1 //=== AArch64PostLegalizerLowering.cpp --------------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Post-legalization lowering for instructions.
11 ///
12 /// This is used to offload pattern matching from the selector.
13 ///
14 /// For example, this combiner will notice that a G_SHUFFLE_VECTOR is actually
15 /// a G_ZIP, G_UZP, etc.
16 ///
17 /// General optimization combines should be handled by either the
18 /// AArch64PostLegalizerCombiner or the AArch64PreLegalizerCombiner.
19 ///
20 //===----------------------------------------------------------------------===//
21
22 #include "AArch64GlobalISelUtils.h"
23 #include "AArch64Subtarget.h"
24 #include "AArch64TargetMachine.h"
25 #include "GISel/AArch64LegalizerInfo.h"
26 #include "MCTargetDesc/AArch64MCTargetDesc.h"
27 #include "TargetInfo/AArch64TargetInfo.h"
28 #include "Utils/AArch64BaseInfo.h"
29 #include "llvm/CodeGen/GlobalISel/Combiner.h"
30 #include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
31 #include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
32 #include "llvm/CodeGen/GlobalISel/GISelChangeObserver.h"
33 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
34 #include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
35 #include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
36 #include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
37 #include "llvm/CodeGen/GlobalISel/Utils.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineInstrBuilder.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/TargetOpcodes.h"
42 #include "llvm/CodeGen/TargetPassConfig.h"
43 #include "llvm/IR/InstrTypes.h"
44 #include "llvm/InitializePasses.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/ErrorHandling.h"
47 #include <optional>
48
49 #define DEBUG_TYPE "aarch64-postlegalizer-lowering"
50
51 using namespace llvm;
52 using namespace MIPatternMatch;
53 using namespace AArch64GISelUtils;
54
55 /// Represents a pseudo instruction which replaces a G_SHUFFLE_VECTOR.
56 ///
57 /// Used for matching target-supported shuffles before codegen.
58 struct ShuffleVectorPseudo {
59 unsigned Opc; ///< Opcode for the instruction. (E.g. G_ZIP1)
60 Register Dst; ///< Destination register.
61 SmallVector<SrcOp, 2> SrcOps; ///< Source registers.
ShuffleVectorPseudoShuffleVectorPseudo62 ShuffleVectorPseudo(unsigned Opc, Register Dst,
63 std::initializer_list<SrcOp> SrcOps)
64 : Opc(Opc), Dst(Dst), SrcOps(SrcOps){};
65 ShuffleVectorPseudo() = default;
66 };
67
68 /// Check if a vector shuffle corresponds to a REV instruction with the
69 /// specified blocksize.
isREVMask(ArrayRef<int> M,unsigned EltSize,unsigned NumElts,unsigned BlockSize)70 static bool isREVMask(ArrayRef<int> M, unsigned EltSize, unsigned NumElts,
71 unsigned BlockSize) {
72 assert((BlockSize == 16 || BlockSize == 32 || BlockSize == 64) &&
73 "Only possible block sizes for REV are: 16, 32, 64");
74 assert(EltSize != 64 && "EltSize cannot be 64 for REV mask.");
75
76 unsigned BlockElts = M[0] + 1;
77
78 // If the first shuffle index is UNDEF, be optimistic.
79 if (M[0] < 0)
80 BlockElts = BlockSize / EltSize;
81
82 if (BlockSize <= EltSize || BlockSize != BlockElts * EltSize)
83 return false;
84
85 for (unsigned i = 0; i < NumElts; ++i) {
86 // Ignore undef indices.
87 if (M[i] < 0)
88 continue;
89 if (static_cast<unsigned>(M[i]) !=
90 (i - i % BlockElts) + (BlockElts - 1 - i % BlockElts))
91 return false;
92 }
93
94 return true;
95 }
96
97 /// Determines if \p M is a shuffle vector mask for a TRN of \p NumElts.
98 /// Whether or not G_TRN1 or G_TRN2 should be used is stored in \p WhichResult.
isTRNMask(ArrayRef<int> M,unsigned NumElts,unsigned & WhichResult)99 static bool isTRNMask(ArrayRef<int> M, unsigned NumElts,
100 unsigned &WhichResult) {
101 if (NumElts % 2 != 0)
102 return false;
103 WhichResult = (M[0] == 0 ? 0 : 1);
104 for (unsigned i = 0; i < NumElts; i += 2) {
105 if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != i + WhichResult) ||
106 (M[i + 1] >= 0 &&
107 static_cast<unsigned>(M[i + 1]) != i + NumElts + WhichResult))
108 return false;
109 }
110 return true;
111 }
112
113 /// Check if a G_EXT instruction can handle a shuffle mask \p M when the vector
114 /// sources of the shuffle are different.
getExtMask(ArrayRef<int> M,unsigned NumElts)115 static std::optional<std::pair<bool, uint64_t>> getExtMask(ArrayRef<int> M,
116 unsigned NumElts) {
117 // Look for the first non-undef element.
118 auto FirstRealElt = find_if(M, [](int Elt) { return Elt >= 0; });
119 if (FirstRealElt == M.end())
120 return std::nullopt;
121
122 // Use APInt to handle overflow when calculating expected element.
123 unsigned MaskBits = APInt(32, NumElts * 2).logBase2();
124 APInt ExpectedElt = APInt(MaskBits, *FirstRealElt + 1);
125
126 // The following shuffle indices must be the successive elements after the
127 // first real element.
128 if (any_of(
129 make_range(std::next(FirstRealElt), M.end()),
130 [&ExpectedElt](int Elt) { return Elt != ExpectedElt++ && Elt >= 0; }))
131 return std::nullopt;
132
133 // The index of an EXT is the first element if it is not UNDEF.
134 // Watch out for the beginning UNDEFs. The EXT index should be the expected
135 // value of the first element. E.g.
136 // <-1, -1, 3, ...> is treated as <1, 2, 3, ...>.
137 // <-1, -1, 0, 1, ...> is treated as <2*NumElts-2, 2*NumElts-1, 0, 1, ...>.
138 // ExpectedElt is the last mask index plus 1.
139 uint64_t Imm = ExpectedElt.getZExtValue();
140 bool ReverseExt = false;
141
142 // There are two difference cases requiring to reverse input vectors.
143 // For example, for vector <4 x i32> we have the following cases,
144 // Case 1: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, -1, 0>)
145 // Case 2: shufflevector(<4 x i32>,<4 x i32>,<-1, -1, 7, 0>)
146 // For both cases, we finally use mask <5, 6, 7, 0>, which requires
147 // to reverse two input vectors.
148 if (Imm < NumElts)
149 ReverseExt = true;
150 else
151 Imm -= NumElts;
152 return std::make_pair(ReverseExt, Imm);
153 }
154
155 /// Determines if \p M is a shuffle vector mask for a UZP of \p NumElts.
156 /// Whether or not G_UZP1 or G_UZP2 should be used is stored in \p WhichResult.
isUZPMask(ArrayRef<int> M,unsigned NumElts,unsigned & WhichResult)157 static bool isUZPMask(ArrayRef<int> M, unsigned NumElts,
158 unsigned &WhichResult) {
159 WhichResult = (M[0] == 0 ? 0 : 1);
160 for (unsigned i = 0; i != NumElts; ++i) {
161 // Skip undef indices.
162 if (M[i] < 0)
163 continue;
164 if (static_cast<unsigned>(M[i]) != 2 * i + WhichResult)
165 return false;
166 }
167 return true;
168 }
169
170 /// \return true if \p M is a zip mask for a shuffle vector of \p NumElts.
171 /// Whether or not G_ZIP1 or G_ZIP2 should be used is stored in \p WhichResult.
isZipMask(ArrayRef<int> M,unsigned NumElts,unsigned & WhichResult)172 static bool isZipMask(ArrayRef<int> M, unsigned NumElts,
173 unsigned &WhichResult) {
174 if (NumElts % 2 != 0)
175 return false;
176
177 // 0 means use ZIP1, 1 means use ZIP2.
178 WhichResult = (M[0] == 0 ? 0 : 1);
179 unsigned Idx = WhichResult * NumElts / 2;
180 for (unsigned i = 0; i != NumElts; i += 2) {
181 if ((M[i] >= 0 && static_cast<unsigned>(M[i]) != Idx) ||
182 (M[i + 1] >= 0 && static_cast<unsigned>(M[i + 1]) != Idx + NumElts))
183 return false;
184 Idx += 1;
185 }
186 return true;
187 }
188
189 /// Helper function for matchINS.
190 ///
191 /// \returns a value when \p M is an ins mask for \p NumInputElements.
192 ///
193 /// First element of the returned pair is true when the produced
194 /// G_INSERT_VECTOR_ELT destination should be the LHS of the G_SHUFFLE_VECTOR.
195 ///
196 /// Second element is the destination lane for the G_INSERT_VECTOR_ELT.
isINSMask(ArrayRef<int> M,int NumInputElements)197 static std::optional<std::pair<bool, int>> isINSMask(ArrayRef<int> M,
198 int NumInputElements) {
199 if (M.size() != static_cast<size_t>(NumInputElements))
200 return std::nullopt;
201 int NumLHSMatch = 0, NumRHSMatch = 0;
202 int LastLHSMismatch = -1, LastRHSMismatch = -1;
203 for (int Idx = 0; Idx < NumInputElements; ++Idx) {
204 if (M[Idx] == -1) {
205 ++NumLHSMatch;
206 ++NumRHSMatch;
207 continue;
208 }
209 M[Idx] == Idx ? ++NumLHSMatch : LastLHSMismatch = Idx;
210 M[Idx] == Idx + NumInputElements ? ++NumRHSMatch : LastRHSMismatch = Idx;
211 }
212 const int NumNeededToMatch = NumInputElements - 1;
213 if (NumLHSMatch == NumNeededToMatch)
214 return std::make_pair(true, LastLHSMismatch);
215 if (NumRHSMatch == NumNeededToMatch)
216 return std::make_pair(false, LastRHSMismatch);
217 return std::nullopt;
218 }
219
220 /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with a
221 /// G_REV instruction. Returns the appropriate G_REV opcode in \p Opc.
matchREV(MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)222 static bool matchREV(MachineInstr &MI, MachineRegisterInfo &MRI,
223 ShuffleVectorPseudo &MatchInfo) {
224 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
225 ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
226 Register Dst = MI.getOperand(0).getReg();
227 Register Src = MI.getOperand(1).getReg();
228 LLT Ty = MRI.getType(Dst);
229 unsigned EltSize = Ty.getScalarSizeInBits();
230
231 // Element size for a rev cannot be 64.
232 if (EltSize == 64)
233 return false;
234
235 unsigned NumElts = Ty.getNumElements();
236
237 // Try to produce G_REV64
238 if (isREVMask(ShuffleMask, EltSize, NumElts, 64)) {
239 MatchInfo = ShuffleVectorPseudo(AArch64::G_REV64, Dst, {Src});
240 return true;
241 }
242
243 // TODO: Produce G_REV32 and G_REV16 once we have proper legalization support.
244 // This should be identical to above, but with a constant 32 and constant
245 // 16.
246 return false;
247 }
248
249 /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
250 /// a G_TRN1 or G_TRN2 instruction.
matchTRN(MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)251 static bool matchTRN(MachineInstr &MI, MachineRegisterInfo &MRI,
252 ShuffleVectorPseudo &MatchInfo) {
253 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
254 unsigned WhichResult;
255 ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
256 Register Dst = MI.getOperand(0).getReg();
257 unsigned NumElts = MRI.getType(Dst).getNumElements();
258 if (!isTRNMask(ShuffleMask, NumElts, WhichResult))
259 return false;
260 unsigned Opc = (WhichResult == 0) ? AArch64::G_TRN1 : AArch64::G_TRN2;
261 Register V1 = MI.getOperand(1).getReg();
262 Register V2 = MI.getOperand(2).getReg();
263 MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
264 return true;
265 }
266
267 /// \return true if a G_SHUFFLE_VECTOR instruction \p MI can be replaced with
268 /// a G_UZP1 or G_UZP2 instruction.
269 ///
270 /// \param [in] MI - The shuffle vector instruction.
271 /// \param [out] MatchInfo - Either G_UZP1 or G_UZP2 on success.
matchUZP(MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)272 static bool matchUZP(MachineInstr &MI, MachineRegisterInfo &MRI,
273 ShuffleVectorPseudo &MatchInfo) {
274 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
275 unsigned WhichResult;
276 ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
277 Register Dst = MI.getOperand(0).getReg();
278 unsigned NumElts = MRI.getType(Dst).getNumElements();
279 if (!isUZPMask(ShuffleMask, NumElts, WhichResult))
280 return false;
281 unsigned Opc = (WhichResult == 0) ? AArch64::G_UZP1 : AArch64::G_UZP2;
282 Register V1 = MI.getOperand(1).getReg();
283 Register V2 = MI.getOperand(2).getReg();
284 MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
285 return true;
286 }
287
matchZip(MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)288 static bool matchZip(MachineInstr &MI, MachineRegisterInfo &MRI,
289 ShuffleVectorPseudo &MatchInfo) {
290 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
291 unsigned WhichResult;
292 ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
293 Register Dst = MI.getOperand(0).getReg();
294 unsigned NumElts = MRI.getType(Dst).getNumElements();
295 if (!isZipMask(ShuffleMask, NumElts, WhichResult))
296 return false;
297 unsigned Opc = (WhichResult == 0) ? AArch64::G_ZIP1 : AArch64::G_ZIP2;
298 Register V1 = MI.getOperand(1).getReg();
299 Register V2 = MI.getOperand(2).getReg();
300 MatchInfo = ShuffleVectorPseudo(Opc, Dst, {V1, V2});
301 return true;
302 }
303
304 /// Helper function for matchDup.
matchDupFromInsertVectorElt(int Lane,MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)305 static bool matchDupFromInsertVectorElt(int Lane, MachineInstr &MI,
306 MachineRegisterInfo &MRI,
307 ShuffleVectorPseudo &MatchInfo) {
308 if (Lane != 0)
309 return false;
310
311 // Try to match a vector splat operation into a dup instruction.
312 // We're looking for this pattern:
313 //
314 // %scalar:gpr(s64) = COPY $x0
315 // %undef:fpr(<2 x s64>) = G_IMPLICIT_DEF
316 // %cst0:gpr(s32) = G_CONSTANT i32 0
317 // %zerovec:fpr(<2 x s32>) = G_BUILD_VECTOR %cst0(s32), %cst0(s32)
318 // %ins:fpr(<2 x s64>) = G_INSERT_VECTOR_ELT %undef, %scalar(s64), %cst0(s32)
319 // %splat:fpr(<2 x s64>) = G_SHUFFLE_VECTOR %ins(<2 x s64>), %undef, %zerovec(<2 x s32>)
320 //
321 // ...into:
322 // %splat = G_DUP %scalar
323
324 // Begin matching the insert.
325 auto *InsMI = getOpcodeDef(TargetOpcode::G_INSERT_VECTOR_ELT,
326 MI.getOperand(1).getReg(), MRI);
327 if (!InsMI)
328 return false;
329 // Match the undef vector operand.
330 if (!getOpcodeDef(TargetOpcode::G_IMPLICIT_DEF, InsMI->getOperand(1).getReg(),
331 MRI))
332 return false;
333
334 // Match the index constant 0.
335 if (!mi_match(InsMI->getOperand(3).getReg(), MRI, m_ZeroInt()))
336 return false;
337
338 MatchInfo = ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(),
339 {InsMI->getOperand(2).getReg()});
340 return true;
341 }
342
343 /// Helper function for matchDup.
matchDupFromBuildVector(int Lane,MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)344 static bool matchDupFromBuildVector(int Lane, MachineInstr &MI,
345 MachineRegisterInfo &MRI,
346 ShuffleVectorPseudo &MatchInfo) {
347 assert(Lane >= 0 && "Expected positive lane?");
348 // Test if the LHS is a BUILD_VECTOR. If it is, then we can just reference the
349 // lane's definition directly.
350 auto *BuildVecMI = getOpcodeDef(TargetOpcode::G_BUILD_VECTOR,
351 MI.getOperand(1).getReg(), MRI);
352 if (!BuildVecMI)
353 return false;
354 Register Reg = BuildVecMI->getOperand(Lane + 1).getReg();
355 MatchInfo =
356 ShuffleVectorPseudo(AArch64::G_DUP, MI.getOperand(0).getReg(), {Reg});
357 return true;
358 }
359
matchDup(MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)360 static bool matchDup(MachineInstr &MI, MachineRegisterInfo &MRI,
361 ShuffleVectorPseudo &MatchInfo) {
362 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
363 auto MaybeLane = getSplatIndex(MI);
364 if (!MaybeLane)
365 return false;
366 int Lane = *MaybeLane;
367 // If this is undef splat, generate it via "just" vdup, if possible.
368 if (Lane < 0)
369 Lane = 0;
370 if (matchDupFromInsertVectorElt(Lane, MI, MRI, MatchInfo))
371 return true;
372 if (matchDupFromBuildVector(Lane, MI, MRI, MatchInfo))
373 return true;
374 return false;
375 }
376
377 // Check if an EXT instruction can handle the shuffle mask when the vector
378 // sources of the shuffle are the same.
isSingletonExtMask(ArrayRef<int> M,LLT Ty)379 static bool isSingletonExtMask(ArrayRef<int> M, LLT Ty) {
380 unsigned NumElts = Ty.getNumElements();
381
382 // Assume that the first shuffle index is not UNDEF. Fail if it is.
383 if (M[0] < 0)
384 return false;
385
386 // If this is a VEXT shuffle, the immediate value is the index of the first
387 // element. The other shuffle indices must be the successive elements after
388 // the first one.
389 unsigned ExpectedElt = M[0];
390 for (unsigned I = 1; I < NumElts; ++I) {
391 // Increment the expected index. If it wraps around, just follow it
392 // back to index zero and keep going.
393 ++ExpectedElt;
394 if (ExpectedElt == NumElts)
395 ExpectedElt = 0;
396
397 if (M[I] < 0)
398 continue; // Ignore UNDEF indices.
399 if (ExpectedElt != static_cast<unsigned>(M[I]))
400 return false;
401 }
402
403 return true;
404 }
405
matchEXT(MachineInstr & MI,MachineRegisterInfo & MRI,ShuffleVectorPseudo & MatchInfo)406 static bool matchEXT(MachineInstr &MI, MachineRegisterInfo &MRI,
407 ShuffleVectorPseudo &MatchInfo) {
408 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
409 Register Dst = MI.getOperand(0).getReg();
410 LLT DstTy = MRI.getType(Dst);
411 Register V1 = MI.getOperand(1).getReg();
412 Register V2 = MI.getOperand(2).getReg();
413 auto Mask = MI.getOperand(3).getShuffleMask();
414 uint64_t Imm;
415 auto ExtInfo = getExtMask(Mask, DstTy.getNumElements());
416 uint64_t ExtFactor = MRI.getType(V1).getScalarSizeInBits() / 8;
417
418 if (!ExtInfo) {
419 if (!getOpcodeDef<GImplicitDef>(V2, MRI) ||
420 !isSingletonExtMask(Mask, DstTy))
421 return false;
422
423 Imm = Mask[0] * ExtFactor;
424 MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V1, Imm});
425 return true;
426 }
427 bool ReverseExt;
428 std::tie(ReverseExt, Imm) = *ExtInfo;
429 if (ReverseExt)
430 std::swap(V1, V2);
431 Imm *= ExtFactor;
432 MatchInfo = ShuffleVectorPseudo(AArch64::G_EXT, Dst, {V1, V2, Imm});
433 return true;
434 }
435
436 /// Replace a G_SHUFFLE_VECTOR instruction with a pseudo.
437 /// \p Opc is the opcode to use. \p MI is the G_SHUFFLE_VECTOR.
applyShuffleVectorPseudo(MachineInstr & MI,ShuffleVectorPseudo & MatchInfo)438 static bool applyShuffleVectorPseudo(MachineInstr &MI,
439 ShuffleVectorPseudo &MatchInfo) {
440 MachineIRBuilder MIRBuilder(MI);
441 MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst}, MatchInfo.SrcOps);
442 MI.eraseFromParent();
443 return true;
444 }
445
446 /// Replace a G_SHUFFLE_VECTOR instruction with G_EXT.
447 /// Special-cased because the constant operand must be emitted as a G_CONSTANT
448 /// for the imported tablegen patterns to work.
applyEXT(MachineInstr & MI,ShuffleVectorPseudo & MatchInfo)449 static bool applyEXT(MachineInstr &MI, ShuffleVectorPseudo &MatchInfo) {
450 MachineIRBuilder MIRBuilder(MI);
451 // Tablegen patterns expect an i32 G_CONSTANT as the final op.
452 auto Cst =
453 MIRBuilder.buildConstant(LLT::scalar(32), MatchInfo.SrcOps[2].getImm());
454 MIRBuilder.buildInstr(MatchInfo.Opc, {MatchInfo.Dst},
455 {MatchInfo.SrcOps[0], MatchInfo.SrcOps[1], Cst});
456 MI.eraseFromParent();
457 return true;
458 }
459
460 /// Match a G_SHUFFLE_VECTOR with a mask which corresponds to a
461 /// G_INSERT_VECTOR_ELT and G_EXTRACT_VECTOR_ELT pair.
462 ///
463 /// e.g.
464 /// %shuf = G_SHUFFLE_VECTOR %left, %right, shufflemask(0, 0)
465 ///
466 /// Can be represented as
467 ///
468 /// %extract = G_EXTRACT_VECTOR_ELT %left, 0
469 /// %ins = G_INSERT_VECTOR_ELT %left, %extract, 1
470 ///
matchINS(MachineInstr & MI,MachineRegisterInfo & MRI,std::tuple<Register,int,Register,int> & MatchInfo)471 static bool matchINS(MachineInstr &MI, MachineRegisterInfo &MRI,
472 std::tuple<Register, int, Register, int> &MatchInfo) {
473 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
474 ArrayRef<int> ShuffleMask = MI.getOperand(3).getShuffleMask();
475 Register Dst = MI.getOperand(0).getReg();
476 int NumElts = MRI.getType(Dst).getNumElements();
477 auto DstIsLeftAndDstLane = isINSMask(ShuffleMask, NumElts);
478 if (!DstIsLeftAndDstLane)
479 return false;
480 bool DstIsLeft;
481 int DstLane;
482 std::tie(DstIsLeft, DstLane) = *DstIsLeftAndDstLane;
483 Register Left = MI.getOperand(1).getReg();
484 Register Right = MI.getOperand(2).getReg();
485 Register DstVec = DstIsLeft ? Left : Right;
486 Register SrcVec = Left;
487
488 int SrcLane = ShuffleMask[DstLane];
489 if (SrcLane >= NumElts) {
490 SrcVec = Right;
491 SrcLane -= NumElts;
492 }
493
494 MatchInfo = std::make_tuple(DstVec, DstLane, SrcVec, SrcLane);
495 return true;
496 }
497
applyINS(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & Builder,std::tuple<Register,int,Register,int> & MatchInfo)498 static bool applyINS(MachineInstr &MI, MachineRegisterInfo &MRI,
499 MachineIRBuilder &Builder,
500 std::tuple<Register, int, Register, int> &MatchInfo) {
501 Builder.setInstrAndDebugLoc(MI);
502 Register Dst = MI.getOperand(0).getReg();
503 auto ScalarTy = MRI.getType(Dst).getElementType();
504 Register DstVec, SrcVec;
505 int DstLane, SrcLane;
506 std::tie(DstVec, DstLane, SrcVec, SrcLane) = MatchInfo;
507 auto SrcCst = Builder.buildConstant(LLT::scalar(64), SrcLane);
508 auto Extract = Builder.buildExtractVectorElement(ScalarTy, SrcVec, SrcCst);
509 auto DstCst = Builder.buildConstant(LLT::scalar(64), DstLane);
510 Builder.buildInsertVectorElement(Dst, DstVec, Extract, DstCst);
511 MI.eraseFromParent();
512 return true;
513 }
514
515 /// isVShiftRImm - Check if this is a valid vector for the immediate
516 /// operand of a vector shift right operation. The value must be in the range:
517 /// 1 <= Value <= ElementBits for a right shift.
isVShiftRImm(Register Reg,MachineRegisterInfo & MRI,LLT Ty,int64_t & Cnt)518 static bool isVShiftRImm(Register Reg, MachineRegisterInfo &MRI, LLT Ty,
519 int64_t &Cnt) {
520 assert(Ty.isVector() && "vector shift count is not a vector type");
521 MachineInstr *MI = MRI.getVRegDef(Reg);
522 auto Cst = getAArch64VectorSplatScalar(*MI, MRI);
523 if (!Cst)
524 return false;
525 Cnt = *Cst;
526 int64_t ElementBits = Ty.getScalarSizeInBits();
527 return Cnt >= 1 && Cnt <= ElementBits;
528 }
529
530 /// Match a vector G_ASHR or G_LSHR with a valid immediate shift.
matchVAshrLshrImm(MachineInstr & MI,MachineRegisterInfo & MRI,int64_t & Imm)531 static bool matchVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
532 int64_t &Imm) {
533 assert(MI.getOpcode() == TargetOpcode::G_ASHR ||
534 MI.getOpcode() == TargetOpcode::G_LSHR);
535 LLT Ty = MRI.getType(MI.getOperand(1).getReg());
536 if (!Ty.isVector())
537 return false;
538 return isVShiftRImm(MI.getOperand(2).getReg(), MRI, Ty, Imm);
539 }
540
applyVAshrLshrImm(MachineInstr & MI,MachineRegisterInfo & MRI,int64_t & Imm)541 static bool applyVAshrLshrImm(MachineInstr &MI, MachineRegisterInfo &MRI,
542 int64_t &Imm) {
543 unsigned Opc = MI.getOpcode();
544 assert(Opc == TargetOpcode::G_ASHR || Opc == TargetOpcode::G_LSHR);
545 unsigned NewOpc =
546 Opc == TargetOpcode::G_ASHR ? AArch64::G_VASHR : AArch64::G_VLSHR;
547 MachineIRBuilder MIB(MI);
548 auto ImmDef = MIB.buildConstant(LLT::scalar(32), Imm);
549 MIB.buildInstr(NewOpc, {MI.getOperand(0)}, {MI.getOperand(1), ImmDef});
550 MI.eraseFromParent();
551 return true;
552 }
553
554 /// Determine if it is possible to modify the \p RHS and predicate \p P of a
555 /// G_ICMP instruction such that the right-hand side is an arithmetic immediate.
556 ///
557 /// \returns A pair containing the updated immediate and predicate which may
558 /// be used to optimize the instruction.
559 ///
560 /// \note This assumes that the comparison has been legalized.
561 std::optional<std::pair<uint64_t, CmpInst::Predicate>>
tryAdjustICmpImmAndPred(Register RHS,CmpInst::Predicate P,const MachineRegisterInfo & MRI)562 tryAdjustICmpImmAndPred(Register RHS, CmpInst::Predicate P,
563 const MachineRegisterInfo &MRI) {
564 const auto &Ty = MRI.getType(RHS);
565 if (Ty.isVector())
566 return std::nullopt;
567 unsigned Size = Ty.getSizeInBits();
568 assert((Size == 32 || Size == 64) && "Expected 32 or 64 bit compare only?");
569
570 // If the RHS is not a constant, or the RHS is already a valid arithmetic
571 // immediate, then there is nothing to change.
572 auto ValAndVReg = getIConstantVRegValWithLookThrough(RHS, MRI);
573 if (!ValAndVReg)
574 return std::nullopt;
575 uint64_t C = ValAndVReg->Value.getZExtValue();
576 if (isLegalArithImmed(C))
577 return std::nullopt;
578
579 // We have a non-arithmetic immediate. Check if adjusting the immediate and
580 // adjusting the predicate will result in a legal arithmetic immediate.
581 switch (P) {
582 default:
583 return std::nullopt;
584 case CmpInst::ICMP_SLT:
585 case CmpInst::ICMP_SGE:
586 // Check for
587 //
588 // x slt c => x sle c - 1
589 // x sge c => x sgt c - 1
590 //
591 // When c is not the smallest possible negative number.
592 if ((Size == 64 && static_cast<int64_t>(C) == INT64_MIN) ||
593 (Size == 32 && static_cast<int32_t>(C) == INT32_MIN))
594 return std::nullopt;
595 P = (P == CmpInst::ICMP_SLT) ? CmpInst::ICMP_SLE : CmpInst::ICMP_SGT;
596 C -= 1;
597 break;
598 case CmpInst::ICMP_ULT:
599 case CmpInst::ICMP_UGE:
600 // Check for
601 //
602 // x ult c => x ule c - 1
603 // x uge c => x ugt c - 1
604 //
605 // When c is not zero.
606 if (C == 0)
607 return std::nullopt;
608 P = (P == CmpInst::ICMP_ULT) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
609 C -= 1;
610 break;
611 case CmpInst::ICMP_SLE:
612 case CmpInst::ICMP_SGT:
613 // Check for
614 //
615 // x sle c => x slt c + 1
616 // x sgt c => s sge c + 1
617 //
618 // When c is not the largest possible signed integer.
619 if ((Size == 32 && static_cast<int32_t>(C) == INT32_MAX) ||
620 (Size == 64 && static_cast<int64_t>(C) == INT64_MAX))
621 return std::nullopt;
622 P = (P == CmpInst::ICMP_SLE) ? CmpInst::ICMP_SLT : CmpInst::ICMP_SGE;
623 C += 1;
624 break;
625 case CmpInst::ICMP_ULE:
626 case CmpInst::ICMP_UGT:
627 // Check for
628 //
629 // x ule c => x ult c + 1
630 // x ugt c => s uge c + 1
631 //
632 // When c is not the largest possible unsigned integer.
633 if ((Size == 32 && static_cast<uint32_t>(C) == UINT32_MAX) ||
634 (Size == 64 && C == UINT64_MAX))
635 return std::nullopt;
636 P = (P == CmpInst::ICMP_ULE) ? CmpInst::ICMP_ULT : CmpInst::ICMP_UGE;
637 C += 1;
638 break;
639 }
640
641 // Check if the new constant is valid, and return the updated constant and
642 // predicate if it is.
643 if (Size == 32)
644 C = static_cast<uint32_t>(C);
645 if (!isLegalArithImmed(C))
646 return std::nullopt;
647 return {{C, P}};
648 }
649
650 /// Determine whether or not it is possible to update the RHS and predicate of
651 /// a G_ICMP instruction such that the RHS will be selected as an arithmetic
652 /// immediate.
653 ///
654 /// \p MI - The G_ICMP instruction
655 /// \p MatchInfo - The new RHS immediate and predicate on success
656 ///
657 /// See tryAdjustICmpImmAndPred for valid transformations.
matchAdjustICmpImmAndPred(MachineInstr & MI,const MachineRegisterInfo & MRI,std::pair<uint64_t,CmpInst::Predicate> & MatchInfo)658 bool matchAdjustICmpImmAndPred(
659 MachineInstr &MI, const MachineRegisterInfo &MRI,
660 std::pair<uint64_t, CmpInst::Predicate> &MatchInfo) {
661 assert(MI.getOpcode() == TargetOpcode::G_ICMP);
662 Register RHS = MI.getOperand(3).getReg();
663 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
664 if (auto MaybeNewImmAndPred = tryAdjustICmpImmAndPred(RHS, Pred, MRI)) {
665 MatchInfo = *MaybeNewImmAndPred;
666 return true;
667 }
668 return false;
669 }
670
applyAdjustICmpImmAndPred(MachineInstr & MI,std::pair<uint64_t,CmpInst::Predicate> & MatchInfo,MachineIRBuilder & MIB,GISelChangeObserver & Observer)671 bool applyAdjustICmpImmAndPred(
672 MachineInstr &MI, std::pair<uint64_t, CmpInst::Predicate> &MatchInfo,
673 MachineIRBuilder &MIB, GISelChangeObserver &Observer) {
674 MIB.setInstrAndDebugLoc(MI);
675 MachineOperand &RHS = MI.getOperand(3);
676 MachineRegisterInfo &MRI = *MIB.getMRI();
677 auto Cst = MIB.buildConstant(MRI.cloneVirtualRegister(RHS.getReg()),
678 MatchInfo.first);
679 Observer.changingInstr(MI);
680 RHS.setReg(Cst->getOperand(0).getReg());
681 MI.getOperand(1).setPredicate(MatchInfo.second);
682 Observer.changedInstr(MI);
683 return true;
684 }
685
matchDupLane(MachineInstr & MI,MachineRegisterInfo & MRI,std::pair<unsigned,int> & MatchInfo)686 bool matchDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
687 std::pair<unsigned, int> &MatchInfo) {
688 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
689 Register Src1Reg = MI.getOperand(1).getReg();
690 const LLT SrcTy = MRI.getType(Src1Reg);
691 const LLT DstTy = MRI.getType(MI.getOperand(0).getReg());
692
693 auto LaneIdx = getSplatIndex(MI);
694 if (!LaneIdx)
695 return false;
696
697 // The lane idx should be within the first source vector.
698 if (*LaneIdx >= SrcTy.getNumElements())
699 return false;
700
701 if (DstTy != SrcTy)
702 return false;
703
704 LLT ScalarTy = SrcTy.getElementType();
705 unsigned ScalarSize = ScalarTy.getSizeInBits();
706
707 unsigned Opc = 0;
708 switch (SrcTy.getNumElements()) {
709 case 2:
710 if (ScalarSize == 64)
711 Opc = AArch64::G_DUPLANE64;
712 else if (ScalarSize == 32)
713 Opc = AArch64::G_DUPLANE32;
714 break;
715 case 4:
716 if (ScalarSize == 32)
717 Opc = AArch64::G_DUPLANE32;
718 break;
719 case 8:
720 if (ScalarSize == 16)
721 Opc = AArch64::G_DUPLANE16;
722 break;
723 case 16:
724 if (ScalarSize == 8)
725 Opc = AArch64::G_DUPLANE8;
726 break;
727 default:
728 break;
729 }
730 if (!Opc)
731 return false;
732
733 MatchInfo.first = Opc;
734 MatchInfo.second = *LaneIdx;
735 return true;
736 }
737
applyDupLane(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & B,std::pair<unsigned,int> & MatchInfo)738 bool applyDupLane(MachineInstr &MI, MachineRegisterInfo &MRI,
739 MachineIRBuilder &B, std::pair<unsigned, int> &MatchInfo) {
740 assert(MI.getOpcode() == TargetOpcode::G_SHUFFLE_VECTOR);
741 Register Src1Reg = MI.getOperand(1).getReg();
742 const LLT SrcTy = MRI.getType(Src1Reg);
743
744 B.setInstrAndDebugLoc(MI);
745 auto Lane = B.buildConstant(LLT::scalar(64), MatchInfo.second);
746
747 Register DupSrc = MI.getOperand(1).getReg();
748 // For types like <2 x s32>, we can use G_DUPLANE32, with a <4 x s32> source.
749 // To do this, we can use a G_CONCAT_VECTORS to do the widening.
750 if (SrcTy == LLT::fixed_vector(2, LLT::scalar(32))) {
751 assert(MRI.getType(MI.getOperand(0).getReg()).getNumElements() == 2 &&
752 "Unexpected dest elements");
753 auto Undef = B.buildUndef(SrcTy);
754 DupSrc = B.buildConcatVectors(
755 SrcTy.changeElementCount(ElementCount::getFixed(4)),
756 {Src1Reg, Undef.getReg(0)})
757 .getReg(0);
758 }
759 B.buildInstr(MatchInfo.first, {MI.getOperand(0).getReg()}, {DupSrc, Lane});
760 MI.eraseFromParent();
761 return true;
762 }
763
matchBuildVectorToDup(MachineInstr & MI,MachineRegisterInfo & MRI)764 static bool matchBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI) {
765 assert(MI.getOpcode() == TargetOpcode::G_BUILD_VECTOR);
766 auto Splat = getAArch64VectorSplat(MI, MRI);
767 if (!Splat)
768 return false;
769 if (Splat->isReg())
770 return true;
771 // Later, during selection, we'll try to match imported patterns using
772 // immAllOnesV and immAllZerosV. These require G_BUILD_VECTOR. Don't lower
773 // G_BUILD_VECTORs which could match those patterns.
774 int64_t Cst = Splat->getCst();
775 return (Cst != 0 && Cst != -1);
776 }
777
applyBuildVectorToDup(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & B)778 static bool applyBuildVectorToDup(MachineInstr &MI, MachineRegisterInfo &MRI,
779 MachineIRBuilder &B) {
780 B.setInstrAndDebugLoc(MI);
781 B.buildInstr(AArch64::G_DUP, {MI.getOperand(0).getReg()},
782 {MI.getOperand(1).getReg()});
783 MI.eraseFromParent();
784 return true;
785 }
786
787 /// \returns how many instructions would be saved by folding a G_ICMP's shift
788 /// and/or extension operations.
getCmpOperandFoldingProfit(Register CmpOp,const MachineRegisterInfo & MRI)789 static unsigned getCmpOperandFoldingProfit(Register CmpOp,
790 const MachineRegisterInfo &MRI) {
791 // No instructions to save if there's more than one use or no uses.
792 if (!MRI.hasOneNonDBGUse(CmpOp))
793 return 0;
794
795 // FIXME: This is duplicated with the selector. (See: selectShiftedRegister)
796 auto IsSupportedExtend = [&](const MachineInstr &MI) {
797 if (MI.getOpcode() == TargetOpcode::G_SEXT_INREG)
798 return true;
799 if (MI.getOpcode() != TargetOpcode::G_AND)
800 return false;
801 auto ValAndVReg =
802 getIConstantVRegValWithLookThrough(MI.getOperand(2).getReg(), MRI);
803 if (!ValAndVReg)
804 return false;
805 uint64_t Mask = ValAndVReg->Value.getZExtValue();
806 return (Mask == 0xFF || Mask == 0xFFFF || Mask == 0xFFFFFFFF);
807 };
808
809 MachineInstr *Def = getDefIgnoringCopies(CmpOp, MRI);
810 if (IsSupportedExtend(*Def))
811 return 1;
812
813 unsigned Opc = Def->getOpcode();
814 if (Opc != TargetOpcode::G_SHL && Opc != TargetOpcode::G_ASHR &&
815 Opc != TargetOpcode::G_LSHR)
816 return 0;
817
818 auto MaybeShiftAmt =
819 getIConstantVRegValWithLookThrough(Def->getOperand(2).getReg(), MRI);
820 if (!MaybeShiftAmt)
821 return 0;
822 uint64_t ShiftAmt = MaybeShiftAmt->Value.getZExtValue();
823 MachineInstr *ShiftLHS =
824 getDefIgnoringCopies(Def->getOperand(1).getReg(), MRI);
825
826 // Check if we can fold an extend and a shift.
827 // FIXME: This is duplicated with the selector. (See:
828 // selectArithExtendedRegister)
829 if (IsSupportedExtend(*ShiftLHS))
830 return (ShiftAmt <= 4) ? 2 : 1;
831
832 LLT Ty = MRI.getType(Def->getOperand(0).getReg());
833 if (Ty.isVector())
834 return 0;
835 unsigned ShiftSize = Ty.getSizeInBits();
836 if ((ShiftSize == 32 && ShiftAmt <= 31) ||
837 (ShiftSize == 64 && ShiftAmt <= 63))
838 return 1;
839 return 0;
840 }
841
842 /// \returns true if it would be profitable to swap the LHS and RHS of a G_ICMP
843 /// instruction \p MI.
trySwapICmpOperands(MachineInstr & MI,const MachineRegisterInfo & MRI)844 static bool trySwapICmpOperands(MachineInstr &MI,
845 const MachineRegisterInfo &MRI) {
846 assert(MI.getOpcode() == TargetOpcode::G_ICMP);
847 // Swap the operands if it would introduce a profitable folding opportunity.
848 // (e.g. a shift + extend).
849 //
850 // For example:
851 // lsl w13, w11, #1
852 // cmp w13, w12
853 // can be turned into:
854 // cmp w12, w11, lsl #1
855
856 // Don't swap if there's a constant on the RHS, because we know we can fold
857 // that.
858 Register RHS = MI.getOperand(3).getReg();
859 auto RHSCst = getIConstantVRegValWithLookThrough(RHS, MRI);
860 if (RHSCst && isLegalArithImmed(RHSCst->Value.getSExtValue()))
861 return false;
862
863 Register LHS = MI.getOperand(2).getReg();
864 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
865 auto GetRegForProfit = [&](Register Reg) {
866 MachineInstr *Def = getDefIgnoringCopies(Reg, MRI);
867 return isCMN(Def, Pred, MRI) ? Def->getOperand(2).getReg() : Reg;
868 };
869
870 // Don't have a constant on the RHS. If we swap the LHS and RHS of the
871 // compare, would we be able to fold more instructions?
872 Register TheLHS = GetRegForProfit(LHS);
873 Register TheRHS = GetRegForProfit(RHS);
874
875 // If the LHS is more likely to give us a folding opportunity, then swap the
876 // LHS and RHS.
877 return (getCmpOperandFoldingProfit(TheLHS, MRI) >
878 getCmpOperandFoldingProfit(TheRHS, MRI));
879 }
880
applySwapICmpOperands(MachineInstr & MI,GISelChangeObserver & Observer)881 static bool applySwapICmpOperands(MachineInstr &MI,
882 GISelChangeObserver &Observer) {
883 auto Pred = static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
884 Register LHS = MI.getOperand(2).getReg();
885 Register RHS = MI.getOperand(3).getReg();
886 Observer.changedInstr(MI);
887 MI.getOperand(1).setPredicate(CmpInst::getSwappedPredicate(Pred));
888 MI.getOperand(2).setReg(RHS);
889 MI.getOperand(3).setReg(LHS);
890 Observer.changedInstr(MI);
891 return true;
892 }
893
894 /// \returns a function which builds a vector floating point compare instruction
895 /// for a condition code \p CC.
896 /// \param [in] IsZero - True if the comparison is against 0.
897 /// \param [in] NoNans - True if the target has NoNansFPMath.
898 static std::function<Register(MachineIRBuilder &)>
getVectorFCMP(AArch64CC::CondCode CC,Register LHS,Register RHS,bool IsZero,bool NoNans,MachineRegisterInfo & MRI)899 getVectorFCMP(AArch64CC::CondCode CC, Register LHS, Register RHS, bool IsZero,
900 bool NoNans, MachineRegisterInfo &MRI) {
901 LLT DstTy = MRI.getType(LHS);
902 assert(DstTy.isVector() && "Expected vector types only?");
903 assert(DstTy == MRI.getType(RHS) && "Src and Dst types must match!");
904 switch (CC) {
905 default:
906 llvm_unreachable("Unexpected condition code!");
907 case AArch64CC::NE:
908 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
909 auto FCmp = IsZero
910 ? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS})
911 : MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS});
912 return MIB.buildNot(DstTy, FCmp).getReg(0);
913 };
914 case AArch64CC::EQ:
915 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
916 return IsZero
917 ? MIB.buildInstr(AArch64::G_FCMEQZ, {DstTy}, {LHS}).getReg(0)
918 : MIB.buildInstr(AArch64::G_FCMEQ, {DstTy}, {LHS, RHS})
919 .getReg(0);
920 };
921 case AArch64CC::GE:
922 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
923 return IsZero
924 ? MIB.buildInstr(AArch64::G_FCMGEZ, {DstTy}, {LHS}).getReg(0)
925 : MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {LHS, RHS})
926 .getReg(0);
927 };
928 case AArch64CC::GT:
929 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
930 return IsZero
931 ? MIB.buildInstr(AArch64::G_FCMGTZ, {DstTy}, {LHS}).getReg(0)
932 : MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {LHS, RHS})
933 .getReg(0);
934 };
935 case AArch64CC::LS:
936 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
937 return IsZero
938 ? MIB.buildInstr(AArch64::G_FCMLEZ, {DstTy}, {LHS}).getReg(0)
939 : MIB.buildInstr(AArch64::G_FCMGE, {DstTy}, {RHS, LHS})
940 .getReg(0);
941 };
942 case AArch64CC::MI:
943 return [LHS, RHS, IsZero, DstTy](MachineIRBuilder &MIB) {
944 return IsZero
945 ? MIB.buildInstr(AArch64::G_FCMLTZ, {DstTy}, {LHS}).getReg(0)
946 : MIB.buildInstr(AArch64::G_FCMGT, {DstTy}, {RHS, LHS})
947 .getReg(0);
948 };
949 }
950 }
951
952 /// Try to lower a vector G_FCMP \p MI into an AArch64-specific pseudo.
lowerVectorFCMP(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & MIB)953 static bool lowerVectorFCMP(MachineInstr &MI, MachineRegisterInfo &MRI,
954 MachineIRBuilder &MIB) {
955 assert(MI.getOpcode() == TargetOpcode::G_FCMP);
956 const auto &ST = MI.getMF()->getSubtarget<AArch64Subtarget>();
957 Register Dst = MI.getOperand(0).getReg();
958 LLT DstTy = MRI.getType(Dst);
959 if (!DstTy.isVector() || !ST.hasNEON())
960 return false;
961 const auto Pred =
962 static_cast<CmpInst::Predicate>(MI.getOperand(1).getPredicate());
963 Register LHS = MI.getOperand(2).getReg();
964 // TODO: Handle v4s16 case.
965 unsigned EltSize = MRI.getType(LHS).getScalarSizeInBits();
966 if (EltSize != 32 && EltSize != 64)
967 return false;
968 Register RHS = MI.getOperand(3).getReg();
969 auto Splat = getAArch64VectorSplat(*MRI.getVRegDef(RHS), MRI);
970
971 // Compares against 0 have special target-specific pseudos.
972 bool IsZero = Splat && Splat->isCst() && Splat->getCst() == 0;
973
974
975 bool Invert = false;
976 AArch64CC::CondCode CC, CC2 = AArch64CC::AL;
977 if (Pred == CmpInst::Predicate::FCMP_ORD && IsZero) {
978 // The special case "fcmp ord %a, 0" is the canonical check that LHS isn't
979 // NaN, so equivalent to a == a and doesn't need the two comparisons an
980 // "ord" normally would.
981 RHS = LHS;
982 IsZero = false;
983 CC = AArch64CC::EQ;
984 } else
985 changeVectorFCMPPredToAArch64CC(Pred, CC, CC2, Invert);
986
987 bool NoNans = ST.getTargetLowering()->getTargetMachine().Options.NoNaNsFPMath;
988
989 // Instead of having an apply function, just build here to simplify things.
990 MIB.setInstrAndDebugLoc(MI);
991 auto Cmp = getVectorFCMP(CC, LHS, RHS, IsZero, NoNans, MRI);
992 Register CmpRes;
993 if (CC2 == AArch64CC::AL)
994 CmpRes = Cmp(MIB);
995 else {
996 auto Cmp2 = getVectorFCMP(CC2, LHS, RHS, IsZero, NoNans, MRI);
997 auto Cmp2Dst = Cmp2(MIB);
998 auto Cmp1Dst = Cmp(MIB);
999 CmpRes = MIB.buildOr(DstTy, Cmp1Dst, Cmp2Dst).getReg(0);
1000 }
1001 if (Invert)
1002 CmpRes = MIB.buildNot(DstTy, CmpRes).getReg(0);
1003 MRI.replaceRegWith(Dst, CmpRes);
1004 MI.eraseFromParent();
1005 return false;
1006 }
1007
matchFormTruncstore(MachineInstr & MI,MachineRegisterInfo & MRI,Register & SrcReg)1008 static bool matchFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI,
1009 Register &SrcReg) {
1010 assert(MI.getOpcode() == TargetOpcode::G_STORE);
1011 Register DstReg = MI.getOperand(0).getReg();
1012 if (MRI.getType(DstReg).isVector())
1013 return false;
1014 // Match a store of a truncate.
1015 if (!mi_match(DstReg, MRI, m_GTrunc(m_Reg(SrcReg))))
1016 return false;
1017 // Only form truncstores for value types of max 64b.
1018 return MRI.getType(SrcReg).getSizeInBits() <= 64;
1019 }
1020
applyFormTruncstore(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & B,GISelChangeObserver & Observer,Register & SrcReg)1021 static bool applyFormTruncstore(MachineInstr &MI, MachineRegisterInfo &MRI,
1022 MachineIRBuilder &B,
1023 GISelChangeObserver &Observer,
1024 Register &SrcReg) {
1025 assert(MI.getOpcode() == TargetOpcode::G_STORE);
1026 Observer.changingInstr(MI);
1027 MI.getOperand(0).setReg(SrcReg);
1028 Observer.changedInstr(MI);
1029 return true;
1030 }
1031
1032 // Lower vector G_SEXT_INREG back to shifts for selection. We allowed them to
1033 // form in the first place for combine opportunities, so any remaining ones
1034 // at this stage need be lowered back.
matchVectorSextInReg(MachineInstr & MI,MachineRegisterInfo & MRI)1035 static bool matchVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI) {
1036 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
1037 Register DstReg = MI.getOperand(0).getReg();
1038 LLT DstTy = MRI.getType(DstReg);
1039 return DstTy.isVector();
1040 }
1041
applyVectorSextInReg(MachineInstr & MI,MachineRegisterInfo & MRI,MachineIRBuilder & B,GISelChangeObserver & Observer)1042 static void applyVectorSextInReg(MachineInstr &MI, MachineRegisterInfo &MRI,
1043 MachineIRBuilder &B,
1044 GISelChangeObserver &Observer) {
1045 assert(MI.getOpcode() == TargetOpcode::G_SEXT_INREG);
1046 B.setInstrAndDebugLoc(MI);
1047 LegalizerHelper Helper(*MI.getMF(), Observer, B);
1048 Helper.lower(MI, 0, /* Unused hint type */ LLT());
1049 }
1050
1051 #define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_DEPS
1052 #include "AArch64GenPostLegalizeGILowering.inc"
1053 #undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_DEPS
1054
1055 namespace {
1056 #define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_H
1057 #include "AArch64GenPostLegalizeGILowering.inc"
1058 #undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_H
1059
1060 class AArch64PostLegalizerLoweringInfo : public CombinerInfo {
1061 public:
1062 AArch64GenPostLegalizerLoweringHelperRuleConfig GeneratedRuleCfg;
1063
AArch64PostLegalizerLoweringInfo(bool OptSize,bool MinSize)1064 AArch64PostLegalizerLoweringInfo(bool OptSize, bool MinSize)
1065 : CombinerInfo(/*AllowIllegalOps*/ true, /*ShouldLegalizeIllegal*/ false,
1066 /*LegalizerInfo*/ nullptr, /*OptEnabled = */ true, OptSize,
1067 MinSize) {
1068 if (!GeneratedRuleCfg.parseCommandLineOption())
1069 report_fatal_error("Invalid rule identifier");
1070 }
1071
1072 bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
1073 MachineIRBuilder &B) const override;
1074 };
1075
combine(GISelChangeObserver & Observer,MachineInstr & MI,MachineIRBuilder & B) const1076 bool AArch64PostLegalizerLoweringInfo::combine(GISelChangeObserver &Observer,
1077 MachineInstr &MI,
1078 MachineIRBuilder &B) const {
1079 CombinerHelper Helper(Observer, B, /* IsPreLegalize*/ false);
1080 AArch64GenPostLegalizerLoweringHelper Generated(GeneratedRuleCfg);
1081 return Generated.tryCombineAll(Observer, MI, B, Helper);
1082 }
1083
1084 #define AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_CPP
1085 #include "AArch64GenPostLegalizeGILowering.inc"
1086 #undef AARCH64POSTLEGALIZERLOWERINGHELPER_GENCOMBINERHELPER_CPP
1087
1088 class AArch64PostLegalizerLowering : public MachineFunctionPass {
1089 public:
1090 static char ID;
1091
1092 AArch64PostLegalizerLowering();
1093
getPassName() const1094 StringRef getPassName() const override {
1095 return "AArch64PostLegalizerLowering";
1096 }
1097
1098 bool runOnMachineFunction(MachineFunction &MF) override;
1099 void getAnalysisUsage(AnalysisUsage &AU) const override;
1100 };
1101 } // end anonymous namespace
1102
getAnalysisUsage(AnalysisUsage & AU) const1103 void AArch64PostLegalizerLowering::getAnalysisUsage(AnalysisUsage &AU) const {
1104 AU.addRequired<TargetPassConfig>();
1105 AU.setPreservesCFG();
1106 getSelectionDAGFallbackAnalysisUsage(AU);
1107 MachineFunctionPass::getAnalysisUsage(AU);
1108 }
1109
AArch64PostLegalizerLowering()1110 AArch64PostLegalizerLowering::AArch64PostLegalizerLowering()
1111 : MachineFunctionPass(ID) {
1112 initializeAArch64PostLegalizerLoweringPass(*PassRegistry::getPassRegistry());
1113 }
1114
runOnMachineFunction(MachineFunction & MF)1115 bool AArch64PostLegalizerLowering::runOnMachineFunction(MachineFunction &MF) {
1116 if (MF.getProperties().hasProperty(
1117 MachineFunctionProperties::Property::FailedISel))
1118 return false;
1119 assert(MF.getProperties().hasProperty(
1120 MachineFunctionProperties::Property::Legalized) &&
1121 "Expected a legalized function?");
1122 auto *TPC = &getAnalysis<TargetPassConfig>();
1123 const Function &F = MF.getFunction();
1124 AArch64PostLegalizerLoweringInfo PCInfo(F.hasOptSize(), F.hasMinSize());
1125 Combiner C(PCInfo, TPC);
1126 return C.combineMachineInstrs(MF, /*CSEInfo*/ nullptr);
1127 }
1128
1129 char AArch64PostLegalizerLowering::ID = 0;
1130 INITIALIZE_PASS_BEGIN(AArch64PostLegalizerLowering, DEBUG_TYPE,
1131 "Lower AArch64 MachineInstrs after legalization", false,
1132 false)
1133 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1134 INITIALIZE_PASS_END(AArch64PostLegalizerLowering, DEBUG_TYPE,
1135 "Lower AArch64 MachineInstrs after legalization", false,
1136 false)
1137
1138 namespace llvm {
createAArch64PostLegalizerLowering()1139 FunctionPass *createAArch64PostLegalizerLowering() {
1140 return new AArch64PostLegalizerLowering();
1141 }
1142 } // end namespace llvm
1143