1 //===- IROutliner.cpp -- Outline Similar Regions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 // Implementation for the IROutliner which is used by the IROutliner Pass.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Transforms/IPO/IROutliner.h"
15 #include "llvm/Analysis/IRSimilarityIdentifier.h"
16 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
17 #include "llvm/Analysis/TargetTransformInfo.h"
18 #include "llvm/IR/Attributes.h"
19 #include "llvm/IR/DIBuilder.h"
20 #include "llvm/IR/DebugInfo.h"
21 #include "llvm/IR/DebugInfoMetadata.h"
22 #include "llvm/IR/Dominators.h"
23 #include "llvm/IR/Mangler.h"
24 #include "llvm/IR/PassManager.h"
25 #include "llvm/InitializePasses.h"
26 #include "llvm/Pass.h"
27 #include "llvm/Support/CommandLine.h"
28 #include "llvm/Transforms/IPO.h"
29 #include <optional>
30 #include <vector>
31
32 #define DEBUG_TYPE "iroutliner"
33
34 using namespace llvm;
35 using namespace IRSimilarity;
36
37 // A command flag to be used for debugging to exclude branches from similarity
38 // matching and outlining.
39 namespace llvm {
40 extern cl::opt<bool> DisableBranches;
41
42 // A command flag to be used for debugging to indirect calls from similarity
43 // matching and outlining.
44 extern cl::opt<bool> DisableIndirectCalls;
45
46 // A command flag to be used for debugging to exclude intrinsics from similarity
47 // matching and outlining.
48 extern cl::opt<bool> DisableIntrinsics;
49
50 } // namespace llvm
51
52 // Set to true if the user wants the ir outliner to run on linkonceodr linkage
53 // functions. This is false by default because the linker can dedupe linkonceodr
54 // functions. Since the outliner is confined to a single module (modulo LTO),
55 // this is off by default. It should, however, be the default behavior in
56 // LTO.
57 static cl::opt<bool> EnableLinkOnceODRIROutlining(
58 "enable-linkonceodr-ir-outlining", cl::Hidden,
59 cl::desc("Enable the IR outliner on linkonceodr functions"),
60 cl::init(false));
61
62 // This is a debug option to test small pieces of code to ensure that outlining
63 // works correctly.
64 static cl::opt<bool> NoCostModel(
65 "ir-outlining-no-cost", cl::init(false), cl::ReallyHidden,
66 cl::desc("Debug option to outline greedily, without restriction that "
67 "calculated benefit outweighs cost"));
68
69 /// The OutlinableGroup holds all the overarching information for outlining
70 /// a set of regions that are structurally similar to one another, such as the
71 /// types of the overall function, the output blocks, the sets of stores needed
72 /// and a list of the different regions. This information is used in the
73 /// deduplication of extracted regions with the same structure.
74 struct OutlinableGroup {
75 /// The sections that could be outlined
76 std::vector<OutlinableRegion *> Regions;
77
78 /// The argument types for the function created as the overall function to
79 /// replace the extracted function for each region.
80 std::vector<Type *> ArgumentTypes;
81 /// The FunctionType for the overall function.
82 FunctionType *OutlinedFunctionType = nullptr;
83 /// The Function for the collective overall function.
84 Function *OutlinedFunction = nullptr;
85
86 /// Flag for whether we should not consider this group of OutlinableRegions
87 /// for extraction.
88 bool IgnoreGroup = false;
89
90 /// The return blocks for the overall function.
91 DenseMap<Value *, BasicBlock *> EndBBs;
92
93 /// The PHIBlocks with their corresponding return block based on the return
94 /// value as the key.
95 DenseMap<Value *, BasicBlock *> PHIBlocks;
96
97 /// A set containing the different GVN store sets needed. Each array contains
98 /// a sorted list of the different values that need to be stored into output
99 /// registers.
100 DenseSet<ArrayRef<unsigned>> OutputGVNCombinations;
101
102 /// Flag for whether the \ref ArgumentTypes have been defined after the
103 /// extraction of the first region.
104 bool InputTypesSet = false;
105
106 /// The number of input values in \ref ArgumentTypes. Anything after this
107 /// index in ArgumentTypes is an output argument.
108 unsigned NumAggregateInputs = 0;
109
110 /// The mapping of the canonical numbering of the values in outlined sections
111 /// to specific arguments.
112 DenseMap<unsigned, unsigned> CanonicalNumberToAggArg;
113
114 /// The number of branches in the region target a basic block that is outside
115 /// of the region.
116 unsigned BranchesToOutside = 0;
117
118 /// Tracker counting backwards from the highest unsigned value possible to
119 /// avoid conflicting with the GVNs of assigned values. We start at -3 since
120 /// -2 and -1 are assigned by the DenseMap.
121 unsigned PHINodeGVNTracker = -3;
122
123 DenseMap<unsigned,
124 std::pair<std::pair<unsigned, unsigned>, SmallVector<unsigned, 2>>>
125 PHINodeGVNToGVNs;
126 DenseMap<hash_code, unsigned> GVNsToPHINodeGVN;
127
128 /// The number of instructions that will be outlined by extracting \ref
129 /// Regions.
130 InstructionCost Benefit = 0;
131 /// The number of added instructions needed for the outlining of the \ref
132 /// Regions.
133 InstructionCost Cost = 0;
134
135 /// The argument that needs to be marked with the swifterr attribute. If not
136 /// needed, there is no value.
137 std::optional<unsigned> SwiftErrorArgument;
138
139 /// For the \ref Regions, we look at every Value. If it is a constant,
140 /// we check whether it is the same in Region.
141 ///
142 /// \param [in,out] NotSame contains the global value numbers where the
143 /// constant is not always the same, and must be passed in as an argument.
144 void findSameConstants(DenseSet<unsigned> &NotSame);
145
146 /// For the regions, look at each set of GVN stores needed and account for
147 /// each combination. Add an argument to the argument types if there is
148 /// more than one combination.
149 ///
150 /// \param [in] M - The module we are outlining from.
151 void collectGVNStoreSets(Module &M);
152 };
153
154 /// Move the contents of \p SourceBB to before the last instruction of \p
155 /// TargetBB.
156 /// \param SourceBB - the BasicBlock to pull Instructions from.
157 /// \param TargetBB - the BasicBlock to put Instruction into.
moveBBContents(BasicBlock & SourceBB,BasicBlock & TargetBB)158 static void moveBBContents(BasicBlock &SourceBB, BasicBlock &TargetBB) {
159 for (Instruction &I : llvm::make_early_inc_range(SourceBB))
160 I.moveBefore(TargetBB, TargetBB.end());
161 }
162
163 /// A function to sort the keys of \p Map, which must be a mapping of constant
164 /// values to basic blocks and return it in \p SortedKeys
165 ///
166 /// \param SortedKeys - The vector the keys will be return in and sorted.
167 /// \param Map - The DenseMap containing keys to sort.
getSortedConstantKeys(std::vector<Value * > & SortedKeys,DenseMap<Value *,BasicBlock * > & Map)168 static void getSortedConstantKeys(std::vector<Value *> &SortedKeys,
169 DenseMap<Value *, BasicBlock *> &Map) {
170 for (auto &VtoBB : Map)
171 SortedKeys.push_back(VtoBB.first);
172
173 // Here we expect to have either 1 value that is void (nullptr) or multiple
174 // values that are all constant integers.
175 if (SortedKeys.size() == 1) {
176 assert(!SortedKeys[0] && "Expected a single void value.");
177 return;
178 }
179
180 stable_sort(SortedKeys, [](const Value *LHS, const Value *RHS) {
181 assert(LHS && RHS && "Expected non void values.");
182 const ConstantInt *LHSC = dyn_cast<ConstantInt>(LHS);
183 const ConstantInt *RHSC = dyn_cast<ConstantInt>(RHS);
184 assert(RHSC && "Not a constant integer in return value?");
185 assert(LHSC && "Not a constant integer in return value?");
186
187 return LHSC->getLimitedValue() < RHSC->getLimitedValue();
188 });
189 }
190
findCorrespondingValueIn(const OutlinableRegion & Other,Value * V)191 Value *OutlinableRegion::findCorrespondingValueIn(const OutlinableRegion &Other,
192 Value *V) {
193 std::optional<unsigned> GVN = Candidate->getGVN(V);
194 assert(GVN && "No GVN for incoming value");
195 std::optional<unsigned> CanonNum = Candidate->getCanonicalNum(*GVN);
196 std::optional<unsigned> FirstGVN =
197 Other.Candidate->fromCanonicalNum(*CanonNum);
198 std::optional<Value *> FoundValueOpt = Other.Candidate->fromGVN(*FirstGVN);
199 return FoundValueOpt.value_or(nullptr);
200 }
201
202 BasicBlock *
findCorrespondingBlockIn(const OutlinableRegion & Other,BasicBlock * BB)203 OutlinableRegion::findCorrespondingBlockIn(const OutlinableRegion &Other,
204 BasicBlock *BB) {
205 Instruction *FirstNonPHI = BB->getFirstNonPHI();
206 assert(FirstNonPHI && "block is empty?");
207 Value *CorrespondingVal = findCorrespondingValueIn(Other, FirstNonPHI);
208 if (!CorrespondingVal)
209 return nullptr;
210 BasicBlock *CorrespondingBlock =
211 cast<Instruction>(CorrespondingVal)->getParent();
212 return CorrespondingBlock;
213 }
214
215 /// Rewrite the BranchInsts in the incoming blocks to \p PHIBlock that are found
216 /// in \p Included to branch to BasicBlock \p Replace if they currently branch
217 /// to the BasicBlock \p Find. This is used to fix up the incoming basic blocks
218 /// when PHINodes are included in outlined regions.
219 ///
220 /// \param PHIBlock - The BasicBlock containing the PHINodes that need to be
221 /// checked.
222 /// \param Find - The successor block to be replaced.
223 /// \param Replace - The new succesor block to branch to.
224 /// \param Included - The set of blocks about to be outlined.
replaceTargetsFromPHINode(BasicBlock * PHIBlock,BasicBlock * Find,BasicBlock * Replace,DenseSet<BasicBlock * > & Included)225 static void replaceTargetsFromPHINode(BasicBlock *PHIBlock, BasicBlock *Find,
226 BasicBlock *Replace,
227 DenseSet<BasicBlock *> &Included) {
228 for (PHINode &PN : PHIBlock->phis()) {
229 for (unsigned Idx = 0, PNEnd = PN.getNumIncomingValues(); Idx != PNEnd;
230 ++Idx) {
231 // Check if the incoming block is included in the set of blocks being
232 // outlined.
233 BasicBlock *Incoming = PN.getIncomingBlock(Idx);
234 if (!Included.contains(Incoming))
235 continue;
236
237 BranchInst *BI = dyn_cast<BranchInst>(Incoming->getTerminator());
238 assert(BI && "Not a branch instruction?");
239 // Look over the branching instructions into this block to see if we
240 // used to branch to Find in this outlined block.
241 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ != End;
242 Succ++) {
243 // If we have found the block to replace, we do so here.
244 if (BI->getSuccessor(Succ) != Find)
245 continue;
246 BI->setSuccessor(Succ, Replace);
247 }
248 }
249 }
250 }
251
252
splitCandidate()253 void OutlinableRegion::splitCandidate() {
254 assert(!CandidateSplit && "Candidate already split!");
255
256 Instruction *BackInst = Candidate->backInstruction();
257
258 Instruction *EndInst = nullptr;
259 // Check whether the last instruction is a terminator, if it is, we do
260 // not split on the following instruction. We leave the block as it is. We
261 // also check that this is not the last instruction in the Module, otherwise
262 // the check for whether the current following instruction matches the
263 // previously recorded instruction will be incorrect.
264 if (!BackInst->isTerminator() ||
265 BackInst->getParent() != &BackInst->getFunction()->back()) {
266 EndInst = Candidate->end()->Inst;
267 assert(EndInst && "Expected an end instruction?");
268 }
269
270 // We check if the current instruction following the last instruction in the
271 // region is the same as the recorded instruction following the last
272 // instruction. If they do not match, there could be problems in rewriting
273 // the program after outlining, so we ignore it.
274 if (!BackInst->isTerminator() &&
275 EndInst != BackInst->getNextNonDebugInstruction())
276 return;
277
278 Instruction *StartInst = (*Candidate->begin()).Inst;
279 assert(StartInst && "Expected a start instruction?");
280 StartBB = StartInst->getParent();
281 PrevBB = StartBB;
282
283 DenseSet<BasicBlock *> BBSet;
284 Candidate->getBasicBlocks(BBSet);
285
286 // We iterate over the instructions in the region, if we find a PHINode, we
287 // check if there are predecessors outside of the region, if there are,
288 // we ignore this region since we are unable to handle the severing of the
289 // phi node right now.
290
291 // TODO: Handle extraneous inputs for PHINodes through variable number of
292 // inputs, similar to how outputs are handled.
293 BasicBlock::iterator It = StartInst->getIterator();
294 EndBB = BackInst->getParent();
295 BasicBlock *IBlock;
296 BasicBlock *PHIPredBlock = nullptr;
297 bool EndBBTermAndBackInstDifferent = EndBB->getTerminator() != BackInst;
298 while (PHINode *PN = dyn_cast<PHINode>(&*It)) {
299 unsigned NumPredsOutsideRegion = 0;
300 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
301 if (!BBSet.contains(PN->getIncomingBlock(i))) {
302 PHIPredBlock = PN->getIncomingBlock(i);
303 ++NumPredsOutsideRegion;
304 continue;
305 }
306
307 // We must consider the case there the incoming block to the PHINode is
308 // the same as the final block of the OutlinableRegion. If this is the
309 // case, the branch from this block must also be outlined to be valid.
310 IBlock = PN->getIncomingBlock(i);
311 if (IBlock == EndBB && EndBBTermAndBackInstDifferent) {
312 PHIPredBlock = PN->getIncomingBlock(i);
313 ++NumPredsOutsideRegion;
314 }
315 }
316
317 if (NumPredsOutsideRegion > 1)
318 return;
319
320 It++;
321 }
322
323 // If the region starts with a PHINode, but is not the initial instruction of
324 // the BasicBlock, we ignore this region for now.
325 if (isa<PHINode>(StartInst) && StartInst != &*StartBB->begin())
326 return;
327
328 // If the region ends with a PHINode, but does not contain all of the phi node
329 // instructions of the region, we ignore it for now.
330 if (isa<PHINode>(BackInst) &&
331 BackInst != &*std::prev(EndBB->getFirstInsertionPt()))
332 return;
333
334 // The basic block gets split like so:
335 // block: block:
336 // inst1 inst1
337 // inst2 inst2
338 // region1 br block_to_outline
339 // region2 block_to_outline:
340 // region3 -> region1
341 // region4 region2
342 // inst3 region3
343 // inst4 region4
344 // br block_after_outline
345 // block_after_outline:
346 // inst3
347 // inst4
348
349 std::string OriginalName = PrevBB->getName().str();
350
351 StartBB = PrevBB->splitBasicBlock(StartInst, OriginalName + "_to_outline");
352 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, StartBB);
353 // If there was a PHINode with an incoming block outside the region,
354 // make sure is correctly updated in the newly split block.
355 if (PHIPredBlock)
356 PrevBB->replaceSuccessorsPhiUsesWith(PHIPredBlock, PrevBB);
357
358 CandidateSplit = true;
359 if (!BackInst->isTerminator()) {
360 EndBB = EndInst->getParent();
361 FollowBB = EndBB->splitBasicBlock(EndInst, OriginalName + "_after_outline");
362 EndBB->replaceSuccessorsPhiUsesWith(EndBB, FollowBB);
363 FollowBB->replaceSuccessorsPhiUsesWith(PrevBB, FollowBB);
364 } else {
365 EndBB = BackInst->getParent();
366 EndsInBranch = true;
367 FollowBB = nullptr;
368 }
369
370 // Refind the basic block set.
371 BBSet.clear();
372 Candidate->getBasicBlocks(BBSet);
373 // For the phi nodes in the new starting basic block of the region, we
374 // reassign the targets of the basic blocks branching instructions.
375 replaceTargetsFromPHINode(StartBB, PrevBB, StartBB, BBSet);
376 if (FollowBB)
377 replaceTargetsFromPHINode(FollowBB, EndBB, FollowBB, BBSet);
378 }
379
reattachCandidate()380 void OutlinableRegion::reattachCandidate() {
381 assert(CandidateSplit && "Candidate is not split!");
382
383 // The basic block gets reattached like so:
384 // block: block:
385 // inst1 inst1
386 // inst2 inst2
387 // br block_to_outline region1
388 // block_to_outline: -> region2
389 // region1 region3
390 // region2 region4
391 // region3 inst3
392 // region4 inst4
393 // br block_after_outline
394 // block_after_outline:
395 // inst3
396 // inst4
397 assert(StartBB != nullptr && "StartBB for Candidate is not defined!");
398
399 assert(PrevBB->getTerminator() && "Terminator removed from PrevBB!");
400 // Make sure PHINode references to the block we are merging into are
401 // updated to be incoming blocks from the predecessor to the current block.
402
403 // NOTE: If this is updated such that the outlined block can have more than
404 // one incoming block to a PHINode, this logic will have to updated
405 // to handle multiple precessors instead.
406
407 // We only need to update this if the outlined section contains a PHINode, if
408 // it does not, then the incoming block was never changed in the first place.
409 // On the other hand, if PrevBB has no predecessors, it means that all
410 // incoming blocks to the first block are contained in the region, and there
411 // will be nothing to update.
412 Instruction *StartInst = (*Candidate->begin()).Inst;
413 if (isa<PHINode>(StartInst) && !PrevBB->hasNPredecessors(0)) {
414 assert(!PrevBB->hasNPredecessorsOrMore(2) &&
415 "PrevBB has more than one predecessor. Should be 0 or 1.");
416 BasicBlock *BeforePrevBB = PrevBB->getSinglePredecessor();
417 PrevBB->replaceSuccessorsPhiUsesWith(PrevBB, BeforePrevBB);
418 }
419 PrevBB->getTerminator()->eraseFromParent();
420
421 // If we reattaching after outlining, we iterate over the phi nodes to
422 // the initial block, and reassign the branch instructions of the incoming
423 // blocks to the block we are remerging into.
424 if (!ExtractedFunction) {
425 DenseSet<BasicBlock *> BBSet;
426 Candidate->getBasicBlocks(BBSet);
427
428 replaceTargetsFromPHINode(StartBB, StartBB, PrevBB, BBSet);
429 if (!EndsInBranch)
430 replaceTargetsFromPHINode(FollowBB, FollowBB, EndBB, BBSet);
431 }
432
433 moveBBContents(*StartBB, *PrevBB);
434
435 BasicBlock *PlacementBB = PrevBB;
436 if (StartBB != EndBB)
437 PlacementBB = EndBB;
438 if (!EndsInBranch && PlacementBB->getUniqueSuccessor() != nullptr) {
439 assert(FollowBB != nullptr && "FollowBB for Candidate is not defined!");
440 assert(PlacementBB->getTerminator() && "Terminator removed from EndBB!");
441 PlacementBB->getTerminator()->eraseFromParent();
442 moveBBContents(*FollowBB, *PlacementBB);
443 PlacementBB->replaceSuccessorsPhiUsesWith(FollowBB, PlacementBB);
444 FollowBB->eraseFromParent();
445 }
446
447 PrevBB->replaceSuccessorsPhiUsesWith(StartBB, PrevBB);
448 StartBB->eraseFromParent();
449
450 // Make sure to save changes back to the StartBB.
451 StartBB = PrevBB;
452 EndBB = nullptr;
453 PrevBB = nullptr;
454 FollowBB = nullptr;
455
456 CandidateSplit = false;
457 }
458
459 /// Find whether \p V matches the Constants previously found for the \p GVN.
460 ///
461 /// \param V - The value to check for consistency.
462 /// \param GVN - The global value number assigned to \p V.
463 /// \param GVNToConstant - The mapping of global value number to Constants.
464 /// \returns true if the Value matches the Constant mapped to by V and false if
465 /// it \p V is a Constant but does not match.
466 /// \returns std::nullopt if \p V is not a Constant.
467 static std::optional<bool>
constantMatches(Value * V,unsigned GVN,DenseMap<unsigned,Constant * > & GVNToConstant)468 constantMatches(Value *V, unsigned GVN,
469 DenseMap<unsigned, Constant *> &GVNToConstant) {
470 // See if we have a constants
471 Constant *CST = dyn_cast<Constant>(V);
472 if (!CST)
473 return std::nullopt;
474
475 // Holds a mapping from a global value number to a Constant.
476 DenseMap<unsigned, Constant *>::iterator GVNToConstantIt;
477 bool Inserted;
478
479
480 // If we have a constant, try to make a new entry in the GVNToConstant.
481 std::tie(GVNToConstantIt, Inserted) =
482 GVNToConstant.insert(std::make_pair(GVN, CST));
483 // If it was found and is not equal, it is not the same. We do not
484 // handle this case yet, and exit early.
485 if (Inserted || (GVNToConstantIt->second == CST))
486 return true;
487
488 return false;
489 }
490
getBenefit(TargetTransformInfo & TTI)491 InstructionCost OutlinableRegion::getBenefit(TargetTransformInfo &TTI) {
492 InstructionCost Benefit = 0;
493
494 // Estimate the benefit of outlining a specific sections of the program. We
495 // delegate mostly this task to the TargetTransformInfo so that if the target
496 // has specific changes, we can have a more accurate estimate.
497
498 // However, getInstructionCost delegates the code size calculation for
499 // arithmetic instructions to getArithmeticInstrCost in
500 // include/Analysis/TargetTransformImpl.h, where it always estimates that the
501 // code size for a division and remainder instruction to be equal to 4, and
502 // everything else to 1. This is not an accurate representation of the
503 // division instruction for targets that have a native division instruction.
504 // To be overly conservative, we only add 1 to the number of instructions for
505 // each division instruction.
506 for (IRInstructionData &ID : *Candidate) {
507 Instruction *I = ID.Inst;
508 switch (I->getOpcode()) {
509 case Instruction::FDiv:
510 case Instruction::FRem:
511 case Instruction::SDiv:
512 case Instruction::SRem:
513 case Instruction::UDiv:
514 case Instruction::URem:
515 Benefit += 1;
516 break;
517 default:
518 Benefit += TTI.getInstructionCost(I, TargetTransformInfo::TCK_CodeSize);
519 break;
520 }
521 }
522
523 return Benefit;
524 }
525
526 /// Check the \p OutputMappings structure for value \p Input, if it exists
527 /// it has been used as an output for outlining, and has been renamed, and we
528 /// return the new value, otherwise, we return the same value.
529 ///
530 /// \param OutputMappings [in] - The mapping of values to their renamed value
531 /// after being used as an output for an outlined region.
532 /// \param Input [in] - The value to find the remapped value of, if it exists.
533 /// \return The remapped value if it has been renamed, and the same value if has
534 /// not.
findOutputMapping(const DenseMap<Value *,Value * > OutputMappings,Value * Input)535 static Value *findOutputMapping(const DenseMap<Value *, Value *> OutputMappings,
536 Value *Input) {
537 DenseMap<Value *, Value *>::const_iterator OutputMapping =
538 OutputMappings.find(Input);
539 if (OutputMapping != OutputMappings.end())
540 return OutputMapping->second;
541 return Input;
542 }
543
544 /// Find whether \p Region matches the global value numbering to Constant
545 /// mapping found so far.
546 ///
547 /// \param Region - The OutlinableRegion we are checking for constants
548 /// \param GVNToConstant - The mapping of global value number to Constants.
549 /// \param NotSame - The set of global value numbers that do not have the same
550 /// constant in each region.
551 /// \returns true if all Constants are the same in every use of a Constant in \p
552 /// Region and false if not
553 static bool
collectRegionsConstants(OutlinableRegion & Region,DenseMap<unsigned,Constant * > & GVNToConstant,DenseSet<unsigned> & NotSame)554 collectRegionsConstants(OutlinableRegion &Region,
555 DenseMap<unsigned, Constant *> &GVNToConstant,
556 DenseSet<unsigned> &NotSame) {
557 bool ConstantsTheSame = true;
558
559 IRSimilarityCandidate &C = *Region.Candidate;
560 for (IRInstructionData &ID : C) {
561
562 // Iterate over the operands in an instruction. If the global value number,
563 // assigned by the IRSimilarityCandidate, has been seen before, we check if
564 // the the number has been found to be not the same value in each instance.
565 for (Value *V : ID.OperVals) {
566 std::optional<unsigned> GVNOpt = C.getGVN(V);
567 assert(GVNOpt && "Expected a GVN for operand?");
568 unsigned GVN = *GVNOpt;
569
570 // Check if this global value has been found to not be the same already.
571 if (NotSame.contains(GVN)) {
572 if (isa<Constant>(V))
573 ConstantsTheSame = false;
574 continue;
575 }
576
577 // If it has been the same so far, we check the value for if the
578 // associated Constant value match the previous instances of the same
579 // global value number. If the global value does not map to a Constant,
580 // it is considered to not be the same value.
581 std::optional<bool> ConstantMatches =
582 constantMatches(V, GVN, GVNToConstant);
583 if (ConstantMatches) {
584 if (*ConstantMatches)
585 continue;
586 else
587 ConstantsTheSame = false;
588 }
589
590 // While this value is a register, it might not have been previously,
591 // make sure we don't already have a constant mapped to this global value
592 // number.
593 if (GVNToConstant.find(GVN) != GVNToConstant.end())
594 ConstantsTheSame = false;
595
596 NotSame.insert(GVN);
597 }
598 }
599
600 return ConstantsTheSame;
601 }
602
findSameConstants(DenseSet<unsigned> & NotSame)603 void OutlinableGroup::findSameConstants(DenseSet<unsigned> &NotSame) {
604 DenseMap<unsigned, Constant *> GVNToConstant;
605
606 for (OutlinableRegion *Region : Regions)
607 collectRegionsConstants(*Region, GVNToConstant, NotSame);
608 }
609
collectGVNStoreSets(Module & M)610 void OutlinableGroup::collectGVNStoreSets(Module &M) {
611 for (OutlinableRegion *OS : Regions)
612 OutputGVNCombinations.insert(OS->GVNStores);
613
614 // We are adding an extracted argument to decide between which output path
615 // to use in the basic block. It is used in a switch statement and only
616 // needs to be an integer.
617 if (OutputGVNCombinations.size() > 1)
618 ArgumentTypes.push_back(Type::getInt32Ty(M.getContext()));
619 }
620
621 /// Get the subprogram if it exists for one of the outlined regions.
622 ///
623 /// \param [in] Group - The set of regions to find a subprogram for.
624 /// \returns the subprogram if it exists, or nullptr.
getSubprogramOrNull(OutlinableGroup & Group)625 static DISubprogram *getSubprogramOrNull(OutlinableGroup &Group) {
626 for (OutlinableRegion *OS : Group.Regions)
627 if (Function *F = OS->Call->getFunction())
628 if (DISubprogram *SP = F->getSubprogram())
629 return SP;
630
631 return nullptr;
632 }
633
createFunction(Module & M,OutlinableGroup & Group,unsigned FunctionNameSuffix)634 Function *IROutliner::createFunction(Module &M, OutlinableGroup &Group,
635 unsigned FunctionNameSuffix) {
636 assert(!Group.OutlinedFunction && "Function is already defined!");
637
638 Type *RetTy = Type::getVoidTy(M.getContext());
639 // All extracted functions _should_ have the same return type at this point
640 // since the similarity identifier ensures that all branches outside of the
641 // region occur in the same place.
642
643 // NOTE: Should we ever move to the model that uses a switch at every point
644 // needed, meaning that we could branch within the region or out, it is
645 // possible that we will need to switch to using the most general case all of
646 // the time.
647 for (OutlinableRegion *R : Group.Regions) {
648 Type *ExtractedFuncType = R->ExtractedFunction->getReturnType();
649 if ((RetTy->isVoidTy() && !ExtractedFuncType->isVoidTy()) ||
650 (RetTy->isIntegerTy(1) && ExtractedFuncType->isIntegerTy(16)))
651 RetTy = ExtractedFuncType;
652 }
653
654 Group.OutlinedFunctionType = FunctionType::get(
655 RetTy, Group.ArgumentTypes, false);
656
657 // These functions will only be called from within the same module, so
658 // we can set an internal linkage.
659 Group.OutlinedFunction = Function::Create(
660 Group.OutlinedFunctionType, GlobalValue::InternalLinkage,
661 "outlined_ir_func_" + std::to_string(FunctionNameSuffix), M);
662
663 // Transfer the swifterr attribute to the correct function parameter.
664 if (Group.SwiftErrorArgument)
665 Group.OutlinedFunction->addParamAttr(*Group.SwiftErrorArgument,
666 Attribute::SwiftError);
667
668 Group.OutlinedFunction->addFnAttr(Attribute::OptimizeForSize);
669 Group.OutlinedFunction->addFnAttr(Attribute::MinSize);
670
671 // If there's a DISubprogram associated with this outlined function, then
672 // emit debug info for the outlined function.
673 if (DISubprogram *SP = getSubprogramOrNull(Group)) {
674 Function *F = Group.OutlinedFunction;
675 // We have a DISubprogram. Get its DICompileUnit.
676 DICompileUnit *CU = SP->getUnit();
677 DIBuilder DB(M, true, CU);
678 DIFile *Unit = SP->getFile();
679 Mangler Mg;
680 // Get the mangled name of the function for the linkage name.
681 std::string Dummy;
682 llvm::raw_string_ostream MangledNameStream(Dummy);
683 Mg.getNameWithPrefix(MangledNameStream, F, false);
684
685 DISubprogram *OutlinedSP = DB.createFunction(
686 Unit /* Context */, F->getName(), MangledNameStream.str(),
687 Unit /* File */,
688 0 /* Line 0 is reserved for compiler-generated code. */,
689 DB.createSubroutineType(
690 DB.getOrCreateTypeArray(std::nullopt)), /* void type */
691 0, /* Line 0 is reserved for compiler-generated code. */
692 DINode::DIFlags::FlagArtificial /* Compiler-generated code. */,
693 /* Outlined code is optimized code by definition. */
694 DISubprogram::SPFlagDefinition | DISubprogram::SPFlagOptimized);
695
696 // Don't add any new variables to the subprogram.
697 DB.finalizeSubprogram(OutlinedSP);
698
699 // Attach subprogram to the function.
700 F->setSubprogram(OutlinedSP);
701 // We're done with the DIBuilder.
702 DB.finalize();
703 }
704
705 return Group.OutlinedFunction;
706 }
707
708 /// Move each BasicBlock in \p Old to \p New.
709 ///
710 /// \param [in] Old - The function to move the basic blocks from.
711 /// \param [in] New - The function to move the basic blocks to.
712 /// \param [out] NewEnds - The return blocks of the new overall function.
moveFunctionData(Function & Old,Function & New,DenseMap<Value *,BasicBlock * > & NewEnds)713 static void moveFunctionData(Function &Old, Function &New,
714 DenseMap<Value *, BasicBlock *> &NewEnds) {
715 for (BasicBlock &CurrBB : llvm::make_early_inc_range(Old)) {
716 CurrBB.removeFromParent();
717 CurrBB.insertInto(&New);
718 Instruction *I = CurrBB.getTerminator();
719
720 // For each block we find a return instruction is, it is a potential exit
721 // path for the function. We keep track of each block based on the return
722 // value here.
723 if (ReturnInst *RI = dyn_cast<ReturnInst>(I))
724 NewEnds.insert(std::make_pair(RI->getReturnValue(), &CurrBB));
725
726 std::vector<Instruction *> DebugInsts;
727
728 for (Instruction &Val : CurrBB) {
729 // We must handle the scoping of called functions differently than
730 // other outlined instructions.
731 if (!isa<CallInst>(&Val)) {
732 // Remove the debug information for outlined functions.
733 Val.setDebugLoc(DebugLoc());
734
735 // Loop info metadata may contain line locations. Update them to have no
736 // value in the new subprogram since the outlined code could be from
737 // several locations.
738 auto updateLoopInfoLoc = [&New](Metadata *MD) -> Metadata * {
739 if (DISubprogram *SP = New.getSubprogram())
740 if (auto *Loc = dyn_cast_or_null<DILocation>(MD))
741 return DILocation::get(New.getContext(), Loc->getLine(),
742 Loc->getColumn(), SP, nullptr);
743 return MD;
744 };
745 updateLoopMetadataDebugLocations(Val, updateLoopInfoLoc);
746 continue;
747 }
748
749 // From this point we are only handling call instructions.
750 CallInst *CI = cast<CallInst>(&Val);
751
752 // We add any debug statements here, to be removed after. Since the
753 // instructions originate from many different locations in the program,
754 // it will cause incorrect reporting from a debugger if we keep the
755 // same debug instructions.
756 if (isa<DbgInfoIntrinsic>(CI)) {
757 DebugInsts.push_back(&Val);
758 continue;
759 }
760
761 // Edit the scope of called functions inside of outlined functions.
762 if (DISubprogram *SP = New.getSubprogram()) {
763 DILocation *DI = DILocation::get(New.getContext(), 0, 0, SP);
764 Val.setDebugLoc(DI);
765 }
766 }
767
768 for (Instruction *I : DebugInsts)
769 I->eraseFromParent();
770 }
771 }
772
773 /// Find the the constants that will need to be lifted into arguments
774 /// as they are not the same in each instance of the region.
775 ///
776 /// \param [in] C - The IRSimilarityCandidate containing the region we are
777 /// analyzing.
778 /// \param [in] NotSame - The set of global value numbers that do not have a
779 /// single Constant across all OutlinableRegions similar to \p C.
780 /// \param [out] Inputs - The list containing the global value numbers of the
781 /// arguments needed for the region of code.
findConstants(IRSimilarityCandidate & C,DenseSet<unsigned> & NotSame,std::vector<unsigned> & Inputs)782 static void findConstants(IRSimilarityCandidate &C, DenseSet<unsigned> &NotSame,
783 std::vector<unsigned> &Inputs) {
784 DenseSet<unsigned> Seen;
785 // Iterate over the instructions, and find what constants will need to be
786 // extracted into arguments.
787 for (IRInstructionDataList::iterator IDIt = C.begin(), EndIDIt = C.end();
788 IDIt != EndIDIt; IDIt++) {
789 for (Value *V : (*IDIt).OperVals) {
790 // Since these are stored before any outlining, they will be in the
791 // global value numbering.
792 unsigned GVN = *C.getGVN(V);
793 if (isa<Constant>(V))
794 if (NotSame.contains(GVN) && !Seen.contains(GVN)) {
795 Inputs.push_back(GVN);
796 Seen.insert(GVN);
797 }
798 }
799 }
800 }
801
802 /// Find the GVN for the inputs that have been found by the CodeExtractor.
803 ///
804 /// \param [in] C - The IRSimilarityCandidate containing the region we are
805 /// analyzing.
806 /// \param [in] CurrentInputs - The set of inputs found by the
807 /// CodeExtractor.
808 /// \param [in] OutputMappings - The mapping of values that have been replaced
809 /// by a new output value.
810 /// \param [out] EndInputNumbers - The global value numbers for the extracted
811 /// arguments.
mapInputsToGVNs(IRSimilarityCandidate & C,SetVector<Value * > & CurrentInputs,const DenseMap<Value *,Value * > & OutputMappings,std::vector<unsigned> & EndInputNumbers)812 static void mapInputsToGVNs(IRSimilarityCandidate &C,
813 SetVector<Value *> &CurrentInputs,
814 const DenseMap<Value *, Value *> &OutputMappings,
815 std::vector<unsigned> &EndInputNumbers) {
816 // Get the Global Value Number for each input. We check if the Value has been
817 // replaced by a different value at output, and use the original value before
818 // replacement.
819 for (Value *Input : CurrentInputs) {
820 assert(Input && "Have a nullptr as an input");
821 if (OutputMappings.find(Input) != OutputMappings.end())
822 Input = OutputMappings.find(Input)->second;
823 assert(C.getGVN(Input) && "Could not find a numbering for the given input");
824 EndInputNumbers.push_back(*C.getGVN(Input));
825 }
826 }
827
828 /// Find the original value for the \p ArgInput values if any one of them was
829 /// replaced during a previous extraction.
830 ///
831 /// \param [in] ArgInputs - The inputs to be extracted by the code extractor.
832 /// \param [in] OutputMappings - The mapping of values that have been replaced
833 /// by a new output value.
834 /// \param [out] RemappedArgInputs - The remapped values according to
835 /// \p OutputMappings that will be extracted.
836 static void
remapExtractedInputs(const ArrayRef<Value * > ArgInputs,const DenseMap<Value *,Value * > & OutputMappings,SetVector<Value * > & RemappedArgInputs)837 remapExtractedInputs(const ArrayRef<Value *> ArgInputs,
838 const DenseMap<Value *, Value *> &OutputMappings,
839 SetVector<Value *> &RemappedArgInputs) {
840 // Get the global value number for each input that will be extracted as an
841 // argument by the code extractor, remapping if needed for reloaded values.
842 for (Value *Input : ArgInputs) {
843 if (OutputMappings.find(Input) != OutputMappings.end())
844 Input = OutputMappings.find(Input)->second;
845 RemappedArgInputs.insert(Input);
846 }
847 }
848
849 /// Find the input GVNs and the output values for a region of Instructions.
850 /// Using the code extractor, we collect the inputs to the extracted function.
851 ///
852 /// The \p Region can be identified as needing to be ignored in this function.
853 /// It should be checked whether it should be ignored after a call to this
854 /// function.
855 ///
856 /// \param [in,out] Region - The region of code to be analyzed.
857 /// \param [out] InputGVNs - The global value numbers for the extracted
858 /// arguments.
859 /// \param [in] NotSame - The global value numbers in the region that do not
860 /// have the same constant value in the regions structurally similar to
861 /// \p Region.
862 /// \param [in] OutputMappings - The mapping of values that have been replaced
863 /// by a new output value after extraction.
864 /// \param [out] ArgInputs - The values of the inputs to the extracted function.
865 /// \param [out] Outputs - The set of values extracted by the CodeExtractor
866 /// as outputs.
getCodeExtractorArguments(OutlinableRegion & Region,std::vector<unsigned> & InputGVNs,DenseSet<unsigned> & NotSame,DenseMap<Value *,Value * > & OutputMappings,SetVector<Value * > & ArgInputs,SetVector<Value * > & Outputs)867 static void getCodeExtractorArguments(
868 OutlinableRegion &Region, std::vector<unsigned> &InputGVNs,
869 DenseSet<unsigned> &NotSame, DenseMap<Value *, Value *> &OutputMappings,
870 SetVector<Value *> &ArgInputs, SetVector<Value *> &Outputs) {
871 IRSimilarityCandidate &C = *Region.Candidate;
872
873 // OverallInputs are the inputs to the region found by the CodeExtractor,
874 // SinkCands and HoistCands are used by the CodeExtractor to find sunken
875 // allocas of values whose lifetimes are contained completely within the
876 // outlined region. PremappedInputs are the arguments found by the
877 // CodeExtractor, removing conditions such as sunken allocas, but that
878 // may need to be remapped due to the extracted output values replacing
879 // the original values. We use DummyOutputs for this first run of finding
880 // inputs and outputs since the outputs could change during findAllocas,
881 // the correct set of extracted outputs will be in the final Outputs ValueSet.
882 SetVector<Value *> OverallInputs, PremappedInputs, SinkCands, HoistCands,
883 DummyOutputs;
884
885 // Use the code extractor to get the inputs and outputs, without sunken
886 // allocas or removing llvm.assumes.
887 CodeExtractor *CE = Region.CE;
888 CE->findInputsOutputs(OverallInputs, DummyOutputs, SinkCands);
889 assert(Region.StartBB && "Region must have a start BasicBlock!");
890 Function *OrigF = Region.StartBB->getParent();
891 CodeExtractorAnalysisCache CEAC(*OrigF);
892 BasicBlock *Dummy = nullptr;
893
894 // The region may be ineligible due to VarArgs in the parent function. In this
895 // case we ignore the region.
896 if (!CE->isEligible()) {
897 Region.IgnoreRegion = true;
898 return;
899 }
900
901 // Find if any values are going to be sunk into the function when extracted
902 CE->findAllocas(CEAC, SinkCands, HoistCands, Dummy);
903 CE->findInputsOutputs(PremappedInputs, Outputs, SinkCands);
904
905 // TODO: Support regions with sunken allocas: values whose lifetimes are
906 // contained completely within the outlined region. These are not guaranteed
907 // to be the same in every region, so we must elevate them all to arguments
908 // when they appear. If these values are not equal, it means there is some
909 // Input in OverallInputs that was removed for ArgInputs.
910 if (OverallInputs.size() != PremappedInputs.size()) {
911 Region.IgnoreRegion = true;
912 return;
913 }
914
915 findConstants(C, NotSame, InputGVNs);
916
917 mapInputsToGVNs(C, OverallInputs, OutputMappings, InputGVNs);
918
919 remapExtractedInputs(PremappedInputs.getArrayRef(), OutputMappings,
920 ArgInputs);
921
922 // Sort the GVNs, since we now have constants included in the \ref InputGVNs
923 // we need to make sure they are in a deterministic order.
924 stable_sort(InputGVNs);
925 }
926
927 /// Look over the inputs and map each input argument to an argument in the
928 /// overall function for the OutlinableRegions. This creates a way to replace
929 /// the arguments of the extracted function with the arguments of the new
930 /// overall function.
931 ///
932 /// \param [in,out] Region - The region of code to be analyzed.
933 /// \param [in] InputGVNs - The global value numbering of the input values
934 /// collected.
935 /// \param [in] ArgInputs - The values of the arguments to the extracted
936 /// function.
937 static void
findExtractedInputToOverallInputMapping(OutlinableRegion & Region,std::vector<unsigned> & InputGVNs,SetVector<Value * > & ArgInputs)938 findExtractedInputToOverallInputMapping(OutlinableRegion &Region,
939 std::vector<unsigned> &InputGVNs,
940 SetVector<Value *> &ArgInputs) {
941
942 IRSimilarityCandidate &C = *Region.Candidate;
943 OutlinableGroup &Group = *Region.Parent;
944
945 // This counts the argument number in the overall function.
946 unsigned TypeIndex = 0;
947
948 // This counts the argument number in the extracted function.
949 unsigned OriginalIndex = 0;
950
951 // Find the mapping of the extracted arguments to the arguments for the
952 // overall function. Since there may be extra arguments in the overall
953 // function to account for the extracted constants, we have two different
954 // counters as we find extracted arguments, and as we come across overall
955 // arguments.
956
957 // Additionally, in our first pass, for the first extracted function,
958 // we find argument locations for the canonical value numbering. This
959 // numbering overrides any discovered location for the extracted code.
960 for (unsigned InputVal : InputGVNs) {
961 std::optional<unsigned> CanonicalNumberOpt = C.getCanonicalNum(InputVal);
962 assert(CanonicalNumberOpt && "Canonical number not found?");
963 unsigned CanonicalNumber = *CanonicalNumberOpt;
964
965 std::optional<Value *> InputOpt = C.fromGVN(InputVal);
966 assert(InputOpt && "Global value number not found?");
967 Value *Input = *InputOpt;
968
969 DenseMap<unsigned, unsigned>::iterator AggArgIt =
970 Group.CanonicalNumberToAggArg.find(CanonicalNumber);
971
972 if (!Group.InputTypesSet) {
973 Group.ArgumentTypes.push_back(Input->getType());
974 // If the input value has a swifterr attribute, make sure to mark the
975 // argument in the overall function.
976 if (Input->isSwiftError()) {
977 assert(
978 !Group.SwiftErrorArgument &&
979 "Argument already marked with swifterr for this OutlinableGroup!");
980 Group.SwiftErrorArgument = TypeIndex;
981 }
982 }
983
984 // Check if we have a constant. If we do add it to the overall argument
985 // number to Constant map for the region, and continue to the next input.
986 if (Constant *CST = dyn_cast<Constant>(Input)) {
987 if (AggArgIt != Group.CanonicalNumberToAggArg.end())
988 Region.AggArgToConstant.insert(std::make_pair(AggArgIt->second, CST));
989 else {
990 Group.CanonicalNumberToAggArg.insert(
991 std::make_pair(CanonicalNumber, TypeIndex));
992 Region.AggArgToConstant.insert(std::make_pair(TypeIndex, CST));
993 }
994 TypeIndex++;
995 continue;
996 }
997
998 // It is not a constant, we create the mapping from extracted argument list
999 // to the overall argument list, using the canonical location, if it exists.
1000 assert(ArgInputs.count(Input) && "Input cannot be found!");
1001
1002 if (AggArgIt != Group.CanonicalNumberToAggArg.end()) {
1003 if (OriginalIndex != AggArgIt->second)
1004 Region.ChangedArgOrder = true;
1005 Region.ExtractedArgToAgg.insert(
1006 std::make_pair(OriginalIndex, AggArgIt->second));
1007 Region.AggArgToExtracted.insert(
1008 std::make_pair(AggArgIt->second, OriginalIndex));
1009 } else {
1010 Group.CanonicalNumberToAggArg.insert(
1011 std::make_pair(CanonicalNumber, TypeIndex));
1012 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, TypeIndex));
1013 Region.AggArgToExtracted.insert(std::make_pair(TypeIndex, OriginalIndex));
1014 }
1015 OriginalIndex++;
1016 TypeIndex++;
1017 }
1018
1019 // If the function type definitions for the OutlinableGroup holding the region
1020 // have not been set, set the length of the inputs here. We should have the
1021 // same inputs for all of the different regions contained in the
1022 // OutlinableGroup since they are all structurally similar to one another.
1023 if (!Group.InputTypesSet) {
1024 Group.NumAggregateInputs = TypeIndex;
1025 Group.InputTypesSet = true;
1026 }
1027
1028 Region.NumExtractedInputs = OriginalIndex;
1029 }
1030
1031 /// Check if the \p V has any uses outside of the region other than \p PN.
1032 ///
1033 /// \param V [in] - The value to check.
1034 /// \param PHILoc [in] - The location in the PHINode of \p V.
1035 /// \param PN [in] - The PHINode using \p V.
1036 /// \param Exits [in] - The potential blocks we exit to from the outlined
1037 /// region.
1038 /// \param BlocksInRegion [in] - The basic blocks contained in the region.
1039 /// \returns true if \p V has any use soutside its region other than \p PN.
outputHasNonPHI(Value * V,unsigned PHILoc,PHINode & PN,SmallPtrSet<BasicBlock *,1> & Exits,DenseSet<BasicBlock * > & BlocksInRegion)1040 static bool outputHasNonPHI(Value *V, unsigned PHILoc, PHINode &PN,
1041 SmallPtrSet<BasicBlock *, 1> &Exits,
1042 DenseSet<BasicBlock *> &BlocksInRegion) {
1043 // We check to see if the value is used by the PHINode from some other
1044 // predecessor not included in the region. If it is, we make sure
1045 // to keep it as an output.
1046 if (any_of(llvm::seq<unsigned>(0, PN.getNumIncomingValues()),
1047 [PHILoc, &PN, V, &BlocksInRegion](unsigned Idx) {
1048 return (Idx != PHILoc && V == PN.getIncomingValue(Idx) &&
1049 !BlocksInRegion.contains(PN.getIncomingBlock(Idx)));
1050 }))
1051 return true;
1052
1053 // Check if the value is used by any other instructions outside the region.
1054 return any_of(V->users(), [&Exits, &BlocksInRegion](User *U) {
1055 Instruction *I = dyn_cast<Instruction>(U);
1056 if (!I)
1057 return false;
1058
1059 // If the use of the item is inside the region, we skip it. Uses
1060 // inside the region give us useful information about how the item could be
1061 // used as an output.
1062 BasicBlock *Parent = I->getParent();
1063 if (BlocksInRegion.contains(Parent))
1064 return false;
1065
1066 // If it's not a PHINode then we definitely know the use matters. This
1067 // output value will not completely combined with another item in a PHINode
1068 // as it is directly reference by another non-phi instruction
1069 if (!isa<PHINode>(I))
1070 return true;
1071
1072 // If we have a PHINode outside one of the exit locations, then it
1073 // can be considered an outside use as well. If there is a PHINode
1074 // contained in the Exit where this values use matters, it will be
1075 // caught when we analyze that PHINode.
1076 if (!Exits.contains(Parent))
1077 return true;
1078
1079 return false;
1080 });
1081 }
1082
1083 /// Test whether \p CurrentExitFromRegion contains any PhiNodes that should be
1084 /// considered outputs. A PHINodes is an output when more than one incoming
1085 /// value has been marked by the CodeExtractor as an output.
1086 ///
1087 /// \param CurrentExitFromRegion [in] - The block to analyze.
1088 /// \param PotentialExitsFromRegion [in] - The potential exit blocks from the
1089 /// region.
1090 /// \param RegionBlocks [in] - The basic blocks in the region.
1091 /// \param Outputs [in, out] - The existing outputs for the region, we may add
1092 /// PHINodes to this as we find that they replace output values.
1093 /// \param OutputsReplacedByPHINode [out] - A set containing outputs that are
1094 /// totally replaced by a PHINode.
1095 /// \param OutputsWithNonPhiUses [out] - A set containing outputs that are used
1096 /// in PHINodes, but have other uses, and should still be considered outputs.
analyzeExitPHIsForOutputUses(BasicBlock * CurrentExitFromRegion,SmallPtrSet<BasicBlock *,1> & PotentialExitsFromRegion,DenseSet<BasicBlock * > & RegionBlocks,SetVector<Value * > & Outputs,DenseSet<Value * > & OutputsReplacedByPHINode,DenseSet<Value * > & OutputsWithNonPhiUses)1097 static void analyzeExitPHIsForOutputUses(
1098 BasicBlock *CurrentExitFromRegion,
1099 SmallPtrSet<BasicBlock *, 1> &PotentialExitsFromRegion,
1100 DenseSet<BasicBlock *> &RegionBlocks, SetVector<Value *> &Outputs,
1101 DenseSet<Value *> &OutputsReplacedByPHINode,
1102 DenseSet<Value *> &OutputsWithNonPhiUses) {
1103 for (PHINode &PN : CurrentExitFromRegion->phis()) {
1104 // Find all incoming values from the outlining region.
1105 SmallVector<unsigned, 2> IncomingVals;
1106 for (unsigned I = 0, E = PN.getNumIncomingValues(); I < E; ++I)
1107 if (RegionBlocks.contains(PN.getIncomingBlock(I)))
1108 IncomingVals.push_back(I);
1109
1110 // Do not process PHI if there are no predecessors from region.
1111 unsigned NumIncomingVals = IncomingVals.size();
1112 if (NumIncomingVals == 0)
1113 continue;
1114
1115 // If there is one predecessor, we mark it as a value that needs to be kept
1116 // as an output.
1117 if (NumIncomingVals == 1) {
1118 Value *V = PN.getIncomingValue(*IncomingVals.begin());
1119 OutputsWithNonPhiUses.insert(V);
1120 OutputsReplacedByPHINode.erase(V);
1121 continue;
1122 }
1123
1124 // This PHINode will be used as an output value, so we add it to our list.
1125 Outputs.insert(&PN);
1126
1127 // Not all of the incoming values should be ignored as other inputs and
1128 // outputs may have uses in outlined region. If they have other uses
1129 // outside of the single PHINode we should not skip over it.
1130 for (unsigned Idx : IncomingVals) {
1131 Value *V = PN.getIncomingValue(Idx);
1132 if (outputHasNonPHI(V, Idx, PN, PotentialExitsFromRegion, RegionBlocks)) {
1133 OutputsWithNonPhiUses.insert(V);
1134 OutputsReplacedByPHINode.erase(V);
1135 continue;
1136 }
1137 if (!OutputsWithNonPhiUses.contains(V))
1138 OutputsReplacedByPHINode.insert(V);
1139 }
1140 }
1141 }
1142
1143 // Represents the type for the unsigned number denoting the output number for
1144 // phi node, along with the canonical number for the exit block.
1145 using ArgLocWithBBCanon = std::pair<unsigned, unsigned>;
1146 // The list of canonical numbers for the incoming values to a PHINode.
1147 using CanonList = SmallVector<unsigned, 2>;
1148 // The pair type representing the set of canonical values being combined in the
1149 // PHINode, along with the location data for the PHINode.
1150 using PHINodeData = std::pair<ArgLocWithBBCanon, CanonList>;
1151
1152 /// Encode \p PND as an integer for easy lookup based on the argument location,
1153 /// the parent BasicBlock canonical numbering, and the canonical numbering of
1154 /// the values stored in the PHINode.
1155 ///
1156 /// \param PND - The data to hash.
1157 /// \returns The hash code of \p PND.
encodePHINodeData(PHINodeData & PND)1158 static hash_code encodePHINodeData(PHINodeData &PND) {
1159 return llvm::hash_combine(
1160 llvm::hash_value(PND.first.first), llvm::hash_value(PND.first.second),
1161 llvm::hash_combine_range(PND.second.begin(), PND.second.end()));
1162 }
1163
1164 /// Create a special GVN for PHINodes that will be used outside of
1165 /// the region. We create a hash code based on the Canonical number of the
1166 /// parent BasicBlock, the canonical numbering of the values stored in the
1167 /// PHINode and the aggregate argument location. This is used to find whether
1168 /// this PHINode type has been given a canonical numbering already. If not, we
1169 /// assign it a value and store it for later use. The value is returned to
1170 /// identify different output schemes for the set of regions.
1171 ///
1172 /// \param Region - The region that \p PN is an output for.
1173 /// \param PN - The PHINode we are analyzing.
1174 /// \param Blocks - The blocks for the region we are analyzing.
1175 /// \param AggArgIdx - The argument \p PN will be stored into.
1176 /// \returns An optional holding the assigned canonical number, or std::nullopt
1177 /// if there is some attribute of the PHINode blocking it from being used.
getGVNForPHINode(OutlinableRegion & Region,PHINode * PN,DenseSet<BasicBlock * > & Blocks,unsigned AggArgIdx)1178 static std::optional<unsigned> getGVNForPHINode(OutlinableRegion &Region,
1179 PHINode *PN,
1180 DenseSet<BasicBlock *> &Blocks,
1181 unsigned AggArgIdx) {
1182 OutlinableGroup &Group = *Region.Parent;
1183 IRSimilarityCandidate &Cand = *Region.Candidate;
1184 BasicBlock *PHIBB = PN->getParent();
1185 CanonList PHIGVNs;
1186 Value *Incoming;
1187 BasicBlock *IncomingBlock;
1188 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1189 Incoming = PN->getIncomingValue(Idx);
1190 IncomingBlock = PN->getIncomingBlock(Idx);
1191 // If we cannot find a GVN, and the incoming block is included in the region
1192 // this means that the input to the PHINode is not included in the region we
1193 // are trying to analyze, meaning, that if it was outlined, we would be
1194 // adding an extra input. We ignore this case for now, and so ignore the
1195 // region.
1196 std::optional<unsigned> OGVN = Cand.getGVN(Incoming);
1197 if (!OGVN && Blocks.contains(IncomingBlock)) {
1198 Region.IgnoreRegion = true;
1199 return std::nullopt;
1200 }
1201
1202 // If the incoming block isn't in the region, we don't have to worry about
1203 // this incoming value.
1204 if (!Blocks.contains(IncomingBlock))
1205 continue;
1206
1207 // Collect the canonical numbers of the values in the PHINode.
1208 unsigned GVN = *OGVN;
1209 OGVN = Cand.getCanonicalNum(GVN);
1210 assert(OGVN && "No GVN found for incoming value?");
1211 PHIGVNs.push_back(*OGVN);
1212
1213 // Find the incoming block and use the canonical numbering as well to define
1214 // the hash for the PHINode.
1215 OGVN = Cand.getGVN(IncomingBlock);
1216
1217 // If there is no number for the incoming block, it is because we have
1218 // split the candidate basic blocks. So we use the previous block that it
1219 // was split from to find the valid global value numbering for the PHINode.
1220 if (!OGVN) {
1221 assert(Cand.getStartBB() == IncomingBlock &&
1222 "Unknown basic block used in exit path PHINode.");
1223
1224 BasicBlock *PrevBlock = nullptr;
1225 // Iterate over the predecessors to the incoming block of the
1226 // PHINode, when we find a block that is not contained in the region
1227 // we know that this is the first block that we split from, and should
1228 // have a valid global value numbering.
1229 for (BasicBlock *Pred : predecessors(IncomingBlock))
1230 if (!Blocks.contains(Pred)) {
1231 PrevBlock = Pred;
1232 break;
1233 }
1234 assert(PrevBlock && "Expected a predecessor not in the reigon!");
1235 OGVN = Cand.getGVN(PrevBlock);
1236 }
1237 GVN = *OGVN;
1238 OGVN = Cand.getCanonicalNum(GVN);
1239 assert(OGVN && "No GVN found for incoming block?");
1240 PHIGVNs.push_back(*OGVN);
1241 }
1242
1243 // Now that we have the GVNs for the incoming values, we are going to combine
1244 // them with the GVN of the incoming bock, and the output location of the
1245 // PHINode to generate a hash value representing this instance of the PHINode.
1246 DenseMap<hash_code, unsigned>::iterator GVNToPHIIt;
1247 DenseMap<unsigned, PHINodeData>::iterator PHIToGVNIt;
1248 std::optional<unsigned> BBGVN = Cand.getGVN(PHIBB);
1249 assert(BBGVN && "Could not find GVN for the incoming block!");
1250
1251 BBGVN = Cand.getCanonicalNum(*BBGVN);
1252 assert(BBGVN && "Could not find canonical number for the incoming block!");
1253 // Create a pair of the exit block canonical value, and the aggregate
1254 // argument location, connected to the canonical numbers stored in the
1255 // PHINode.
1256 PHINodeData TemporaryPair =
1257 std::make_pair(std::make_pair(*BBGVN, AggArgIdx), PHIGVNs);
1258 hash_code PHINodeDataHash = encodePHINodeData(TemporaryPair);
1259
1260 // Look for and create a new entry in our connection between canonical
1261 // numbers for PHINodes, and the set of objects we just created.
1262 GVNToPHIIt = Group.GVNsToPHINodeGVN.find(PHINodeDataHash);
1263 if (GVNToPHIIt == Group.GVNsToPHINodeGVN.end()) {
1264 bool Inserted = false;
1265 std::tie(PHIToGVNIt, Inserted) = Group.PHINodeGVNToGVNs.insert(
1266 std::make_pair(Group.PHINodeGVNTracker, TemporaryPair));
1267 std::tie(GVNToPHIIt, Inserted) = Group.GVNsToPHINodeGVN.insert(
1268 std::make_pair(PHINodeDataHash, Group.PHINodeGVNTracker--));
1269 }
1270
1271 return GVNToPHIIt->second;
1272 }
1273
1274 /// Create a mapping of the output arguments for the \p Region to the output
1275 /// arguments of the overall outlined function.
1276 ///
1277 /// \param [in,out] Region - The region of code to be analyzed.
1278 /// \param [in] Outputs - The values found by the code extractor.
1279 static void
findExtractedOutputToOverallOutputMapping(Module & M,OutlinableRegion & Region,SetVector<Value * > & Outputs)1280 findExtractedOutputToOverallOutputMapping(Module &M, OutlinableRegion &Region,
1281 SetVector<Value *> &Outputs) {
1282 OutlinableGroup &Group = *Region.Parent;
1283 IRSimilarityCandidate &C = *Region.Candidate;
1284
1285 SmallVector<BasicBlock *> BE;
1286 DenseSet<BasicBlock *> BlocksInRegion;
1287 C.getBasicBlocks(BlocksInRegion, BE);
1288
1289 // Find the exits to the region.
1290 SmallPtrSet<BasicBlock *, 1> Exits;
1291 for (BasicBlock *Block : BE)
1292 for (BasicBlock *Succ : successors(Block))
1293 if (!BlocksInRegion.contains(Succ))
1294 Exits.insert(Succ);
1295
1296 // After determining which blocks exit to PHINodes, we add these PHINodes to
1297 // the set of outputs to be processed. We also check the incoming values of
1298 // the PHINodes for whether they should no longer be considered outputs.
1299 DenseSet<Value *> OutputsReplacedByPHINode;
1300 DenseSet<Value *> OutputsWithNonPhiUses;
1301 for (BasicBlock *ExitBB : Exits)
1302 analyzeExitPHIsForOutputUses(ExitBB, Exits, BlocksInRegion, Outputs,
1303 OutputsReplacedByPHINode,
1304 OutputsWithNonPhiUses);
1305
1306 // This counts the argument number in the extracted function.
1307 unsigned OriginalIndex = Region.NumExtractedInputs;
1308
1309 // This counts the argument number in the overall function.
1310 unsigned TypeIndex = Group.NumAggregateInputs;
1311 bool TypeFound;
1312 DenseSet<unsigned> AggArgsUsed;
1313
1314 // Iterate over the output types and identify if there is an aggregate pointer
1315 // type whose base type matches the current output type. If there is, we mark
1316 // that we will use this output register for this value. If not we add another
1317 // type to the overall argument type list. We also store the GVNs used for
1318 // stores to identify which values will need to be moved into an special
1319 // block that holds the stores to the output registers.
1320 for (Value *Output : Outputs) {
1321 TypeFound = false;
1322 // We can do this since it is a result value, and will have a number
1323 // that is necessarily the same. BUT if in the future, the instructions
1324 // do not have to be in same order, but are functionally the same, we will
1325 // have to use a different scheme, as one-to-one correspondence is not
1326 // guaranteed.
1327 unsigned ArgumentSize = Group.ArgumentTypes.size();
1328
1329 // If the output is combined in a PHINode, we make sure to skip over it.
1330 if (OutputsReplacedByPHINode.contains(Output))
1331 continue;
1332
1333 unsigned AggArgIdx = 0;
1334 for (unsigned Jdx = TypeIndex; Jdx < ArgumentSize; Jdx++) {
1335 if (Group.ArgumentTypes[Jdx] != PointerType::getUnqual(Output->getType()))
1336 continue;
1337
1338 if (AggArgsUsed.contains(Jdx))
1339 continue;
1340
1341 TypeFound = true;
1342 AggArgsUsed.insert(Jdx);
1343 Region.ExtractedArgToAgg.insert(std::make_pair(OriginalIndex, Jdx));
1344 Region.AggArgToExtracted.insert(std::make_pair(Jdx, OriginalIndex));
1345 AggArgIdx = Jdx;
1346 break;
1347 }
1348
1349 // We were unable to find an unused type in the output type set that matches
1350 // the output, so we add a pointer type to the argument types of the overall
1351 // function to handle this output and create a mapping to it.
1352 if (!TypeFound) {
1353 Group.ArgumentTypes.push_back(Output->getType()->getPointerTo(
1354 M.getDataLayout().getAllocaAddrSpace()));
1355 // Mark the new pointer type as the last value in the aggregate argument
1356 // list.
1357 unsigned ArgTypeIdx = Group.ArgumentTypes.size() - 1;
1358 AggArgsUsed.insert(ArgTypeIdx);
1359 Region.ExtractedArgToAgg.insert(
1360 std::make_pair(OriginalIndex, ArgTypeIdx));
1361 Region.AggArgToExtracted.insert(
1362 std::make_pair(ArgTypeIdx, OriginalIndex));
1363 AggArgIdx = ArgTypeIdx;
1364 }
1365
1366 // TODO: Adapt to the extra input from the PHINode.
1367 PHINode *PN = dyn_cast<PHINode>(Output);
1368
1369 std::optional<unsigned> GVN;
1370 if (PN && !BlocksInRegion.contains(PN->getParent())) {
1371 // Values outside the region can be combined into PHINode when we
1372 // have multiple exits. We collect both of these into a list to identify
1373 // which values are being used in the PHINode. Each list identifies a
1374 // different PHINode, and a different output. We store the PHINode as it's
1375 // own canonical value. These canonical values are also dependent on the
1376 // output argument it is saved to.
1377
1378 // If two PHINodes have the same canonical values, but different aggregate
1379 // argument locations, then they will have distinct Canonical Values.
1380 GVN = getGVNForPHINode(Region, PN, BlocksInRegion, AggArgIdx);
1381 if (!GVN)
1382 return;
1383 } else {
1384 // If we do not have a PHINode we use the global value numbering for the
1385 // output value, to find the canonical number to add to the set of stored
1386 // values.
1387 GVN = C.getGVN(Output);
1388 GVN = C.getCanonicalNum(*GVN);
1389 }
1390
1391 // Each region has a potentially unique set of outputs. We save which
1392 // values are output in a list of canonical values so we can differentiate
1393 // among the different store schemes.
1394 Region.GVNStores.push_back(*GVN);
1395
1396 OriginalIndex++;
1397 TypeIndex++;
1398 }
1399
1400 // We sort the stored values to make sure that we are not affected by analysis
1401 // order when determining what combination of items were stored.
1402 stable_sort(Region.GVNStores);
1403 }
1404
findAddInputsOutputs(Module & M,OutlinableRegion & Region,DenseSet<unsigned> & NotSame)1405 void IROutliner::findAddInputsOutputs(Module &M, OutlinableRegion &Region,
1406 DenseSet<unsigned> &NotSame) {
1407 std::vector<unsigned> Inputs;
1408 SetVector<Value *> ArgInputs, Outputs;
1409
1410 getCodeExtractorArguments(Region, Inputs, NotSame, OutputMappings, ArgInputs,
1411 Outputs);
1412
1413 if (Region.IgnoreRegion)
1414 return;
1415
1416 // Map the inputs found by the CodeExtractor to the arguments found for
1417 // the overall function.
1418 findExtractedInputToOverallInputMapping(Region, Inputs, ArgInputs);
1419
1420 // Map the outputs found by the CodeExtractor to the arguments found for
1421 // the overall function.
1422 findExtractedOutputToOverallOutputMapping(M, Region, Outputs);
1423 }
1424
1425 /// Replace the extracted function in the Region with a call to the overall
1426 /// function constructed from the deduplicated similar regions, replacing and
1427 /// remapping the values passed to the extracted function as arguments to the
1428 /// new arguments of the overall function.
1429 ///
1430 /// \param [in] M - The module to outline from.
1431 /// \param [in] Region - The regions of extracted code to be replaced with a new
1432 /// function.
1433 /// \returns a call instruction with the replaced function.
replaceCalledFunction(Module & M,OutlinableRegion & Region)1434 CallInst *replaceCalledFunction(Module &M, OutlinableRegion &Region) {
1435 std::vector<Value *> NewCallArgs;
1436 DenseMap<unsigned, unsigned>::iterator ArgPair;
1437
1438 OutlinableGroup &Group = *Region.Parent;
1439 CallInst *Call = Region.Call;
1440 assert(Call && "Call to replace is nullptr?");
1441 Function *AggFunc = Group.OutlinedFunction;
1442 assert(AggFunc && "Function to replace with is nullptr?");
1443
1444 // If the arguments are the same size, there are not values that need to be
1445 // made into an argument, the argument ordering has not been change, or
1446 // different output registers to handle. We can simply replace the called
1447 // function in this case.
1448 if (!Region.ChangedArgOrder && AggFunc->arg_size() == Call->arg_size()) {
1449 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1450 << *AggFunc << " with same number of arguments\n");
1451 Call->setCalledFunction(AggFunc);
1452 return Call;
1453 }
1454
1455 // We have a different number of arguments than the new function, so
1456 // we need to use our previously mappings off extracted argument to overall
1457 // function argument, and constants to overall function argument to create the
1458 // new argument list.
1459 for (unsigned AggArgIdx = 0; AggArgIdx < AggFunc->arg_size(); AggArgIdx++) {
1460
1461 if (AggArgIdx == AggFunc->arg_size() - 1 &&
1462 Group.OutputGVNCombinations.size() > 1) {
1463 // If we are on the last argument, and we need to differentiate between
1464 // output blocks, add an integer to the argument list to determine
1465 // what block to take
1466 LLVM_DEBUG(dbgs() << "Set switch block argument to "
1467 << Region.OutputBlockNum << "\n");
1468 NewCallArgs.push_back(ConstantInt::get(Type::getInt32Ty(M.getContext()),
1469 Region.OutputBlockNum));
1470 continue;
1471 }
1472
1473 ArgPair = Region.AggArgToExtracted.find(AggArgIdx);
1474 if (ArgPair != Region.AggArgToExtracted.end()) {
1475 Value *ArgumentValue = Call->getArgOperand(ArgPair->second);
1476 // If we found the mapping from the extracted function to the overall
1477 // function, we simply add it to the argument list. We use the same
1478 // value, it just needs to honor the new order of arguments.
1479 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1480 << *ArgumentValue << "\n");
1481 NewCallArgs.push_back(ArgumentValue);
1482 continue;
1483 }
1484
1485 // If it is a constant, we simply add it to the argument list as a value.
1486 if (Region.AggArgToConstant.find(AggArgIdx) !=
1487 Region.AggArgToConstant.end()) {
1488 Constant *CST = Region.AggArgToConstant.find(AggArgIdx)->second;
1489 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to value "
1490 << *CST << "\n");
1491 NewCallArgs.push_back(CST);
1492 continue;
1493 }
1494
1495 // Add a nullptr value if the argument is not found in the extracted
1496 // function. If we cannot find a value, it means it is not in use
1497 // for the region, so we should not pass anything to it.
1498 LLVM_DEBUG(dbgs() << "Setting argument " << AggArgIdx << " to nullptr\n");
1499 NewCallArgs.push_back(ConstantPointerNull::get(
1500 static_cast<PointerType *>(AggFunc->getArg(AggArgIdx)->getType())));
1501 }
1502
1503 LLVM_DEBUG(dbgs() << "Replace call to " << *Call << " with call to "
1504 << *AggFunc << " with new set of arguments\n");
1505 // Create the new call instruction and erase the old one.
1506 Call = CallInst::Create(AggFunc->getFunctionType(), AggFunc, NewCallArgs, "",
1507 Call);
1508
1509 // It is possible that the call to the outlined function is either the first
1510 // instruction is in the new block, the last instruction, or both. If either
1511 // of these is the case, we need to make sure that we replace the instruction
1512 // in the IRInstructionData struct with the new call.
1513 CallInst *OldCall = Region.Call;
1514 if (Region.NewFront->Inst == OldCall)
1515 Region.NewFront->Inst = Call;
1516 if (Region.NewBack->Inst == OldCall)
1517 Region.NewBack->Inst = Call;
1518
1519 // Transfer any debug information.
1520 Call->setDebugLoc(Region.Call->getDebugLoc());
1521 // Since our output may determine which branch we go to, we make sure to
1522 // propogate this new call value through the module.
1523 OldCall->replaceAllUsesWith(Call);
1524
1525 // Remove the old instruction.
1526 OldCall->eraseFromParent();
1527 Region.Call = Call;
1528
1529 // Make sure that the argument in the new function has the SwiftError
1530 // argument.
1531 if (Group.SwiftErrorArgument)
1532 Call->addParamAttr(*Group.SwiftErrorArgument, Attribute::SwiftError);
1533
1534 return Call;
1535 }
1536
1537 /// Find or create a BasicBlock in the outlined function containing PhiBlocks
1538 /// for \p RetVal.
1539 ///
1540 /// \param Group - The OutlinableGroup containing the information about the
1541 /// overall outlined function.
1542 /// \param RetVal - The return value or exit option that we are currently
1543 /// evaluating.
1544 /// \returns The found or newly created BasicBlock to contain the needed
1545 /// PHINodes to be used as outputs.
findOrCreatePHIBlock(OutlinableGroup & Group,Value * RetVal)1546 static BasicBlock *findOrCreatePHIBlock(OutlinableGroup &Group, Value *RetVal) {
1547 DenseMap<Value *, BasicBlock *>::iterator PhiBlockForRetVal,
1548 ReturnBlockForRetVal;
1549 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1550 ReturnBlockForRetVal = Group.EndBBs.find(RetVal);
1551 assert(ReturnBlockForRetVal != Group.EndBBs.end() &&
1552 "Could not find output value!");
1553 BasicBlock *ReturnBB = ReturnBlockForRetVal->second;
1554
1555 // Find if a PHIBlock exists for this return value already. If it is
1556 // the first time we are analyzing this, we will not, so we record it.
1557 PhiBlockForRetVal = Group.PHIBlocks.find(RetVal);
1558 if (PhiBlockForRetVal != Group.PHIBlocks.end())
1559 return PhiBlockForRetVal->second;
1560
1561 // If we did not find a block, we create one, and insert it into the
1562 // overall function and record it.
1563 bool Inserted = false;
1564 BasicBlock *PHIBlock = BasicBlock::Create(ReturnBB->getContext(), "phi_block",
1565 ReturnBB->getParent());
1566 std::tie(PhiBlockForRetVal, Inserted) =
1567 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1568
1569 // We find the predecessors of the return block in the newly created outlined
1570 // function in order to point them to the new PHIBlock rather than the already
1571 // existing return block.
1572 SmallVector<BranchInst *, 2> BranchesToChange;
1573 for (BasicBlock *Pred : predecessors(ReturnBB))
1574 BranchesToChange.push_back(cast<BranchInst>(Pred->getTerminator()));
1575
1576 // Now we mark the branch instructions found, and change the references of the
1577 // return block to the newly created PHIBlock.
1578 for (BranchInst *BI : BranchesToChange)
1579 for (unsigned Succ = 0, End = BI->getNumSuccessors(); Succ < End; Succ++) {
1580 if (BI->getSuccessor(Succ) != ReturnBB)
1581 continue;
1582 BI->setSuccessor(Succ, PHIBlock);
1583 }
1584
1585 BranchInst::Create(ReturnBB, PHIBlock);
1586
1587 return PhiBlockForRetVal->second;
1588 }
1589
1590 /// For the function call now representing the \p Region, find the passed value
1591 /// to that call that represents Argument \p A at the call location if the
1592 /// call has already been replaced with a call to the overall, aggregate
1593 /// function.
1594 ///
1595 /// \param A - The Argument to get the passed value for.
1596 /// \param Region - The extracted Region corresponding to the outlined function.
1597 /// \returns The Value representing \p A at the call site.
1598 static Value *
getPassedArgumentInAlreadyOutlinedFunction(const Argument * A,const OutlinableRegion & Region)1599 getPassedArgumentInAlreadyOutlinedFunction(const Argument *A,
1600 const OutlinableRegion &Region) {
1601 // If we don't need to adjust the argument number at all (since the call
1602 // has already been replaced by a call to the overall outlined function)
1603 // we can just get the specified argument.
1604 return Region.Call->getArgOperand(A->getArgNo());
1605 }
1606
1607 /// For the function call now representing the \p Region, find the passed value
1608 /// to that call that represents Argument \p A at the call location if the
1609 /// call has only been replaced by the call to the aggregate function.
1610 ///
1611 /// \param A - The Argument to get the passed value for.
1612 /// \param Region - The extracted Region corresponding to the outlined function.
1613 /// \returns The Value representing \p A at the call site.
1614 static Value *
getPassedArgumentAndAdjustArgumentLocation(const Argument * A,const OutlinableRegion & Region)1615 getPassedArgumentAndAdjustArgumentLocation(const Argument *A,
1616 const OutlinableRegion &Region) {
1617 unsigned ArgNum = A->getArgNo();
1618
1619 // If it is a constant, we can look at our mapping from when we created
1620 // the outputs to figure out what the constant value is.
1621 if (Region.AggArgToConstant.count(ArgNum))
1622 return Region.AggArgToConstant.find(ArgNum)->second;
1623
1624 // If it is not a constant, and we are not looking at the overall function, we
1625 // need to adjust which argument we are looking at.
1626 ArgNum = Region.AggArgToExtracted.find(ArgNum)->second;
1627 return Region.Call->getArgOperand(ArgNum);
1628 }
1629
1630 /// Find the canonical numbering for the incoming Values into the PHINode \p PN.
1631 ///
1632 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1633 /// \param Region [in] - The OutlinableRegion containing \p PN.
1634 /// \param OutputMappings [in] - The mapping of output values from outlined
1635 /// region to their original values.
1636 /// \param CanonNums [out] - The canonical numbering for the incoming values to
1637 /// \p PN paired with their incoming block.
1638 /// \param ReplacedWithOutlinedCall - A flag to use the extracted function call
1639 /// of \p Region rather than the overall function's call.
findCanonNumsForPHI(PHINode * PN,OutlinableRegion & Region,const DenseMap<Value *,Value * > & OutputMappings,SmallVector<std::pair<unsigned,BasicBlock * >> & CanonNums,bool ReplacedWithOutlinedCall=true)1640 static void findCanonNumsForPHI(
1641 PHINode *PN, OutlinableRegion &Region,
1642 const DenseMap<Value *, Value *> &OutputMappings,
1643 SmallVector<std::pair<unsigned, BasicBlock *>> &CanonNums,
1644 bool ReplacedWithOutlinedCall = true) {
1645 // Iterate over the incoming values.
1646 for (unsigned Idx = 0, EIdx = PN->getNumIncomingValues(); Idx < EIdx; Idx++) {
1647 Value *IVal = PN->getIncomingValue(Idx);
1648 BasicBlock *IBlock = PN->getIncomingBlock(Idx);
1649 // If we have an argument as incoming value, we need to grab the passed
1650 // value from the call itself.
1651 if (Argument *A = dyn_cast<Argument>(IVal)) {
1652 if (ReplacedWithOutlinedCall)
1653 IVal = getPassedArgumentInAlreadyOutlinedFunction(A, Region);
1654 else
1655 IVal = getPassedArgumentAndAdjustArgumentLocation(A, Region);
1656 }
1657
1658 // Get the original value if it has been replaced by an output value.
1659 IVal = findOutputMapping(OutputMappings, IVal);
1660
1661 // Find and add the canonical number for the incoming value.
1662 std::optional<unsigned> GVN = Region.Candidate->getGVN(IVal);
1663 assert(GVN && "No GVN for incoming value");
1664 std::optional<unsigned> CanonNum = Region.Candidate->getCanonicalNum(*GVN);
1665 assert(CanonNum && "No Canonical Number for GVN");
1666 CanonNums.push_back(std::make_pair(*CanonNum, IBlock));
1667 }
1668 }
1669
1670 /// Find, or add PHINode \p PN to the combined PHINode Block \p OverallPHIBlock
1671 /// in order to condense the number of instructions added to the outlined
1672 /// function.
1673 ///
1674 /// \param PN [in] - The PHINode that we are finding the canonical numbers for.
1675 /// \param Region [in] - The OutlinableRegion containing \p PN.
1676 /// \param OverallPhiBlock [in] - The overall PHIBlock we are trying to find
1677 /// \p PN in.
1678 /// \param OutputMappings [in] - The mapping of output values from outlined
1679 /// region to their original values.
1680 /// \param UsedPHIs [in, out] - The PHINodes in the block that have already been
1681 /// matched.
1682 /// \return the newly found or created PHINode in \p OverallPhiBlock.
1683 static PHINode*
findOrCreatePHIInBlock(PHINode & PN,OutlinableRegion & Region,BasicBlock * OverallPhiBlock,const DenseMap<Value *,Value * > & OutputMappings,DenseSet<PHINode * > & UsedPHIs)1684 findOrCreatePHIInBlock(PHINode &PN, OutlinableRegion &Region,
1685 BasicBlock *OverallPhiBlock,
1686 const DenseMap<Value *, Value *> &OutputMappings,
1687 DenseSet<PHINode *> &UsedPHIs) {
1688 OutlinableGroup &Group = *Region.Parent;
1689
1690
1691 // A list of the canonical numbering assigned to each incoming value, paired
1692 // with the incoming block for the PHINode passed into this function.
1693 SmallVector<std::pair<unsigned, BasicBlock *>> PNCanonNums;
1694
1695 // We have to use the extracted function since we have merged this region into
1696 // the overall function yet. We make sure to reassign the argument numbering
1697 // since it is possible that the argument ordering is different between the
1698 // functions.
1699 findCanonNumsForPHI(&PN, Region, OutputMappings, PNCanonNums,
1700 /* ReplacedWithOutlinedCall = */ false);
1701
1702 OutlinableRegion *FirstRegion = Group.Regions[0];
1703
1704 // A list of the canonical numbering assigned to each incoming value, paired
1705 // with the incoming block for the PHINode that we are currently comparing
1706 // the passed PHINode to.
1707 SmallVector<std::pair<unsigned, BasicBlock *>> CurrentCanonNums;
1708
1709 // Find the Canonical Numbering for each PHINode, if it matches, we replace
1710 // the uses of the PHINode we are searching for, with the found PHINode.
1711 for (PHINode &CurrPN : OverallPhiBlock->phis()) {
1712 // If this PHINode has already been matched to another PHINode to be merged,
1713 // we skip it.
1714 if (UsedPHIs.contains(&CurrPN))
1715 continue;
1716
1717 CurrentCanonNums.clear();
1718 findCanonNumsForPHI(&CurrPN, *FirstRegion, OutputMappings, CurrentCanonNums,
1719 /* ReplacedWithOutlinedCall = */ true);
1720
1721 // If the list of incoming values is not the same length, then they cannot
1722 // match since there is not an analogue for each incoming value.
1723 if (PNCanonNums.size() != CurrentCanonNums.size())
1724 continue;
1725
1726 bool FoundMatch = true;
1727
1728 // We compare the canonical value for each incoming value in the passed
1729 // in PHINode to one already present in the outlined region. If the
1730 // incoming values do not match, then the PHINodes do not match.
1731
1732 // We also check to make sure that the incoming block matches as well by
1733 // finding the corresponding incoming block in the combined outlined region
1734 // for the current outlined region.
1735 for (unsigned Idx = 0, Edx = PNCanonNums.size(); Idx < Edx; ++Idx) {
1736 std::pair<unsigned, BasicBlock *> ToCompareTo = CurrentCanonNums[Idx];
1737 std::pair<unsigned, BasicBlock *> ToAdd = PNCanonNums[Idx];
1738 if (ToCompareTo.first != ToAdd.first) {
1739 FoundMatch = false;
1740 break;
1741 }
1742
1743 BasicBlock *CorrespondingBlock =
1744 Region.findCorrespondingBlockIn(*FirstRegion, ToAdd.second);
1745 assert(CorrespondingBlock && "Found block is nullptr");
1746 if (CorrespondingBlock != ToCompareTo.second) {
1747 FoundMatch = false;
1748 break;
1749 }
1750 }
1751
1752 // If all incoming values and branches matched, then we can merge
1753 // into the found PHINode.
1754 if (FoundMatch) {
1755 UsedPHIs.insert(&CurrPN);
1756 return &CurrPN;
1757 }
1758 }
1759
1760 // If we've made it here, it means we weren't able to replace the PHINode, so
1761 // we must insert it ourselves.
1762 PHINode *NewPN = cast<PHINode>(PN.clone());
1763 NewPN->insertBefore(&*OverallPhiBlock->begin());
1764 for (unsigned Idx = 0, Edx = NewPN->getNumIncomingValues(); Idx < Edx;
1765 Idx++) {
1766 Value *IncomingVal = NewPN->getIncomingValue(Idx);
1767 BasicBlock *IncomingBlock = NewPN->getIncomingBlock(Idx);
1768
1769 // Find corresponding basic block in the overall function for the incoming
1770 // block.
1771 BasicBlock *BlockToUse =
1772 Region.findCorrespondingBlockIn(*FirstRegion, IncomingBlock);
1773 NewPN->setIncomingBlock(Idx, BlockToUse);
1774
1775 // If we have an argument we make sure we replace using the argument from
1776 // the correct function.
1777 if (Argument *A = dyn_cast<Argument>(IncomingVal)) {
1778 Value *Val = Group.OutlinedFunction->getArg(A->getArgNo());
1779 NewPN->setIncomingValue(Idx, Val);
1780 continue;
1781 }
1782
1783 // Find the corresponding value in the overall function.
1784 IncomingVal = findOutputMapping(OutputMappings, IncomingVal);
1785 Value *Val = Region.findCorrespondingValueIn(*FirstRegion, IncomingVal);
1786 assert(Val && "Value is nullptr?");
1787 DenseMap<Value *, Value *>::iterator RemappedIt =
1788 FirstRegion->RemappedArguments.find(Val);
1789 if (RemappedIt != FirstRegion->RemappedArguments.end())
1790 Val = RemappedIt->second;
1791 NewPN->setIncomingValue(Idx, Val);
1792 }
1793 return NewPN;
1794 }
1795
1796 // Within an extracted function, replace the argument uses of the extracted
1797 // region with the arguments of the function for an OutlinableGroup.
1798 //
1799 /// \param [in] Region - The region of extracted code to be changed.
1800 /// \param [in,out] OutputBBs - The BasicBlock for the output stores for this
1801 /// region.
1802 /// \param [in] FirstFunction - A flag to indicate whether we are using this
1803 /// function to define the overall outlined function for all the regions, or
1804 /// if we are operating on one of the following regions.
1805 static void
replaceArgumentUses(OutlinableRegion & Region,DenseMap<Value *,BasicBlock * > & OutputBBs,const DenseMap<Value *,Value * > & OutputMappings,bool FirstFunction=false)1806 replaceArgumentUses(OutlinableRegion &Region,
1807 DenseMap<Value *, BasicBlock *> &OutputBBs,
1808 const DenseMap<Value *, Value *> &OutputMappings,
1809 bool FirstFunction = false) {
1810 OutlinableGroup &Group = *Region.Parent;
1811 assert(Region.ExtractedFunction && "Region has no extracted function?");
1812
1813 Function *DominatingFunction = Region.ExtractedFunction;
1814 if (FirstFunction)
1815 DominatingFunction = Group.OutlinedFunction;
1816 DominatorTree DT(*DominatingFunction);
1817 DenseSet<PHINode *> UsedPHIs;
1818
1819 for (unsigned ArgIdx = 0; ArgIdx < Region.ExtractedFunction->arg_size();
1820 ArgIdx++) {
1821 assert(Region.ExtractedArgToAgg.find(ArgIdx) !=
1822 Region.ExtractedArgToAgg.end() &&
1823 "No mapping from extracted to outlined?");
1824 unsigned AggArgIdx = Region.ExtractedArgToAgg.find(ArgIdx)->second;
1825 Argument *AggArg = Group.OutlinedFunction->getArg(AggArgIdx);
1826 Argument *Arg = Region.ExtractedFunction->getArg(ArgIdx);
1827 // The argument is an input, so we can simply replace it with the overall
1828 // argument value
1829 if (ArgIdx < Region.NumExtractedInputs) {
1830 LLVM_DEBUG(dbgs() << "Replacing uses of input " << *Arg << " in function "
1831 << *Region.ExtractedFunction << " with " << *AggArg
1832 << " in function " << *Group.OutlinedFunction << "\n");
1833 Arg->replaceAllUsesWith(AggArg);
1834 Value *V = Region.Call->getArgOperand(ArgIdx);
1835 Region.RemappedArguments.insert(std::make_pair(V, AggArg));
1836 continue;
1837 }
1838
1839 // If we are replacing an output, we place the store value in its own
1840 // block inside the overall function before replacing the use of the output
1841 // in the function.
1842 assert(Arg->hasOneUse() && "Output argument can only have one use");
1843 User *InstAsUser = Arg->user_back();
1844 assert(InstAsUser && "User is nullptr!");
1845
1846 Instruction *I = cast<Instruction>(InstAsUser);
1847 BasicBlock *BB = I->getParent();
1848 SmallVector<BasicBlock *, 4> Descendants;
1849 DT.getDescendants(BB, Descendants);
1850 bool EdgeAdded = false;
1851 if (Descendants.size() == 0) {
1852 EdgeAdded = true;
1853 DT.insertEdge(&DominatingFunction->getEntryBlock(), BB);
1854 DT.getDescendants(BB, Descendants);
1855 }
1856
1857 // Iterate over the following blocks, looking for return instructions,
1858 // if we find one, find the corresponding output block for the return value
1859 // and move our store instruction there.
1860 for (BasicBlock *DescendBB : Descendants) {
1861 ReturnInst *RI = dyn_cast<ReturnInst>(DescendBB->getTerminator());
1862 if (!RI)
1863 continue;
1864 Value *RetVal = RI->getReturnValue();
1865 auto VBBIt = OutputBBs.find(RetVal);
1866 assert(VBBIt != OutputBBs.end() && "Could not find output value!");
1867
1868 // If this is storing a PHINode, we must make sure it is included in the
1869 // overall function.
1870 StoreInst *SI = cast<StoreInst>(I);
1871
1872 Value *ValueOperand = SI->getValueOperand();
1873
1874 StoreInst *NewI = cast<StoreInst>(I->clone());
1875 NewI->setDebugLoc(DebugLoc());
1876 BasicBlock *OutputBB = VBBIt->second;
1877 NewI->insertInto(OutputBB, OutputBB->end());
1878 LLVM_DEBUG(dbgs() << "Move store for instruction " << *I << " to "
1879 << *OutputBB << "\n");
1880
1881 // If this is storing a PHINode, we must make sure it is included in the
1882 // overall function.
1883 if (!isa<PHINode>(ValueOperand) ||
1884 Region.Candidate->getGVN(ValueOperand).has_value()) {
1885 if (FirstFunction)
1886 continue;
1887 Value *CorrVal =
1888 Region.findCorrespondingValueIn(*Group.Regions[0], ValueOperand);
1889 assert(CorrVal && "Value is nullptr?");
1890 NewI->setOperand(0, CorrVal);
1891 continue;
1892 }
1893 PHINode *PN = cast<PHINode>(SI->getValueOperand());
1894 // If it has a value, it was not split by the code extractor, which
1895 // is what we are looking for.
1896 if (Region.Candidate->getGVN(PN))
1897 continue;
1898
1899 // We record the parent block for the PHINode in the Region so that
1900 // we can exclude it from checks later on.
1901 Region.PHIBlocks.insert(std::make_pair(RetVal, PN->getParent()));
1902
1903 // If this is the first function, we do not need to worry about mergiing
1904 // this with any other block in the overall outlined function, so we can
1905 // just continue.
1906 if (FirstFunction) {
1907 BasicBlock *PHIBlock = PN->getParent();
1908 Group.PHIBlocks.insert(std::make_pair(RetVal, PHIBlock));
1909 continue;
1910 }
1911
1912 // We look for the aggregate block that contains the PHINodes leading into
1913 // this exit path. If we can't find one, we create one.
1914 BasicBlock *OverallPhiBlock = findOrCreatePHIBlock(Group, RetVal);
1915
1916 // For our PHINode, we find the combined canonical numbering, and
1917 // attempt to find a matching PHINode in the overall PHIBlock. If we
1918 // cannot, we copy the PHINode and move it into this new block.
1919 PHINode *NewPN = findOrCreatePHIInBlock(*PN, Region, OverallPhiBlock,
1920 OutputMappings, UsedPHIs);
1921 NewI->setOperand(0, NewPN);
1922 }
1923
1924 // If we added an edge for basic blocks without a predecessor, we remove it
1925 // here.
1926 if (EdgeAdded)
1927 DT.deleteEdge(&DominatingFunction->getEntryBlock(), BB);
1928 I->eraseFromParent();
1929
1930 LLVM_DEBUG(dbgs() << "Replacing uses of output " << *Arg << " in function "
1931 << *Region.ExtractedFunction << " with " << *AggArg
1932 << " in function " << *Group.OutlinedFunction << "\n");
1933 Arg->replaceAllUsesWith(AggArg);
1934 }
1935 }
1936
1937 /// Within an extracted function, replace the constants that need to be lifted
1938 /// into arguments with the actual argument.
1939 ///
1940 /// \param Region [in] - The region of extracted code to be changed.
replaceConstants(OutlinableRegion & Region)1941 void replaceConstants(OutlinableRegion &Region) {
1942 OutlinableGroup &Group = *Region.Parent;
1943 // Iterate over the constants that need to be elevated into arguments
1944 for (std::pair<unsigned, Constant *> &Const : Region.AggArgToConstant) {
1945 unsigned AggArgIdx = Const.first;
1946 Function *OutlinedFunction = Group.OutlinedFunction;
1947 assert(OutlinedFunction && "Overall Function is not defined?");
1948 Constant *CST = Const.second;
1949 Argument *Arg = Group.OutlinedFunction->getArg(AggArgIdx);
1950 // Identify the argument it will be elevated to, and replace instances of
1951 // that constant in the function.
1952
1953 // TODO: If in the future constants do not have one global value number,
1954 // i.e. a constant 1 could be mapped to several values, this check will
1955 // have to be more strict. It cannot be using only replaceUsesWithIf.
1956
1957 LLVM_DEBUG(dbgs() << "Replacing uses of constant " << *CST
1958 << " in function " << *OutlinedFunction << " with "
1959 << *Arg << "\n");
1960 CST->replaceUsesWithIf(Arg, [OutlinedFunction](Use &U) {
1961 if (Instruction *I = dyn_cast<Instruction>(U.getUser()))
1962 return I->getFunction() == OutlinedFunction;
1963 return false;
1964 });
1965 }
1966 }
1967
1968 /// It is possible that there is a basic block that already performs the same
1969 /// stores. This returns a duplicate block, if it exists
1970 ///
1971 /// \param OutputBBs [in] the blocks we are looking for a duplicate of.
1972 /// \param OutputStoreBBs [in] The existing output blocks.
1973 /// \returns an optional value with the number output block if there is a match.
findDuplicateOutputBlock(DenseMap<Value *,BasicBlock * > & OutputBBs,std::vector<DenseMap<Value *,BasicBlock * >> & OutputStoreBBs)1974 std::optional<unsigned> findDuplicateOutputBlock(
1975 DenseMap<Value *, BasicBlock *> &OutputBBs,
1976 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
1977
1978 bool Mismatch = false;
1979 unsigned MatchingNum = 0;
1980 // We compare the new set output blocks to the other sets of output blocks.
1981 // If they are the same number, and have identical instructions, they are
1982 // considered to be the same.
1983 for (DenseMap<Value *, BasicBlock *> &CompBBs : OutputStoreBBs) {
1984 Mismatch = false;
1985 for (std::pair<Value *, BasicBlock *> &VToB : CompBBs) {
1986 DenseMap<Value *, BasicBlock *>::iterator OutputBBIt =
1987 OutputBBs.find(VToB.first);
1988 if (OutputBBIt == OutputBBs.end()) {
1989 Mismatch = true;
1990 break;
1991 }
1992
1993 BasicBlock *CompBB = VToB.second;
1994 BasicBlock *OutputBB = OutputBBIt->second;
1995 if (CompBB->size() - 1 != OutputBB->size()) {
1996 Mismatch = true;
1997 break;
1998 }
1999
2000 BasicBlock::iterator NIt = OutputBB->begin();
2001 for (Instruction &I : *CompBB) {
2002 if (isa<BranchInst>(&I))
2003 continue;
2004
2005 if (!I.isIdenticalTo(&(*NIt))) {
2006 Mismatch = true;
2007 break;
2008 }
2009
2010 NIt++;
2011 }
2012 }
2013
2014 if (!Mismatch)
2015 return MatchingNum;
2016
2017 MatchingNum++;
2018 }
2019
2020 return std::nullopt;
2021 }
2022
2023 /// Remove empty output blocks from the outlined region.
2024 ///
2025 /// \param BlocksToPrune - Mapping of return values output blocks for the \p
2026 /// Region.
2027 /// \param Region - The OutlinableRegion we are analyzing.
2028 static bool
analyzeAndPruneOutputBlocks(DenseMap<Value *,BasicBlock * > & BlocksToPrune,OutlinableRegion & Region)2029 analyzeAndPruneOutputBlocks(DenseMap<Value *, BasicBlock *> &BlocksToPrune,
2030 OutlinableRegion &Region) {
2031 bool AllRemoved = true;
2032 Value *RetValueForBB;
2033 BasicBlock *NewBB;
2034 SmallVector<Value *, 4> ToRemove;
2035 // Iterate over the output blocks created in the outlined section.
2036 for (std::pair<Value *, BasicBlock *> &VtoBB : BlocksToPrune) {
2037 RetValueForBB = VtoBB.first;
2038 NewBB = VtoBB.second;
2039
2040 // If there are no instructions, we remove it from the module, and also
2041 // mark the value for removal from the return value to output block mapping.
2042 if (NewBB->size() == 0) {
2043 NewBB->eraseFromParent();
2044 ToRemove.push_back(RetValueForBB);
2045 continue;
2046 }
2047
2048 // Mark that we could not remove all the blocks since they were not all
2049 // empty.
2050 AllRemoved = false;
2051 }
2052
2053 // Remove the return value from the mapping.
2054 for (Value *V : ToRemove)
2055 BlocksToPrune.erase(V);
2056
2057 // Mark the region as having the no output scheme.
2058 if (AllRemoved)
2059 Region.OutputBlockNum = -1;
2060
2061 return AllRemoved;
2062 }
2063
2064 /// For the outlined section, move needed the StoreInsts for the output
2065 /// registers into their own block. Then, determine if there is a duplicate
2066 /// output block already created.
2067 ///
2068 /// \param [in] OG - The OutlinableGroup of regions to be outlined.
2069 /// \param [in] Region - The OutlinableRegion that is being analyzed.
2070 /// \param [in,out] OutputBBs - the blocks that stores for this region will be
2071 /// placed in.
2072 /// \param [in] EndBBs - the final blocks of the extracted function.
2073 /// \param [in] OutputMappings - OutputMappings the mapping of values that have
2074 /// been replaced by a new output value.
2075 /// \param [in,out] OutputStoreBBs - The existing output blocks.
alignOutputBlockWithAggFunc(OutlinableGroup & OG,OutlinableRegion & Region,DenseMap<Value *,BasicBlock * > & OutputBBs,DenseMap<Value *,BasicBlock * > & EndBBs,const DenseMap<Value *,Value * > & OutputMappings,std::vector<DenseMap<Value *,BasicBlock * >> & OutputStoreBBs)2076 static void alignOutputBlockWithAggFunc(
2077 OutlinableGroup &OG, OutlinableRegion &Region,
2078 DenseMap<Value *, BasicBlock *> &OutputBBs,
2079 DenseMap<Value *, BasicBlock *> &EndBBs,
2080 const DenseMap<Value *, Value *> &OutputMappings,
2081 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2082 // If none of the output blocks have any instructions, this means that we do
2083 // not have to determine if it matches any of the other output schemes, and we
2084 // don't have to do anything else.
2085 if (analyzeAndPruneOutputBlocks(OutputBBs, Region))
2086 return;
2087
2088 // Determine is there is a duplicate set of blocks.
2089 std::optional<unsigned> MatchingBB =
2090 findDuplicateOutputBlock(OutputBBs, OutputStoreBBs);
2091
2092 // If there is, we remove the new output blocks. If it does not,
2093 // we add it to our list of sets of output blocks.
2094 if (MatchingBB) {
2095 LLVM_DEBUG(dbgs() << "Set output block for region in function"
2096 << Region.ExtractedFunction << " to " << *MatchingBB);
2097
2098 Region.OutputBlockNum = *MatchingBB;
2099 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs)
2100 VtoBB.second->eraseFromParent();
2101 return;
2102 }
2103
2104 Region.OutputBlockNum = OutputStoreBBs.size();
2105
2106 Value *RetValueForBB;
2107 BasicBlock *NewBB;
2108 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2109 for (std::pair<Value *, BasicBlock *> &VtoBB : OutputBBs) {
2110 RetValueForBB = VtoBB.first;
2111 NewBB = VtoBB.second;
2112 DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2113 EndBBs.find(RetValueForBB);
2114 LLVM_DEBUG(dbgs() << "Create output block for region in"
2115 << Region.ExtractedFunction << " to "
2116 << *NewBB);
2117 BranchInst::Create(VBBIt->second, NewBB);
2118 OutputStoreBBs.back().insert(std::make_pair(RetValueForBB, NewBB));
2119 }
2120 }
2121
2122 /// Takes in a mapping, \p OldMap of ConstantValues to BasicBlocks, sorts keys,
2123 /// before creating a basic block for each \p NewMap, and inserting into the new
2124 /// block. Each BasicBlock is named with the scheme "<basename>_<key_idx>".
2125 ///
2126 /// \param OldMap [in] - The mapping to base the new mapping off of.
2127 /// \param NewMap [out] - The output mapping using the keys of \p OldMap.
2128 /// \param ParentFunc [in] - The function to put the new basic block in.
2129 /// \param BaseName [in] - The start of the BasicBlock names to be appended to
2130 /// by an index value.
createAndInsertBasicBlocks(DenseMap<Value *,BasicBlock * > & OldMap,DenseMap<Value *,BasicBlock * > & NewMap,Function * ParentFunc,Twine BaseName)2131 static void createAndInsertBasicBlocks(DenseMap<Value *, BasicBlock *> &OldMap,
2132 DenseMap<Value *, BasicBlock *> &NewMap,
2133 Function *ParentFunc, Twine BaseName) {
2134 unsigned Idx = 0;
2135 std::vector<Value *> SortedKeys;
2136
2137 getSortedConstantKeys(SortedKeys, OldMap);
2138
2139 for (Value *RetVal : SortedKeys) {
2140 BasicBlock *NewBB = BasicBlock::Create(
2141 ParentFunc->getContext(),
2142 Twine(BaseName) + Twine("_") + Twine(static_cast<unsigned>(Idx++)),
2143 ParentFunc);
2144 NewMap.insert(std::make_pair(RetVal, NewBB));
2145 }
2146 }
2147
2148 /// Create the switch statement for outlined function to differentiate between
2149 /// all the output blocks.
2150 ///
2151 /// For the outlined section, determine if an outlined block already exists that
2152 /// matches the needed stores for the extracted section.
2153 /// \param [in] M - The module we are outlining from.
2154 /// \param [in] OG - The group of regions to be outlined.
2155 /// \param [in] EndBBs - The final blocks of the extracted function.
2156 /// \param [in,out] OutputStoreBBs - The existing output blocks.
createSwitchStatement(Module & M,OutlinableGroup & OG,DenseMap<Value *,BasicBlock * > & EndBBs,std::vector<DenseMap<Value *,BasicBlock * >> & OutputStoreBBs)2157 void createSwitchStatement(
2158 Module &M, OutlinableGroup &OG, DenseMap<Value *, BasicBlock *> &EndBBs,
2159 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs) {
2160 // We only need the switch statement if there is more than one store
2161 // combination, or there is more than one set of output blocks. The first
2162 // will occur when we store different sets of values for two different
2163 // regions. The second will occur when we have two outputs that are combined
2164 // in a PHINode outside of the region in one outlined instance, and are used
2165 // seaparately in another. This will create the same set of OutputGVNs, but
2166 // will generate two different output schemes.
2167 if (OG.OutputGVNCombinations.size() > 1) {
2168 Function *AggFunc = OG.OutlinedFunction;
2169 // Create a final block for each different return block.
2170 DenseMap<Value *, BasicBlock *> ReturnBBs;
2171 createAndInsertBasicBlocks(OG.EndBBs, ReturnBBs, AggFunc, "final_block");
2172
2173 for (std::pair<Value *, BasicBlock *> &RetBlockPair : ReturnBBs) {
2174 std::pair<Value *, BasicBlock *> &OutputBlock =
2175 *OG.EndBBs.find(RetBlockPair.first);
2176 BasicBlock *ReturnBlock = RetBlockPair.second;
2177 BasicBlock *EndBB = OutputBlock.second;
2178 Instruction *Term = EndBB->getTerminator();
2179 // Move the return value to the final block instead of the original exit
2180 // stub.
2181 Term->moveBefore(*ReturnBlock, ReturnBlock->end());
2182 // Put the switch statement in the old end basic block for the function
2183 // with a fall through to the new return block.
2184 LLVM_DEBUG(dbgs() << "Create switch statement in " << *AggFunc << " for "
2185 << OutputStoreBBs.size() << "\n");
2186 SwitchInst *SwitchI =
2187 SwitchInst::Create(AggFunc->getArg(AggFunc->arg_size() - 1),
2188 ReturnBlock, OutputStoreBBs.size(), EndBB);
2189
2190 unsigned Idx = 0;
2191 for (DenseMap<Value *, BasicBlock *> &OutputStoreBB : OutputStoreBBs) {
2192 DenseMap<Value *, BasicBlock *>::iterator OSBBIt =
2193 OutputStoreBB.find(OutputBlock.first);
2194
2195 if (OSBBIt == OutputStoreBB.end())
2196 continue;
2197
2198 BasicBlock *BB = OSBBIt->second;
2199 SwitchI->addCase(
2200 ConstantInt::get(Type::getInt32Ty(M.getContext()), Idx), BB);
2201 Term = BB->getTerminator();
2202 Term->setSuccessor(0, ReturnBlock);
2203 Idx++;
2204 }
2205 }
2206 return;
2207 }
2208
2209 assert(OutputStoreBBs.size() < 2 && "Different store sets not handled!");
2210
2211 // If there needs to be stores, move them from the output blocks to their
2212 // corresponding ending block. We do not check that the OutputGVNCombinations
2213 // is equal to 1 here since that could just been the case where there are 0
2214 // outputs. Instead, we check whether there is more than one set of output
2215 // blocks since this is the only case where we would have to move the
2216 // stores, and erase the extraneous blocks.
2217 if (OutputStoreBBs.size() == 1) {
2218 LLVM_DEBUG(dbgs() << "Move store instructions to the end block in "
2219 << *OG.OutlinedFunction << "\n");
2220 DenseMap<Value *, BasicBlock *> OutputBlocks = OutputStoreBBs[0];
2221 for (std::pair<Value *, BasicBlock *> &VBPair : OutputBlocks) {
2222 DenseMap<Value *, BasicBlock *>::iterator EndBBIt =
2223 EndBBs.find(VBPair.first);
2224 assert(EndBBIt != EndBBs.end() && "Could not find end block");
2225 BasicBlock *EndBB = EndBBIt->second;
2226 BasicBlock *OutputBB = VBPair.second;
2227 Instruction *Term = OutputBB->getTerminator();
2228 Term->eraseFromParent();
2229 Term = EndBB->getTerminator();
2230 moveBBContents(*OutputBB, *EndBB);
2231 Term->moveBefore(*EndBB, EndBB->end());
2232 OutputBB->eraseFromParent();
2233 }
2234 }
2235 }
2236
2237 /// Fill the new function that will serve as the replacement function for all of
2238 /// the extracted regions of a certain structure from the first region in the
2239 /// list of regions. Replace this first region's extracted function with the
2240 /// new overall function.
2241 ///
2242 /// \param [in] M - The module we are outlining from.
2243 /// \param [in] CurrentGroup - The group of regions to be outlined.
2244 /// \param [in,out] OutputStoreBBs - The output blocks for each different
2245 /// set of stores needed for the different functions.
2246 /// \param [in,out] FuncsToRemove - Extracted functions to erase from module
2247 /// once outlining is complete.
2248 /// \param [in] OutputMappings - Extracted functions to erase from module
2249 /// once outlining is complete.
fillOverallFunction(Module & M,OutlinableGroup & CurrentGroup,std::vector<DenseMap<Value *,BasicBlock * >> & OutputStoreBBs,std::vector<Function * > & FuncsToRemove,const DenseMap<Value *,Value * > & OutputMappings)2250 static void fillOverallFunction(
2251 Module &M, OutlinableGroup &CurrentGroup,
2252 std::vector<DenseMap<Value *, BasicBlock *>> &OutputStoreBBs,
2253 std::vector<Function *> &FuncsToRemove,
2254 const DenseMap<Value *, Value *> &OutputMappings) {
2255 OutlinableRegion *CurrentOS = CurrentGroup.Regions[0];
2256
2257 // Move first extracted function's instructions into new function.
2258 LLVM_DEBUG(dbgs() << "Move instructions from "
2259 << *CurrentOS->ExtractedFunction << " to instruction "
2260 << *CurrentGroup.OutlinedFunction << "\n");
2261 moveFunctionData(*CurrentOS->ExtractedFunction,
2262 *CurrentGroup.OutlinedFunction, CurrentGroup.EndBBs);
2263
2264 // Transfer the attributes from the function to the new function.
2265 for (Attribute A : CurrentOS->ExtractedFunction->getAttributes().getFnAttrs())
2266 CurrentGroup.OutlinedFunction->addFnAttr(A);
2267
2268 // Create a new set of output blocks for the first extracted function.
2269 DenseMap<Value *, BasicBlock *> NewBBs;
2270 createAndInsertBasicBlocks(CurrentGroup.EndBBs, NewBBs,
2271 CurrentGroup.OutlinedFunction, "output_block_0");
2272 CurrentOS->OutputBlockNum = 0;
2273
2274 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings, true);
2275 replaceConstants(*CurrentOS);
2276
2277 // We first identify if any output blocks are empty, if they are we remove
2278 // them. We then create a branch instruction to the basic block to the return
2279 // block for the function for each non empty output block.
2280 if (!analyzeAndPruneOutputBlocks(NewBBs, *CurrentOS)) {
2281 OutputStoreBBs.push_back(DenseMap<Value *, BasicBlock *>());
2282 for (std::pair<Value *, BasicBlock *> &VToBB : NewBBs) {
2283 DenseMap<Value *, BasicBlock *>::iterator VBBIt =
2284 CurrentGroup.EndBBs.find(VToBB.first);
2285 BasicBlock *EndBB = VBBIt->second;
2286 BranchInst::Create(EndBB, VToBB.second);
2287 OutputStoreBBs.back().insert(VToBB);
2288 }
2289 }
2290
2291 // Replace the call to the extracted function with the outlined function.
2292 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2293
2294 // We only delete the extracted functions at the end since we may need to
2295 // reference instructions contained in them for mapping purposes.
2296 FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2297 }
2298
deduplicateExtractedSections(Module & M,OutlinableGroup & CurrentGroup,std::vector<Function * > & FuncsToRemove,unsigned & OutlinedFunctionNum)2299 void IROutliner::deduplicateExtractedSections(
2300 Module &M, OutlinableGroup &CurrentGroup,
2301 std::vector<Function *> &FuncsToRemove, unsigned &OutlinedFunctionNum) {
2302 createFunction(M, CurrentGroup, OutlinedFunctionNum);
2303
2304 std::vector<DenseMap<Value *, BasicBlock *>> OutputStoreBBs;
2305
2306 OutlinableRegion *CurrentOS;
2307
2308 fillOverallFunction(M, CurrentGroup, OutputStoreBBs, FuncsToRemove,
2309 OutputMappings);
2310
2311 std::vector<Value *> SortedKeys;
2312 for (unsigned Idx = 1; Idx < CurrentGroup.Regions.size(); Idx++) {
2313 CurrentOS = CurrentGroup.Regions[Idx];
2314 AttributeFuncs::mergeAttributesForOutlining(*CurrentGroup.OutlinedFunction,
2315 *CurrentOS->ExtractedFunction);
2316
2317 // Create a set of BasicBlocks, one for each return block, to hold the
2318 // needed store instructions.
2319 DenseMap<Value *, BasicBlock *> NewBBs;
2320 createAndInsertBasicBlocks(
2321 CurrentGroup.EndBBs, NewBBs, CurrentGroup.OutlinedFunction,
2322 "output_block_" + Twine(static_cast<unsigned>(Idx)));
2323 replaceArgumentUses(*CurrentOS, NewBBs, OutputMappings);
2324 alignOutputBlockWithAggFunc(CurrentGroup, *CurrentOS, NewBBs,
2325 CurrentGroup.EndBBs, OutputMappings,
2326 OutputStoreBBs);
2327
2328 CurrentOS->Call = replaceCalledFunction(M, *CurrentOS);
2329 FuncsToRemove.push_back(CurrentOS->ExtractedFunction);
2330 }
2331
2332 // Create a switch statement to handle the different output schemes.
2333 createSwitchStatement(M, CurrentGroup, CurrentGroup.EndBBs, OutputStoreBBs);
2334
2335 OutlinedFunctionNum++;
2336 }
2337
2338 /// Checks that the next instruction in the InstructionDataList matches the
2339 /// next instruction in the module. If they do not, there could be the
2340 /// possibility that extra code has been inserted, and we must ignore it.
2341 ///
2342 /// \param ID - The IRInstructionData to check the next instruction of.
2343 /// \returns true if the InstructionDataList and actual instruction match.
nextIRInstructionDataMatchesNextInst(IRInstructionData & ID)2344 static bool nextIRInstructionDataMatchesNextInst(IRInstructionData &ID) {
2345 // We check if there is a discrepancy between the InstructionDataList
2346 // and the actual next instruction in the module. If there is, it means
2347 // that an extra instruction was added, likely by the CodeExtractor.
2348
2349 // Since we do not have any similarity data about this particular
2350 // instruction, we cannot confidently outline it, and must discard this
2351 // candidate.
2352 IRInstructionDataList::iterator NextIDIt = std::next(ID.getIterator());
2353 Instruction *NextIDLInst = NextIDIt->Inst;
2354 Instruction *NextModuleInst = nullptr;
2355 if (!ID.Inst->isTerminator())
2356 NextModuleInst = ID.Inst->getNextNonDebugInstruction();
2357 else if (NextIDLInst != nullptr)
2358 NextModuleInst =
2359 &*NextIDIt->Inst->getParent()->instructionsWithoutDebug().begin();
2360
2361 if (NextIDLInst && NextIDLInst != NextModuleInst)
2362 return false;
2363
2364 return true;
2365 }
2366
isCompatibleWithAlreadyOutlinedCode(const OutlinableRegion & Region)2367 bool IROutliner::isCompatibleWithAlreadyOutlinedCode(
2368 const OutlinableRegion &Region) {
2369 IRSimilarityCandidate *IRSC = Region.Candidate;
2370 unsigned StartIdx = IRSC->getStartIdx();
2371 unsigned EndIdx = IRSC->getEndIdx();
2372
2373 // A check to make sure that we are not about to attempt to outline something
2374 // that has already been outlined.
2375 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2376 if (Outlined.contains(Idx))
2377 return false;
2378
2379 // We check if the recorded instruction matches the actual next instruction,
2380 // if it does not, we fix it in the InstructionDataList.
2381 if (!Region.Candidate->backInstruction()->isTerminator()) {
2382 Instruction *NewEndInst =
2383 Region.Candidate->backInstruction()->getNextNonDebugInstruction();
2384 assert(NewEndInst && "Next instruction is a nullptr?");
2385 if (Region.Candidate->end()->Inst != NewEndInst) {
2386 IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2387 IRInstructionData *NewEndIRID = new (InstDataAllocator.Allocate())
2388 IRInstructionData(*NewEndInst,
2389 InstructionClassifier.visit(*NewEndInst), *IDL);
2390
2391 // Insert the first IRInstructionData of the new region after the
2392 // last IRInstructionData of the IRSimilarityCandidate.
2393 IDL->insert(Region.Candidate->end(), *NewEndIRID);
2394 }
2395 }
2396
2397 return none_of(*IRSC, [this](IRInstructionData &ID) {
2398 if (!nextIRInstructionDataMatchesNextInst(ID))
2399 return true;
2400
2401 return !this->InstructionClassifier.visit(ID.Inst);
2402 });
2403 }
2404
pruneIncompatibleRegions(std::vector<IRSimilarityCandidate> & CandidateVec,OutlinableGroup & CurrentGroup)2405 void IROutliner::pruneIncompatibleRegions(
2406 std::vector<IRSimilarityCandidate> &CandidateVec,
2407 OutlinableGroup &CurrentGroup) {
2408 bool PreviouslyOutlined;
2409
2410 // Sort from beginning to end, so the IRSimilarityCandidates are in order.
2411 stable_sort(CandidateVec, [](const IRSimilarityCandidate &LHS,
2412 const IRSimilarityCandidate &RHS) {
2413 return LHS.getStartIdx() < RHS.getStartIdx();
2414 });
2415
2416 IRSimilarityCandidate &FirstCandidate = CandidateVec[0];
2417 // Since outlining a call and a branch instruction will be the same as only
2418 // outlinining a call instruction, we ignore it as a space saving.
2419 if (FirstCandidate.getLength() == 2) {
2420 if (isa<CallInst>(FirstCandidate.front()->Inst) &&
2421 isa<BranchInst>(FirstCandidate.back()->Inst))
2422 return;
2423 }
2424
2425 unsigned CurrentEndIdx = 0;
2426 for (IRSimilarityCandidate &IRSC : CandidateVec) {
2427 PreviouslyOutlined = false;
2428 unsigned StartIdx = IRSC.getStartIdx();
2429 unsigned EndIdx = IRSC.getEndIdx();
2430 const Function &FnForCurrCand = *IRSC.getFunction();
2431
2432 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2433 if (Outlined.contains(Idx)) {
2434 PreviouslyOutlined = true;
2435 break;
2436 }
2437
2438 if (PreviouslyOutlined)
2439 continue;
2440
2441 // Check over the instructions, and if the basic block has its address
2442 // taken for use somewhere else, we do not outline that block.
2443 bool BBHasAddressTaken = any_of(IRSC, [](IRInstructionData &ID){
2444 return ID.Inst->getParent()->hasAddressTaken();
2445 });
2446
2447 if (BBHasAddressTaken)
2448 continue;
2449
2450 if (FnForCurrCand.hasOptNone())
2451 continue;
2452
2453 if (FnForCurrCand.hasFnAttribute("nooutline")) {
2454 LLVM_DEBUG({
2455 dbgs() << "... Skipping function with nooutline attribute: "
2456 << FnForCurrCand.getName() << "\n";
2457 });
2458 continue;
2459 }
2460
2461 if (IRSC.front()->Inst->getFunction()->hasLinkOnceODRLinkage() &&
2462 !OutlineFromLinkODRs)
2463 continue;
2464
2465 // Greedily prune out any regions that will overlap with already chosen
2466 // regions.
2467 if (CurrentEndIdx != 0 && StartIdx <= CurrentEndIdx)
2468 continue;
2469
2470 bool BadInst = any_of(IRSC, [this](IRInstructionData &ID) {
2471 if (!nextIRInstructionDataMatchesNextInst(ID))
2472 return true;
2473
2474 return !this->InstructionClassifier.visit(ID.Inst);
2475 });
2476
2477 if (BadInst)
2478 continue;
2479
2480 OutlinableRegion *OS = new (RegionAllocator.Allocate())
2481 OutlinableRegion(IRSC, CurrentGroup);
2482 CurrentGroup.Regions.push_back(OS);
2483
2484 CurrentEndIdx = EndIdx;
2485 }
2486 }
2487
2488 InstructionCost
findBenefitFromAllRegions(OutlinableGroup & CurrentGroup)2489 IROutliner::findBenefitFromAllRegions(OutlinableGroup &CurrentGroup) {
2490 InstructionCost RegionBenefit = 0;
2491 for (OutlinableRegion *Region : CurrentGroup.Regions) {
2492 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2493 // We add the number of instructions in the region to the benefit as an
2494 // estimate as to how much will be removed.
2495 RegionBenefit += Region->getBenefit(TTI);
2496 LLVM_DEBUG(dbgs() << "Adding: " << RegionBenefit
2497 << " saved instructions to overfall benefit.\n");
2498 }
2499
2500 return RegionBenefit;
2501 }
2502
2503 /// For the \p OutputCanon number passed in find the value represented by this
2504 /// canonical number. If it is from a PHINode, we pick the first incoming
2505 /// value and return that Value instead.
2506 ///
2507 /// \param Region - The OutlinableRegion to get the Value from.
2508 /// \param OutputCanon - The canonical number to find the Value from.
2509 /// \returns The Value represented by a canonical number \p OutputCanon in \p
2510 /// Region.
findOutputValueInRegion(OutlinableRegion & Region,unsigned OutputCanon)2511 static Value *findOutputValueInRegion(OutlinableRegion &Region,
2512 unsigned OutputCanon) {
2513 OutlinableGroup &CurrentGroup = *Region.Parent;
2514 // If the value is greater than the value in the tracker, we have a
2515 // PHINode and will instead use one of the incoming values to find the
2516 // type.
2517 if (OutputCanon > CurrentGroup.PHINodeGVNTracker) {
2518 auto It = CurrentGroup.PHINodeGVNToGVNs.find(OutputCanon);
2519 assert(It != CurrentGroup.PHINodeGVNToGVNs.end() &&
2520 "Could not find GVN set for PHINode number!");
2521 assert(It->second.second.size() > 0 && "PHINode does not have any values!");
2522 OutputCanon = *It->second.second.begin();
2523 }
2524 std::optional<unsigned> OGVN =
2525 Region.Candidate->fromCanonicalNum(OutputCanon);
2526 assert(OGVN && "Could not find GVN for Canonical Number?");
2527 std::optional<Value *> OV = Region.Candidate->fromGVN(*OGVN);
2528 assert(OV && "Could not find value for GVN?");
2529 return *OV;
2530 }
2531
2532 InstructionCost
findCostOutputReloads(OutlinableGroup & CurrentGroup)2533 IROutliner::findCostOutputReloads(OutlinableGroup &CurrentGroup) {
2534 InstructionCost OverallCost = 0;
2535 for (OutlinableRegion *Region : CurrentGroup.Regions) {
2536 TargetTransformInfo &TTI = getTTI(*Region->StartBB->getParent());
2537
2538 // Each output incurs a load after the call, so we add that to the cost.
2539 for (unsigned OutputCanon : Region->GVNStores) {
2540 Value *V = findOutputValueInRegion(*Region, OutputCanon);
2541 InstructionCost LoadCost =
2542 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2543 TargetTransformInfo::TCK_CodeSize);
2544
2545 LLVM_DEBUG(dbgs() << "Adding: " << LoadCost
2546 << " instructions to cost for output of type "
2547 << *V->getType() << "\n");
2548 OverallCost += LoadCost;
2549 }
2550 }
2551
2552 return OverallCost;
2553 }
2554
2555 /// Find the extra instructions needed to handle any output values for the
2556 /// region.
2557 ///
2558 /// \param [in] M - The Module to outline from.
2559 /// \param [in] CurrentGroup - The collection of OutlinableRegions to analyze.
2560 /// \param [in] TTI - The TargetTransformInfo used to collect information for
2561 /// new instruction costs.
2562 /// \returns the additional cost to handle the outputs.
findCostForOutputBlocks(Module & M,OutlinableGroup & CurrentGroup,TargetTransformInfo & TTI)2563 static InstructionCost findCostForOutputBlocks(Module &M,
2564 OutlinableGroup &CurrentGroup,
2565 TargetTransformInfo &TTI) {
2566 InstructionCost OutputCost = 0;
2567 unsigned NumOutputBranches = 0;
2568
2569 OutlinableRegion &FirstRegion = *CurrentGroup.Regions[0];
2570 IRSimilarityCandidate &Candidate = *CurrentGroup.Regions[0]->Candidate;
2571 DenseSet<BasicBlock *> CandidateBlocks;
2572 Candidate.getBasicBlocks(CandidateBlocks);
2573
2574 // Count the number of different output branches that point to blocks outside
2575 // of the region.
2576 DenseSet<BasicBlock *> FoundBlocks;
2577 for (IRInstructionData &ID : Candidate) {
2578 if (!isa<BranchInst>(ID.Inst))
2579 continue;
2580
2581 for (Value *V : ID.OperVals) {
2582 BasicBlock *BB = static_cast<BasicBlock *>(V);
2583 if (!CandidateBlocks.contains(BB) && FoundBlocks.insert(BB).second)
2584 NumOutputBranches++;
2585 }
2586 }
2587
2588 CurrentGroup.BranchesToOutside = NumOutputBranches;
2589
2590 for (const ArrayRef<unsigned> &OutputUse :
2591 CurrentGroup.OutputGVNCombinations) {
2592 for (unsigned OutputCanon : OutputUse) {
2593 Value *V = findOutputValueInRegion(FirstRegion, OutputCanon);
2594 InstructionCost StoreCost =
2595 TTI.getMemoryOpCost(Instruction::Load, V->getType(), Align(1), 0,
2596 TargetTransformInfo::TCK_CodeSize);
2597
2598 // An instruction cost is added for each store set that needs to occur for
2599 // various output combinations inside the function, plus a branch to
2600 // return to the exit block.
2601 LLVM_DEBUG(dbgs() << "Adding: " << StoreCost
2602 << " instructions to cost for output of type "
2603 << *V->getType() << "\n");
2604 OutputCost += StoreCost * NumOutputBranches;
2605 }
2606
2607 InstructionCost BranchCost =
2608 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2609 LLVM_DEBUG(dbgs() << "Adding " << BranchCost << " to the current cost for"
2610 << " a branch instruction\n");
2611 OutputCost += BranchCost * NumOutputBranches;
2612 }
2613
2614 // If there is more than one output scheme, we must have a comparison and
2615 // branch for each different item in the switch statement.
2616 if (CurrentGroup.OutputGVNCombinations.size() > 1) {
2617 InstructionCost ComparisonCost = TTI.getCmpSelInstrCost(
2618 Instruction::ICmp, Type::getInt32Ty(M.getContext()),
2619 Type::getInt32Ty(M.getContext()), CmpInst::BAD_ICMP_PREDICATE,
2620 TargetTransformInfo::TCK_CodeSize);
2621 InstructionCost BranchCost =
2622 TTI.getCFInstrCost(Instruction::Br, TargetTransformInfo::TCK_CodeSize);
2623
2624 unsigned DifferentBlocks = CurrentGroup.OutputGVNCombinations.size();
2625 InstructionCost TotalCost = ComparisonCost * BranchCost * DifferentBlocks;
2626
2627 LLVM_DEBUG(dbgs() << "Adding: " << TotalCost
2628 << " instructions for each switch case for each different"
2629 << " output path in a function\n");
2630 OutputCost += TotalCost * NumOutputBranches;
2631 }
2632
2633 return OutputCost;
2634 }
2635
findCostBenefit(Module & M,OutlinableGroup & CurrentGroup)2636 void IROutliner::findCostBenefit(Module &M, OutlinableGroup &CurrentGroup) {
2637 InstructionCost RegionBenefit = findBenefitFromAllRegions(CurrentGroup);
2638 CurrentGroup.Benefit += RegionBenefit;
2639 LLVM_DEBUG(dbgs() << "Current Benefit: " << CurrentGroup.Benefit << "\n");
2640
2641 InstructionCost OutputReloadCost = findCostOutputReloads(CurrentGroup);
2642 CurrentGroup.Cost += OutputReloadCost;
2643 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2644
2645 InstructionCost AverageRegionBenefit =
2646 RegionBenefit / CurrentGroup.Regions.size();
2647 unsigned OverallArgumentNum = CurrentGroup.ArgumentTypes.size();
2648 unsigned NumRegions = CurrentGroup.Regions.size();
2649 TargetTransformInfo &TTI =
2650 getTTI(*CurrentGroup.Regions[0]->Candidate->getFunction());
2651
2652 // We add one region to the cost once, to account for the instructions added
2653 // inside of the newly created function.
2654 LLVM_DEBUG(dbgs() << "Adding: " << AverageRegionBenefit
2655 << " instructions to cost for body of new function.\n");
2656 CurrentGroup.Cost += AverageRegionBenefit;
2657 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2658
2659 // For each argument, we must add an instruction for loading the argument
2660 // out of the register and into a value inside of the newly outlined function.
2661 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2662 << " instructions to cost for each argument in the new"
2663 << " function.\n");
2664 CurrentGroup.Cost +=
2665 OverallArgumentNum * TargetTransformInfo::TCC_Basic;
2666 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2667
2668 // Each argument needs to either be loaded into a register or onto the stack.
2669 // Some arguments will only be loaded into the stack once the argument
2670 // registers are filled.
2671 LLVM_DEBUG(dbgs() << "Adding: " << OverallArgumentNum
2672 << " instructions to cost for each argument in the new"
2673 << " function " << NumRegions << " times for the "
2674 << "needed argument handling at the call site.\n");
2675 CurrentGroup.Cost +=
2676 2 * OverallArgumentNum * TargetTransformInfo::TCC_Basic * NumRegions;
2677 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2678
2679 CurrentGroup.Cost += findCostForOutputBlocks(M, CurrentGroup, TTI);
2680 LLVM_DEBUG(dbgs() << "Current Cost: " << CurrentGroup.Cost << "\n");
2681 }
2682
updateOutputMapping(OutlinableRegion & Region,ArrayRef<Value * > Outputs,LoadInst * LI)2683 void IROutliner::updateOutputMapping(OutlinableRegion &Region,
2684 ArrayRef<Value *> Outputs,
2685 LoadInst *LI) {
2686 // For and load instructions following the call
2687 Value *Operand = LI->getPointerOperand();
2688 std::optional<unsigned> OutputIdx;
2689 // Find if the operand it is an output register.
2690 for (unsigned ArgIdx = Region.NumExtractedInputs;
2691 ArgIdx < Region.Call->arg_size(); ArgIdx++) {
2692 if (Operand == Region.Call->getArgOperand(ArgIdx)) {
2693 OutputIdx = ArgIdx - Region.NumExtractedInputs;
2694 break;
2695 }
2696 }
2697
2698 // If we found an output register, place a mapping of the new value
2699 // to the original in the mapping.
2700 if (!OutputIdx)
2701 return;
2702
2703 if (OutputMappings.find(Outputs[*OutputIdx]) == OutputMappings.end()) {
2704 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *LI << " to "
2705 << *Outputs[*OutputIdx] << "\n");
2706 OutputMappings.insert(std::make_pair(LI, Outputs[*OutputIdx]));
2707 } else {
2708 Value *Orig = OutputMappings.find(Outputs[*OutputIdx])->second;
2709 LLVM_DEBUG(dbgs() << "Mapping extracted output " << *Orig << " to "
2710 << *Outputs[*OutputIdx] << "\n");
2711 OutputMappings.insert(std::make_pair(LI, Orig));
2712 }
2713 }
2714
extractSection(OutlinableRegion & Region)2715 bool IROutliner::extractSection(OutlinableRegion &Region) {
2716 SetVector<Value *> ArgInputs, Outputs, SinkCands;
2717 assert(Region.StartBB && "StartBB for the OutlinableRegion is nullptr!");
2718 BasicBlock *InitialStart = Region.StartBB;
2719 Function *OrigF = Region.StartBB->getParent();
2720 CodeExtractorAnalysisCache CEAC(*OrigF);
2721 Region.ExtractedFunction =
2722 Region.CE->extractCodeRegion(CEAC, ArgInputs, Outputs);
2723
2724 // If the extraction was successful, find the BasicBlock, and reassign the
2725 // OutlinableRegion blocks
2726 if (!Region.ExtractedFunction) {
2727 LLVM_DEBUG(dbgs() << "CodeExtractor failed to outline " << Region.StartBB
2728 << "\n");
2729 Region.reattachCandidate();
2730 return false;
2731 }
2732
2733 // Get the block containing the called branch, and reassign the blocks as
2734 // necessary. If the original block still exists, it is because we ended on
2735 // a branch instruction, and so we move the contents into the block before
2736 // and assign the previous block correctly.
2737 User *InstAsUser = Region.ExtractedFunction->user_back();
2738 BasicBlock *RewrittenBB = cast<Instruction>(InstAsUser)->getParent();
2739 Region.PrevBB = RewrittenBB->getSinglePredecessor();
2740 assert(Region.PrevBB && "PrevBB is nullptr?");
2741 if (Region.PrevBB == InitialStart) {
2742 BasicBlock *NewPrev = InitialStart->getSinglePredecessor();
2743 Instruction *BI = NewPrev->getTerminator();
2744 BI->eraseFromParent();
2745 moveBBContents(*InitialStart, *NewPrev);
2746 Region.PrevBB = NewPrev;
2747 InitialStart->eraseFromParent();
2748 }
2749
2750 Region.StartBB = RewrittenBB;
2751 Region.EndBB = RewrittenBB;
2752
2753 // The sequences of outlinable regions has now changed. We must fix the
2754 // IRInstructionDataList for consistency. Although they may not be illegal
2755 // instructions, they should not be compared with anything else as they
2756 // should not be outlined in this round. So marking these as illegal is
2757 // allowed.
2758 IRInstructionDataList *IDL = Region.Candidate->front()->IDL;
2759 Instruction *BeginRewritten = &*RewrittenBB->begin();
2760 Instruction *EndRewritten = &*RewrittenBB->begin();
2761 Region.NewFront = new (InstDataAllocator.Allocate()) IRInstructionData(
2762 *BeginRewritten, InstructionClassifier.visit(*BeginRewritten), *IDL);
2763 Region.NewBack = new (InstDataAllocator.Allocate()) IRInstructionData(
2764 *EndRewritten, InstructionClassifier.visit(*EndRewritten), *IDL);
2765
2766 // Insert the first IRInstructionData of the new region in front of the
2767 // first IRInstructionData of the IRSimilarityCandidate.
2768 IDL->insert(Region.Candidate->begin(), *Region.NewFront);
2769 // Insert the first IRInstructionData of the new region after the
2770 // last IRInstructionData of the IRSimilarityCandidate.
2771 IDL->insert(Region.Candidate->end(), *Region.NewBack);
2772 // Remove the IRInstructionData from the IRSimilarityCandidate.
2773 IDL->erase(Region.Candidate->begin(), std::prev(Region.Candidate->end()));
2774
2775 assert(RewrittenBB != nullptr &&
2776 "Could not find a predecessor after extraction!");
2777
2778 // Iterate over the new set of instructions to find the new call
2779 // instruction.
2780 for (Instruction &I : *RewrittenBB)
2781 if (CallInst *CI = dyn_cast<CallInst>(&I)) {
2782 if (Region.ExtractedFunction == CI->getCalledFunction())
2783 Region.Call = CI;
2784 } else if (LoadInst *LI = dyn_cast<LoadInst>(&I))
2785 updateOutputMapping(Region, Outputs.getArrayRef(), LI);
2786 Region.reattachCandidate();
2787 return true;
2788 }
2789
doOutline(Module & M)2790 unsigned IROutliner::doOutline(Module &M) {
2791 // Find the possible similarity sections.
2792 InstructionClassifier.EnableBranches = !DisableBranches;
2793 InstructionClassifier.EnableIndirectCalls = !DisableIndirectCalls;
2794 InstructionClassifier.EnableIntrinsics = !DisableIntrinsics;
2795
2796 IRSimilarityIdentifier &Identifier = getIRSI(M);
2797 SimilarityGroupList &SimilarityCandidates = *Identifier.getSimilarity();
2798
2799 // Sort them by size of extracted sections
2800 unsigned OutlinedFunctionNum = 0;
2801 // If we only have one SimilarityGroup in SimilarityCandidates, we do not have
2802 // to sort them by the potential number of instructions to be outlined
2803 if (SimilarityCandidates.size() > 1)
2804 llvm::stable_sort(SimilarityCandidates,
2805 [](const std::vector<IRSimilarityCandidate> &LHS,
2806 const std::vector<IRSimilarityCandidate> &RHS) {
2807 return LHS[0].getLength() * LHS.size() >
2808 RHS[0].getLength() * RHS.size();
2809 });
2810 // Creating OutlinableGroups for each SimilarityCandidate to be used in
2811 // each of the following for loops to avoid making an allocator.
2812 std::vector<OutlinableGroup> PotentialGroups(SimilarityCandidates.size());
2813
2814 DenseSet<unsigned> NotSame;
2815 std::vector<OutlinableGroup *> NegativeCostGroups;
2816 std::vector<OutlinableRegion *> OutlinedRegions;
2817 // Iterate over the possible sets of similarity.
2818 unsigned PotentialGroupIdx = 0;
2819 for (SimilarityGroup &CandidateVec : SimilarityCandidates) {
2820 OutlinableGroup &CurrentGroup = PotentialGroups[PotentialGroupIdx++];
2821
2822 // Remove entries that were previously outlined
2823 pruneIncompatibleRegions(CandidateVec, CurrentGroup);
2824
2825 // We pruned the number of regions to 0 to 1, meaning that it's not worth
2826 // trying to outlined since there is no compatible similar instance of this
2827 // code.
2828 if (CurrentGroup.Regions.size() < 2)
2829 continue;
2830
2831 // Determine if there are any values that are the same constant throughout
2832 // each section in the set.
2833 NotSame.clear();
2834 CurrentGroup.findSameConstants(NotSame);
2835
2836 if (CurrentGroup.IgnoreGroup)
2837 continue;
2838
2839 // Create a CodeExtractor for each outlinable region. Identify inputs and
2840 // outputs for each section using the code extractor and create the argument
2841 // types for the Aggregate Outlining Function.
2842 OutlinedRegions.clear();
2843 for (OutlinableRegion *OS : CurrentGroup.Regions) {
2844 // Break the outlinable region out of its parent BasicBlock into its own
2845 // BasicBlocks (see function implementation).
2846 OS->splitCandidate();
2847
2848 // There's a chance that when the region is split, extra instructions are
2849 // added to the region. This makes the region no longer viable
2850 // to be split, so we ignore it for outlining.
2851 if (!OS->CandidateSplit)
2852 continue;
2853
2854 SmallVector<BasicBlock *> BE;
2855 DenseSet<BasicBlock *> BlocksInRegion;
2856 OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2857 OS->CE = new (ExtractorAllocator.Allocate())
2858 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2859 false, nullptr, "outlined");
2860 findAddInputsOutputs(M, *OS, NotSame);
2861 if (!OS->IgnoreRegion)
2862 OutlinedRegions.push_back(OS);
2863
2864 // We recombine the blocks together now that we have gathered all the
2865 // needed information.
2866 OS->reattachCandidate();
2867 }
2868
2869 CurrentGroup.Regions = std::move(OutlinedRegions);
2870
2871 if (CurrentGroup.Regions.empty())
2872 continue;
2873
2874 CurrentGroup.collectGVNStoreSets(M);
2875
2876 if (CostModel)
2877 findCostBenefit(M, CurrentGroup);
2878
2879 // If we are adhering to the cost model, skip those groups where the cost
2880 // outweighs the benefits.
2881 if (CurrentGroup.Cost >= CurrentGroup.Benefit && CostModel) {
2882 OptimizationRemarkEmitter &ORE =
2883 getORE(*CurrentGroup.Regions[0]->Candidate->getFunction());
2884 ORE.emit([&]() {
2885 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2886 OptimizationRemarkMissed R(DEBUG_TYPE, "WouldNotDecreaseSize",
2887 C->frontInstruction());
2888 R << "did not outline "
2889 << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2890 << " regions due to estimated increase of "
2891 << ore::NV("InstructionIncrease",
2892 CurrentGroup.Cost - CurrentGroup.Benefit)
2893 << " instructions at locations ";
2894 interleave(
2895 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
2896 [&R](OutlinableRegion *Region) {
2897 R << ore::NV(
2898 "DebugLoc",
2899 Region->Candidate->frontInstruction()->getDebugLoc());
2900 },
2901 [&R]() { R << " "; });
2902 return R;
2903 });
2904 continue;
2905 }
2906
2907 NegativeCostGroups.push_back(&CurrentGroup);
2908 }
2909
2910 ExtractorAllocator.DestroyAll();
2911
2912 if (NegativeCostGroups.size() > 1)
2913 stable_sort(NegativeCostGroups,
2914 [](const OutlinableGroup *LHS, const OutlinableGroup *RHS) {
2915 return LHS->Benefit - LHS->Cost > RHS->Benefit - RHS->Cost;
2916 });
2917
2918 std::vector<Function *> FuncsToRemove;
2919 for (OutlinableGroup *CG : NegativeCostGroups) {
2920 OutlinableGroup &CurrentGroup = *CG;
2921
2922 OutlinedRegions.clear();
2923 for (OutlinableRegion *Region : CurrentGroup.Regions) {
2924 // We check whether our region is compatible with what has already been
2925 // outlined, and whether we need to ignore this item.
2926 if (!isCompatibleWithAlreadyOutlinedCode(*Region))
2927 continue;
2928 OutlinedRegions.push_back(Region);
2929 }
2930
2931 if (OutlinedRegions.size() < 2)
2932 continue;
2933
2934 // Reestimate the cost and benefit of the OutlinableGroup. Continue only if
2935 // we are still outlining enough regions to make up for the added cost.
2936 CurrentGroup.Regions = std::move(OutlinedRegions);
2937 if (CostModel) {
2938 CurrentGroup.Benefit = 0;
2939 CurrentGroup.Cost = 0;
2940 findCostBenefit(M, CurrentGroup);
2941 if (CurrentGroup.Cost >= CurrentGroup.Benefit)
2942 continue;
2943 }
2944 OutlinedRegions.clear();
2945 for (OutlinableRegion *Region : CurrentGroup.Regions) {
2946 Region->splitCandidate();
2947 if (!Region->CandidateSplit)
2948 continue;
2949 OutlinedRegions.push_back(Region);
2950 }
2951
2952 CurrentGroup.Regions = std::move(OutlinedRegions);
2953 if (CurrentGroup.Regions.size() < 2) {
2954 for (OutlinableRegion *R : CurrentGroup.Regions)
2955 R->reattachCandidate();
2956 continue;
2957 }
2958
2959 LLVM_DEBUG(dbgs() << "Outlining regions with cost " << CurrentGroup.Cost
2960 << " and benefit " << CurrentGroup.Benefit << "\n");
2961
2962 // Create functions out of all the sections, and mark them as outlined.
2963 OutlinedRegions.clear();
2964 for (OutlinableRegion *OS : CurrentGroup.Regions) {
2965 SmallVector<BasicBlock *> BE;
2966 DenseSet<BasicBlock *> BlocksInRegion;
2967 OS->Candidate->getBasicBlocks(BlocksInRegion, BE);
2968 OS->CE = new (ExtractorAllocator.Allocate())
2969 CodeExtractor(BE, nullptr, false, nullptr, nullptr, nullptr, false,
2970 false, nullptr, "outlined");
2971 bool FunctionOutlined = extractSection(*OS);
2972 if (FunctionOutlined) {
2973 unsigned StartIdx = OS->Candidate->getStartIdx();
2974 unsigned EndIdx = OS->Candidate->getEndIdx();
2975 for (unsigned Idx = StartIdx; Idx <= EndIdx; Idx++)
2976 Outlined.insert(Idx);
2977
2978 OutlinedRegions.push_back(OS);
2979 }
2980 }
2981
2982 LLVM_DEBUG(dbgs() << "Outlined " << OutlinedRegions.size()
2983 << " with benefit " << CurrentGroup.Benefit
2984 << " and cost " << CurrentGroup.Cost << "\n");
2985
2986 CurrentGroup.Regions = std::move(OutlinedRegions);
2987
2988 if (CurrentGroup.Regions.empty())
2989 continue;
2990
2991 OptimizationRemarkEmitter &ORE =
2992 getORE(*CurrentGroup.Regions[0]->Call->getFunction());
2993 ORE.emit([&]() {
2994 IRSimilarityCandidate *C = CurrentGroup.Regions[0]->Candidate;
2995 OptimizationRemark R(DEBUG_TYPE, "Outlined", C->front()->Inst);
2996 R << "outlined " << ore::NV(std::to_string(CurrentGroup.Regions.size()))
2997 << " regions with decrease of "
2998 << ore::NV("Benefit", CurrentGroup.Benefit - CurrentGroup.Cost)
2999 << " instructions at locations ";
3000 interleave(
3001 CurrentGroup.Regions.begin(), CurrentGroup.Regions.end(),
3002 [&R](OutlinableRegion *Region) {
3003 R << ore::NV("DebugLoc",
3004 Region->Candidate->frontInstruction()->getDebugLoc());
3005 },
3006 [&R]() { R << " "; });
3007 return R;
3008 });
3009
3010 deduplicateExtractedSections(M, CurrentGroup, FuncsToRemove,
3011 OutlinedFunctionNum);
3012 }
3013
3014 for (Function *F : FuncsToRemove)
3015 F->eraseFromParent();
3016
3017 return OutlinedFunctionNum;
3018 }
3019
run(Module & M)3020 bool IROutliner::run(Module &M) {
3021 CostModel = !NoCostModel;
3022 OutlineFromLinkODRs = EnableLinkOnceODRIROutlining;
3023
3024 return doOutline(M) > 0;
3025 }
3026
3027 // Pass Manager Boilerplate
3028 namespace {
3029 class IROutlinerLegacyPass : public ModulePass {
3030 public:
3031 static char ID;
IROutlinerLegacyPass()3032 IROutlinerLegacyPass() : ModulePass(ID) {
3033 initializeIROutlinerLegacyPassPass(*PassRegistry::getPassRegistry());
3034 }
3035
getAnalysisUsage(AnalysisUsage & AU) const3036 void getAnalysisUsage(AnalysisUsage &AU) const override {
3037 AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
3038 AU.addRequired<TargetTransformInfoWrapperPass>();
3039 AU.addRequired<IRSimilarityIdentifierWrapperPass>();
3040 }
3041
3042 bool runOnModule(Module &M) override;
3043 };
3044 } // namespace
3045
runOnModule(Module & M)3046 bool IROutlinerLegacyPass::runOnModule(Module &M) {
3047 if (skipModule(M))
3048 return false;
3049
3050 std::unique_ptr<OptimizationRemarkEmitter> ORE;
3051 auto GORE = [&ORE](Function &F) -> OptimizationRemarkEmitter & {
3052 ORE.reset(new OptimizationRemarkEmitter(&F));
3053 return *ORE;
3054 };
3055
3056 auto GTTI = [this](Function &F) -> TargetTransformInfo & {
3057 return this->getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
3058 };
3059
3060 auto GIRSI = [this](Module &) -> IRSimilarityIdentifier & {
3061 return this->getAnalysis<IRSimilarityIdentifierWrapperPass>().getIRSI();
3062 };
3063
3064 return IROutliner(GTTI, GIRSI, GORE).run(M);
3065 }
3066
run(Module & M,ModuleAnalysisManager & AM)3067 PreservedAnalyses IROutlinerPass::run(Module &M, ModuleAnalysisManager &AM) {
3068 auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
3069
3070 std::function<TargetTransformInfo &(Function &)> GTTI =
3071 [&FAM](Function &F) -> TargetTransformInfo & {
3072 return FAM.getResult<TargetIRAnalysis>(F);
3073 };
3074
3075 std::function<IRSimilarityIdentifier &(Module &)> GIRSI =
3076 [&AM](Module &M) -> IRSimilarityIdentifier & {
3077 return AM.getResult<IRSimilarityAnalysis>(M);
3078 };
3079
3080 std::unique_ptr<OptimizationRemarkEmitter> ORE;
3081 std::function<OptimizationRemarkEmitter &(Function &)> GORE =
3082 [&ORE](Function &F) -> OptimizationRemarkEmitter & {
3083 ORE.reset(new OptimizationRemarkEmitter(&F));
3084 return *ORE;
3085 };
3086
3087 if (IROutliner(GTTI, GIRSI, GORE).run(M))
3088 return PreservedAnalyses::none();
3089 return PreservedAnalyses::all();
3090 }
3091
3092 char IROutlinerLegacyPass::ID = 0;
3093 INITIALIZE_PASS_BEGIN(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
3094 false)
INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass)3095 INITIALIZE_PASS_DEPENDENCY(IRSimilarityIdentifierWrapperPass)
3096 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
3097 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
3098 INITIALIZE_PASS_END(IROutlinerLegacyPass, "iroutliner", "IR Outliner", false,
3099 false)
3100
3101 ModulePass *llvm::createIROutlinerPass() { return new IROutlinerLegacyPass(); }
3102