xref: /aosp_15_r20/external/mesa3d/src/mesa/main/querymatrix.c (revision 6104692788411f58d303aa86923a9ff6ecaded22)
1 /**************************************************************************
2  *
3  * Copyright 2008 VMware, Inc.
4  * All Rights Reserved.
5  *
6  **************************************************************************/
7 
8 
9 /**
10  * Code to implement GL_OES_query_matrix.  See the spec at:
11  * http://www.khronos.org/registry/gles/extensions/OES/OES_query_matrix.txt
12  */
13 
14 
15 #include <stdlib.h>
16 #include <math.h>
17 
18 #include "util/glheader.h"
19 #include "main/get.h"
20 #include "util/macros.h"
21 #include "api_exec_decl.h"
22 
23 
24 /**
25  * This is from the GL_OES_query_matrix extension specification:
26  *
27  *  GLbitfield glQueryMatrixxOES( GLfixed mantissa[16],
28  *                                GLint   exponent[16] )
29  *  mantissa[16] contains the contents of the current matrix in GLfixed
30  *  format.  exponent[16] contains the unbiased exponents applied to the
31  *  matrix components, so that the internal representation of component i
32  *  is close to mantissa[i] * 2^exponent[i].  The function returns a status
33  *  word which is zero if all the components are valid. If
34  *  status & (1<<i) != 0, the component i is invalid (e.g., NaN, Inf).
35  *  The implementations are not required to keep track of overflows.  In
36  *  that case, the invalid bits are never set.
37  */
38 
39 #define INT_TO_FIXED(x) ((GLfixed) ((x) << 16))
40 #define FLOAT_TO_FIXED(x) ((GLfixed) ((x) * 65536.0))
41 
42 
43 GLbitfield GLAPIENTRY
_mesa_QueryMatrixxOES(GLfixed * mantissa,GLint * exponent)44 _mesa_QueryMatrixxOES(GLfixed *mantissa, GLint *exponent)
45 {
46    GLfloat matrix[16];
47    GLint tmp;
48    GLenum currentMode = GL_FALSE;
49    GLenum desiredMatrix = GL_FALSE;
50    /* The bitfield returns 1 for each component that is invalid (i.e.
51     * NaN or Inf).  In case of error, everything is invalid.
52     */
53    GLbitfield rv;
54    unsigned i, bit;
55 
56    /* This data structure defines the mapping between the current matrix
57     * mode and the desired matrix identifier.
58     */
59    static const struct {
60       GLenum currentMode;
61       GLenum desiredMatrix;
62    } modes[] = {
63       {GL_MODELVIEW, GL_MODELVIEW_MATRIX},
64       {GL_PROJECTION, GL_PROJECTION_MATRIX},
65       {GL_TEXTURE, GL_TEXTURE_MATRIX},
66    };
67 
68    /* Call Mesa to get the current matrix in floating-point form.  First,
69     * we have to figure out what the current matrix mode is.
70     */
71    _mesa_GetIntegerv(GL_MATRIX_MODE, &tmp);
72    currentMode = (GLenum) tmp;
73 
74    /* The mode is either GL_FALSE, if for some reason we failed to query
75     * the mode, or a given mode from the above table.  Search for the
76     * returned mode to get the desired matrix; if we don't find it,
77     * we can return immediately, as _mesa_GetInteger() will have
78     * logged the necessary error already.
79     */
80    for (i = 0; i < ARRAY_SIZE(modes); i++) {
81       if (modes[i].currentMode == currentMode) {
82          desiredMatrix = modes[i].desiredMatrix;
83          break;
84       }
85    }
86    if (desiredMatrix == GL_FALSE) {
87       /* Early error means all values are invalid. */
88       return 0xffff;
89    }
90 
91    /* Now pull the matrix itself. */
92    _mesa_GetFloatv(desiredMatrix, matrix);
93 
94    rv = 0;
95    for (i = 0, bit = 1; i < 16; i++, bit<<=1) {
96       float normalizedFraction;
97       int exp;
98 
99       switch (fpclassify(matrix[i])) {
100       case FP_SUBNORMAL:
101       case FP_NORMAL:
102       case FP_ZERO:
103          /* A "subnormal" or denormalized number is too small to be
104           * represented in normal format; but despite that it's a
105           * valid floating point number.  FP_ZERO and FP_NORMAL
106           * are both valid as well.  We should be fine treating
107           * these three cases as legitimate floating-point numbers.
108           */
109          normalizedFraction = (GLfloat)frexp(matrix[i], &exp);
110          mantissa[i] = FLOAT_TO_FIXED(normalizedFraction);
111          exponent[i] = (GLint) exp;
112          break;
113 
114       case FP_NAN:
115          /* If the entry is not-a-number or an infinity, then the
116           * matrix component is invalid.  The invalid flag for
117           * the component is already set; might as well set the
118           * other return values to known values.  We'll set
119           * distinct values so that a savvy end user could determine
120           * whether the matrix component was a NaN or an infinity,
121           * but this is more useful for debugging than anything else
122           * since the standard doesn't specify any such magic
123           * values to return.
124           */
125          mantissa[i] = INT_TO_FIXED(0);
126          exponent[i] = (GLint) 0;
127          rv |= bit;
128          break;
129 
130       case FP_INFINITE:
131          /* Return +/- 1 based on whether it's a positive or
132           * negative infinity.
133           */
134          if (matrix[i] > 0) {
135             mantissa[i] = INT_TO_FIXED(1);
136          }
137          else {
138             mantissa[i] = -INT_TO_FIXED(1);
139          }
140          exponent[i] = (GLint) 0;
141          rv |= bit;
142          break;
143 
144       default:
145          /* We should never get here; but here's a catching case
146           * in case fpclassify() is returnings something unexpected.
147           */
148          mantissa[i] = INT_TO_FIXED(2);
149          exponent[i] = (GLint) 0;
150          rv |= bit;
151          break;
152       }
153 
154    } /* for each component */
155 
156    /* All done */
157    return rv;
158 }
159