping(folio);
2918
2919 if (mapping_can_writeback(mapping)) {
2920 struct inode *inode = mapping->host;
2921 struct bdi_writeback *wb;
2922 struct wb_lock_cookie cookie = {};
2923
2924 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2925
2926 if (folio_test_clear_dirty(folio))
2927 folio_account_cleaned(folio, wb);
2928
2929 unlocked_inode_to_wb_end(inode, &cookie);
2930 } else {
2931 folio_clear_dirty(folio);
2932 }
2933 }
2934 EXPORT_SYMBOL(__folio_cancel_dirty);
2935
2936 /*
2937 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2938 * Returns true if the folio was previously dirty.
2939 *
2940 * This is for preparing to put the folio under writeout. We leave
2941 * the folio tagged as dirty in the xarray so that a concurrent
2942 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2943 * The ->writepage implementation will run either folio_start_writeback()
2944 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2945 * and xarray dirty tag back into sync.
2946 *
2947 * This incoherency between the folio's dirty flag and xarray tag is
2948 * unfortunate, but it only exists while the folio is locked.
2949 */
folio_clear_dirty_for_io(struct folio * folio)2950 bool folio_clear_dirty_for_io(struct folio *folio)
2951 {
2952 struct address_space *mapping = folio_mapping(folio);
2953 bool ret = false;
2954
2955 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2956
2957 if (mapping && mapping_can_writeback(mapping)) {
2958 struct inode *inode = mapping->host;
2959 struct bdi_writeback *wb;
2960 struct wb_lock_cookie cookie = {};
2961
2962 /*
2963 * Yes, Virginia, this is indeed insane.
2964 *
2965 * We use this sequence to make sure that
2966 * (a) we account for dirty stats properly
2967 * (b) we tell the low-level filesystem to
2968 * mark the whole folio dirty if it was
2969 * dirty in a pagetable. Only to then
2970 * (c) clean the folio again and return 1 to
2971 * cause the writeback.
2972 *
2973 * This way we avoid all nasty races with the
2974 * dirty bit in multiple places and clearing
2975 * them concurrently from different threads.
2976 *
2977 * Note! Normally the "folio_mark_dirty(folio)"
2978 * has no effect on the actual dirty bit - since
2979 * that will already usually be set. But we
2980 * need the side effects, and it can help us
2981 * avoid races.
2982 *
2983 * We basically use the folio "master dirty bit"
2984 * as a serialization point for all the different
2985 * threads doing their things.
2986 */
2987 if (folio_mkclean(folio))
2988 folio_mark_dirty(folio);
2989 /*
2990 * We carefully synchronise fault handlers against
2991 * installing a dirty pte and marking the folio dirty
2992 * at this point. We do this by having them hold the
2993 * page lock while dirtying the folio, and folios are
2994 * always locked coming in here, so we get the desired
2995 * exclusion.
2996 */
2997 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2998 if (folio_test_clear_dirty(folio)) {
2999 long nr = folio_nr_pages(folio);
3000 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
3001 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3002 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
3003 ret = true;
3004 }
3005 unlocked_inode_to_wb_end(inode, &cookie);
3006 return ret;
3007 }
3008 return folio_test_clear_dirty(folio);
3009 }
3010 EXPORT_SYMBOL(folio_clear_dirty_for_io);
3011
wb_inode_writeback_start(struct bdi_writeback * wb)3012 static void wb_inode_writeback_start(struct bdi_writeback *wb)
3013 {
3014 atomic_inc(&wb->writeback_inodes);
3015 }
3016
wb_inode_writeback_end(struct bdi_writeback * wb)3017 static void wb_inode_writeback_end(struct bdi_writeback *wb)
3018 {
3019 unsigned long flags;
3020 atomic_dec(&wb->writeback_inodes);
3021 /*
3022 * Make sure estimate of writeback throughput gets updated after
3023 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
3024 * (which is the interval other bandwidth updates use for batching) so
3025 * that if multiple inodes end writeback at a similar time, they get
3026 * batched into one bandwidth update.
3027 */
3028 spin_lock_irqsave(&wb->work_lock, flags);
3029 if (test_bit(WB_registered, &wb->state))
3030 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
3031 spin_unlock_irqrestore(&wb->work_lock, flags);
3032 }
3033
__folio_end_writeback(struct folio * folio)3034 bool __folio_end_writeback(struct folio *folio)
3035 {
3036 long nr = folio_nr_pages(folio);
3037 struct address_space *mapping = folio_mapping(folio);
3038 bool ret;
3039
3040 if (mapping && mapping_use_writeback_tags(mapping)) {
3041 struct inode *inode = mapping->host;
3042 struct backing_dev_info *bdi = inode_to_bdi(inode);
3043 unsigned long flags;
3044
3045 xa_lock_irqsave(&mapping->i_pages, flags);
3046 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3047 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
3048 PAGECACHE_TAG_WRITEBACK);
3049 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3050 struct bdi_writeback *wb = inode_to_wb(inode);
3051
3052 wb_stat_mod(wb, WB_WRITEBACK, -nr);
3053 __wb_writeout_add(wb, nr);
3054 if (!mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
3055 wb_inode_writeback_end(wb);
3056 }
3057
3058 if (mapping->host && !mapping_tagged(mapping,
3059 PAGECACHE_TAG_WRITEBACK))
3060 sb_clear_inode_writeback(mapping->host);
3061
3062 xa_unlock_irqrestore(&mapping->i_pages, flags);
3063 } else {
3064 ret = folio_xor_flags_has_waiters(folio, 1 << PG_writeback);
3065 }
3066
3067 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3068 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3069 node_stat_mod_folio(folio, NR_WRITTEN, nr);
3070
3071 return ret;
3072 }
3073
__folio_start_writeback(struct folio * folio,bool keep_write)3074 void __folio_start_writeback(struct folio *folio, bool keep_write)
3075 {
3076 long nr = folio_nr_pages(folio);
3077 struct address_space *mapping = folio_mapping(folio);
3078 int access_ret;
3079
3080 VM_BUG_ON_FOLIO(folio_test_writeback(folio), folio);
3081
3082 if (mapping && mapping_use_writeback_tags(mapping)) {
3083 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3084 struct inode *inode = mapping->host;
3085 struct backing_dev_info *bdi = inode_to_bdi(inode);
3086 unsigned long flags;
3087 bool on_wblist;
3088
3089 xas_lock_irqsave(&xas, flags);
3090 xas_load(&xas);
3091 folio_test_set_writeback(folio);
3092
3093 on_wblist = mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK);
3094
3095 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3096 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3097 struct bdi_writeback *wb = inode_to_wb(inode);
3098
3099 wb_stat_mod(wb, WB_WRITEBACK, nr);
3100 if (!on_wblist)
3101 wb_inode_writeback_start(wb);
3102 }
3103
3104 /*
3105 * We can come through here when swapping anonymous
3106 * folios, so we don't necessarily have an inode to
3107 * track for sync.
3108 */
3109 if (mapping->host && !on_wblist)
3110 sb_mark_inode_writeback(mapping->host);
3111 if (!folio_test_dirty(folio))
3112 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3113 if (!keep_write)
3114 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3115 xas_unlock_irqrestore(&xas, flags);
3116 } else {
3117 folio_test_set_writeback(folio);
3118 }
3119
3120 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3121 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3122
3123 access_ret = arch_make_folio_accessible(folio);
3124 /*
3125 * If writeback has been triggered on a page that cannot be made
3126 * accessible, it is too late to recover here.
3127 */
3128 VM_BUG_ON_FOLIO(access_ret != 0, folio);
3129 }
3130 EXPORT_SYMBOL(__folio_start_writeback);
3131
3132 /**
3133 * folio_wait_writeback - Wait for a folio to finish writeback.
3134 * @folio: The folio to wait for.
3135 *
3136 * If the folio is currently being written back to storage, wait for the
3137 * I/O to complete.
3138 *
3139 * Context: Sleeps. Must be called in process context and with
3140 * no spinlocks held. Caller should hold a reference on the folio.
3141 * If the folio is not locked, writeback may start again after writeback
3142 * has finished.
3143 */
folio_wait_writeback(struct folio * folio)3144 void folio_wait_writeback(struct folio *folio)
3145 {
3146 while (folio_test_writeback(folio)) {
3147 trace_folio_wait_writeback(folio, folio_mapping(folio));
3148 folio_wait_bit(folio, PG_writeback);
3149 }
3150 }
3151 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3152
3153 /**
3154 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3155 * @folio: The folio to wait for.
3156 *
3157 * If the folio is currently being written back to storage, wait for the
3158 * I/O to complete or a fatal signal to arrive.
3159 *
3160 * Context: Sleeps. Must be called in process context and with
3161 * no spinlocks held. Caller should hold a reference on the folio.
3162 * If the folio is not locked, writeback may start again after writeback
3163 * has finished.
3164 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3165 */
folio_wait_writeback_killable(struct folio * folio)3166 int folio_wait_writeback_killable(struct folio *folio)
3167 {
3168 while (folio_test_writeback(folio)) {
3169 trace_folio_wait_writeback(folio, folio_mapping(folio));
3170 if (folio_wait_bit_killable(folio, PG_writeback))
3171 return -EINTR;
3172 }
3173
3174 return 0;
3175 }
3176 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3177
3178 /**
3179 * folio_wait_stable() - wait for writeback to finish, if necessary.
3180 * @folio: The folio to wait on.
3181 *
3182 * This function determines if the given folio is related to a backing
3183 * device that requires folio contents to be held stable during writeback.
3184 * If so, then it will wait for any pending writeback to complete.
3185 *
3186 * Context: Sleeps. Must be called in process context and with
3187 * no spinlocks held. Caller should hold a reference on the folio.
3188 * If the folio is not locked, writeback may start again after writeback
3189 * has finished.
3190 */
folio_wait_stable(struct folio * folio)3191 void folio_wait_stable(struct folio *folio)
3192 {
3193 if (mapping_stable_writes(folio_mapping(folio)))
3194 folio_wait_writeback(folio);
3195 }
3196 EXPORT_SYMBOL_GPL(folio_wait_stable);
3197