1 //===- MLRegAllocEvictAdvisor.cpp - ML eviction advisor -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Implementation of the ML eviction advisor and reward injection pass
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "AllocationOrder.h"
14 #include "RegAllocEvictionAdvisor.h"
15 #include "RegAllocGreedy.h"
16 #include "llvm/Analysis/MLModelRunner.h"
17 #include "llvm/Analysis/TensorSpec.h"
18 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL) || defined(LLVM_HAVE_TFLITE)
19 #include "llvm/Analysis/ModelUnderTrainingRunner.h"
20 #include "llvm/Analysis/NoInferenceModelRunner.h"
21 #include "llvm/Analysis/Utils/TrainingLogger.h"
22 #endif
23 #include "MLRegallocEvictAdvisor.h"
24 #include "llvm/Analysis/ReleaseModeModelRunner.h"
25 #include "llvm/CodeGen/CalcSpillWeights.h"
26 #include "llvm/CodeGen/LiveRegMatrix.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineFunction.h"
29 #include "llvm/CodeGen/MachineLoopInfo.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/Passes.h"
32 #include "llvm/CodeGen/RegisterClassInfo.h"
33 #include "llvm/CodeGen/VirtRegMap.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Pass.h"
36 #include "llvm/PassRegistry.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Support/ErrorHandling.h"
39
40 #include <array>
41 #include <memory>
42
43 using namespace llvm;
44
45 #define DEBUG_TYPE "ml-regalloc"
46
47 // Generated header in release (AOT) mode
48 #if defined(LLVM_HAVE_TF_AOT_REGALLOCEVICTMODEL)
49 #include "RegallocEvictModel.h"
50 using CompiledModelType = RegallocEvictModel;
51 #else
52 using CompiledModelType = NoopSavedModelImpl;
53 #endif
54
55 // Options that only make sense in development mode
56 #ifdef LLVM_HAVE_TFLITE
57 #include "RegAllocScore.h"
58 #include "llvm/Analysis/Utils/TFUtils.h"
59
60 static cl::opt<std::string> TrainingLog(
61 "regalloc-training-log", cl::Hidden,
62 cl::desc("Training log for the register allocator eviction model"));
63
64 static cl::opt<std::string> ModelUnderTraining(
65 "regalloc-model", cl::Hidden,
66 cl::desc("The model being trained for register allocation eviction"));
67
68 static cl::opt<bool> EnableDevelopmentFeatures(
69 "regalloc-enable-development-features", cl::Hidden,
70 cl::desc("Whether or not to enable features under development for the ML "
71 "regalloc advisor"));
72
73 #else
74 static const bool EnableDevelopmentFeatures = false;
75 #endif // #ifdef LLVM_HAVE_TFLITE
76
77 extern cl::opt<unsigned> EvictInterferenceCutoff;
78
79 /// The score injection pass.
80 /// This pass calculates the score for a function and inserts it in the log, but
81 /// this happens only in development mode. It's a no-op otherwise.
82 namespace llvm {
83 class RegAllocScoring : public MachineFunctionPass {
84 public:
85 static char ID;
86
RegAllocScoring()87 RegAllocScoring() : MachineFunctionPass(ID) {
88 initializeRegAllocScoringPass(*PassRegistry::getPassRegistry());
89 }
90
91 ~RegAllocScoring() override = default;
92
getPassName() const93 StringRef getPassName() const override {
94 return "Register Allocation Pass Scoring";
95 }
96
97 /// RegAllocReward analysis usage.
getAnalysisUsage(AnalysisUsage & AU) const98 void getAnalysisUsage(AnalysisUsage &AU) const override {
99 AU.setPreservesAll();
100 AU.addRequired<RegAllocEvictionAdvisorAnalysis>();
101 AU.addRequired<RegAllocPriorityAdvisorAnalysis>();
102 AU.addRequired<MachineBlockFrequencyInfo>();
103 MachineFunctionPass::getAnalysisUsage(AU);
104 }
105
106 /// Performs this pass
107 bool runOnMachineFunction(MachineFunction &) override;
108 };
109
110 char RegAllocScoring::ID = 0;
createRegAllocScoringPass()111 FunctionPass *createRegAllocScoringPass() { return new RegAllocScoring(); }
112
113 } // namespace llvm
114
115 INITIALIZE_PASS(RegAllocScoring, "regallocscoringpass",
116 "Register Allocation Scoring Pass", false, false)
117
118 // ===================================
119 // Common ML Advisor declarations
120 // ===================================
121 namespace {
122 // The model can only accept a specified number of opcodes and will error it if
123 // fed an opcode it hasn't seen before. This constant sets the current cutoff.
124 static const int OpcodeValueCutoff = 17716;
125
126 // Most features are as described above, so we'll reuse this vector in defining
127 // them.
128 static const std::vector<int64_t> PerLiveRangeShape{1, NumberOfInterferences};
129
130 // --------------
131 // Features table
132 // --------------
133 // For each interfering live range (incl. the candidate) we collect a number of
134 // features. However, because the features are of different types (and because
135 // of ML best practices), we organize the tensors per feature, not per
136 // candidate. Each such tensor has a scalar value corresponding to the
137 // interferring live range at that position, in the order in AllocationOrder.
138 // The last position corresponds to the virt reg seeking allocation.
139 // Exception to all that is the progression feature, which is just a scalar (see
140 // its documentation for details).
141 // Note on naming: the "_by_max" are normalized using the largest value of that
142 // tensor, as observed in the current decision making stage (i.e. for the
143 // current call to the advisor's tryFindEvictionCandidate)
144 //
145 // The feature list format: type, name, shape, documentation.
146 // Note: we can really just use int64 and float, hence the modeling of some
147 // bools as int64 values.
148 #define RA_EVICT_FEATURES_LIST(M) \
149 M(int64_t, mask, PerLiveRangeShape, \
150 "boolean values, 0 for unavailable candidates (i.e. if a position is 0, " \
151 "it " \
152 "can't be evicted)") \
153 M(int64_t, is_free, PerLiveRangeShape, \
154 "boolean values, 1 if this phys reg is actually free (no interferences)") \
155 M(float, nr_urgent, PerLiveRangeShape, \
156 "number of 'urgent' intervals, normalized. Urgent are those that are OK " \
157 "to break cascades") \
158 M(float, nr_broken_hints, PerLiveRangeShape, \
159 "if this position were evicted, how many broken hints would there be") \
160 M(int64_t, is_hint, PerLiveRangeShape, \
161 "is this a preferred phys reg for the candidate") \
162 M(int64_t, is_local, PerLiveRangeShape, \
163 "is this live range local to a basic block") \
164 M(float, nr_rematerializable, PerLiveRangeShape, \
165 "nr rematerializable ranges") \
166 M(float, nr_defs_and_uses, PerLiveRangeShape, \
167 "bb freq - weighed nr defs and uses") \
168 M(float, weighed_reads_by_max, PerLiveRangeShape, \
169 "bb freq - weighed nr of reads, normalized") \
170 M(float, weighed_writes_by_max, PerLiveRangeShape, \
171 "bb feq - weighed nr of writes, normalized") \
172 M(float, weighed_read_writes_by_max, PerLiveRangeShape, \
173 "bb freq - weighed nr of uses that are both read and writes, normalized") \
174 M(float, weighed_indvars_by_max, PerLiveRangeShape, \
175 "bb freq - weighed nr of uses that are indvars, normalized") \
176 M(float, hint_weights_by_max, PerLiveRangeShape, \
177 "bb freq - weighed nr of uses that are hints, normalized") \
178 M(float, start_bb_freq_by_max, PerLiveRangeShape, \
179 "the freq in the start block, normalized") \
180 M(float, end_bb_freq_by_max, PerLiveRangeShape, \
181 "freq of end block, normalized") \
182 M(float, hottest_bb_freq_by_max, PerLiveRangeShape, \
183 "hottest BB freq, normalized") \
184 M(float, liverange_size, PerLiveRangeShape, \
185 "size (instr index diff) of the LR") \
186 M(float, use_def_density, PerLiveRangeShape, \
187 "the max weight, as computed by the manual heuristic") \
188 M(int64_t, max_stage, PerLiveRangeShape, \
189 "largest stage of an interval in this LR") \
190 M(int64_t, min_stage, PerLiveRangeShape, \
191 "lowest stage of an interval in this LR") \
192 M(float, progress, {1}, "ratio of current queue size to initial size")
193
194 #ifdef LLVM_HAVE_TFLITE
195 #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M) \
196 M(int64_t, instructions, InstructionsShape, \
197 "Opcodes of the instructions covered by the eviction problem")
198
199 #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M) \
200 M(int64_t, instructions_mapping, InstructionsMappingShape, \
201 "A binary matrix mapping LRs to instruction opcodes") \
202 M(float, mbb_frequencies, MBBFrequencyShape, \
203 "A vector of machine basic block frequencies") \
204 M(int64_t, mbb_mapping, InstructionsShape, \
205 "A vector of indicies mapping instructions to MBBs")
206 #else
207 #define RA_EVICT_FIRST_DEVELOPMENT_FEATURE(M)
208 #define RA_EVICT_REST_DEVELOPMENT_FEATURES(M)
209 #endif
210
211 // The model learns to pick one of the mask == 1 interferences. This is the
212 // name of the output tensor. The contract with the model is that the output
213 // will be guaranteed to be to a mask == 1 position. Using a macro here to
214 // avoid 'not used' warnings (and keep cond compilation to a minimum)
215 #define DecisionName "index_to_evict"
216
217 // Named features index.
218 enum FeatureIDs {
219 #define _FEATURE_IDX_SIMPLE(_, name, __, ___) name
220 #define _FEATURE_IDX(A, B, C, D) _FEATURE_IDX_SIMPLE(A, B, C, D),
221 RA_EVICT_FEATURES_LIST(_FEATURE_IDX) FeatureCount,
222 #ifdef LLVM_HAVE_TFLITE
223 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX_SIMPLE) = FeatureCount,
224 #else
225 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_FEATURE_IDX)
226 #endif // #ifdef LLVM_HAVE_TFLITE
227 RA_EVICT_REST_DEVELOPMENT_FEATURES(_FEATURE_IDX) FeaturesWithDevelopmentCount
228 #undef _FEATURE_IDX
229 #undef _FEATURE_IDX_SIMPLE
230 };
231
232 // The ML advisor will typically have a sparse input to the evaluator, because
233 // various phys regs won't be available. It's easier (maintenance-wise) to
234 // bulk-reset the state of the evaluator each time we are about to use it
235 // again.
getTotalSize(const std::vector<int64_t> & Shape)236 template <typename T> size_t getTotalSize(const std::vector<int64_t> &Shape) {
237 size_t Ret = sizeof(T);
238 for (const auto V : Shape)
239 Ret *= V;
240 return Ret;
241 }
242
resetInputs(MLModelRunner & Runner)243 void resetInputs(MLModelRunner &Runner) {
244 #define _RESET(TYPE, NAME, SHAPE, __) \
245 std::memset(Runner.getTensorUntyped(FeatureIDs::NAME), 0, \
246 getTotalSize<TYPE>(SHAPE));
247 RA_EVICT_FEATURES_LIST(_RESET)
248 if (EnableDevelopmentFeatures) {
249 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_RESET)
250 RA_EVICT_REST_DEVELOPMENT_FEATURES(_RESET)
251 #undef _RESET
252 }
253 }
254
255 // Per-live interval components that get aggregated into the feature values
256 // that will be passed to the evaluator.
257 struct LIFeatureComponents {
258 double R = 0;
259 double W = 0;
260 double RW = 0;
261 double IndVarUpdates = 0;
262 double HintWeights = 0.0;
263 int64_t NrDefsAndUses = 0;
264 float HottestBlockFreq = 0.0;
265 bool IsRemat = false;
266 };
267
268 using CandidateRegList =
269 std::array<std::pair<MCRegister, bool>, NumberOfInterferences>;
270 using FeaturesListNormalizer =
271 llvm::SmallVector<float, FeatureIDs::FeatureCount>;
272
273 /// The ML evictor (commonalities between release and development mode)
274 class MLEvictAdvisor : public RegAllocEvictionAdvisor {
275 public:
276 MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
277 MLModelRunner *Runner, const MachineBlockFrequencyInfo &MBFI,
278 const MachineLoopInfo &Loops);
279
280 protected:
getDefaultAdvisor() const281 const RegAllocEvictionAdvisor &getDefaultAdvisor() const {
282 return static_cast<const RegAllocEvictionAdvisor &>(DefaultAdvisor);
283 }
284
285 // The assumption is that if the Runner could not be constructed, we emit-ed
286 // error, and we shouldn't be asking for it here.
getRunner() const287 const MLModelRunner &getRunner() const { return *Runner; }
288
289 /// This just calls Evaluate on the Runner, but in the development mode
290 /// case, if we're just capturing the log of the default advisor, it needs
291 /// to call the latter instead, so we need to pass all the necessary
292 /// parameters for it. In the development case, it will also log.
293 virtual int64_t
294 tryFindEvictionCandidatePosition(const LiveInterval &VirtReg,
295 const AllocationOrder &Order,
296 unsigned OrderLimit, uint8_t CostPerUseLimit,
297 const SmallVirtRegSet &FixedRegisters) const;
298
299 /// Load the features of the given VirtReg (allocated or not) at column Pos,
300 /// but if that can't be evicted, return false instead.
301 bool
302 loadInterferenceFeatures(const LiveInterval &VirtReg, MCRegister PhysReg,
303 bool IsHint, const SmallVirtRegSet &FixedRegisters,
304 llvm::SmallVectorImpl<float> &Largest, size_t Pos,
305 SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const;
306
307 private:
308 static float getInitialQueueSize(const MachineFunction &MF);
309
310 MCRegister tryFindEvictionCandidate(
311 const LiveInterval &VirtReg, const AllocationOrder &Order,
312 uint8_t CostPerUseLimit,
313 const SmallVirtRegSet &FixedRegisters) const override;
314
315 void extractFeatures(const SmallVectorImpl<const LiveInterval *> &Intervals,
316 llvm::SmallVectorImpl<float> &Largest, size_t Pos,
317 int64_t IsHint, int64_t LocalIntfsCount, float NrUrgent,
318 SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const;
319
320 // Point-in-time: we didn't learn this, so we always delegate to the
321 // default.
canEvictHintInterference(const LiveInterval & VirtReg,MCRegister PhysReg,const SmallVirtRegSet & FixedRegisters) const322 bool canEvictHintInterference(
323 const LiveInterval &VirtReg, MCRegister PhysReg,
324 const SmallVirtRegSet &FixedRegisters) const override {
325 return getDefaultAdvisor().canEvictHintInterference(VirtReg, PhysReg,
326 FixedRegisters);
327 }
328
329 const LIFeatureComponents &
330 getLIFeatureComponents(const LiveInterval &LI) const;
331
332 // Hold on to a default advisor for:
333 // 1) the implementation of canEvictHintInterference, because we didn't
334 // learn that nuance yet; 2) for bootstrapping (logging) in the development
335 // mode case.
336 const DefaultEvictionAdvisor DefaultAdvisor;
337 MLModelRunner *const Runner;
338 const MachineBlockFrequencyInfo &MBFI;
339 const MachineLoopInfo &Loops;
340
341 // Indices of those features we don't want to normalize.
342 // This could be static and shared, but its initialization is non-trivial.
343 std::bitset<FeatureIDs::FeatureCount> DoNotNormalize;
344 const float InitialQSize;
345
346 using RegID = unsigned;
347 mutable DenseMap<RegID, LIFeatureComponents> CachedFeatures;
348 };
349
350 #define _DECL_FEATURES(type, name, shape, _) \
351 TensorSpec::createSpec<type>(#name, shape),
352
353 // ===================================
354 // Release (AOT) - specifics
355 // ===================================
356 class ReleaseModeEvictionAdvisorAnalysis final
357 : public RegAllocEvictionAdvisorAnalysis {
358 public:
ReleaseModeEvictionAdvisorAnalysis()359 ReleaseModeEvictionAdvisorAnalysis()
360 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Release) {
361 if (EnableDevelopmentFeatures) {
362 InputFeatures = {RA_EVICT_FEATURES_LIST(
363 _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES)
364 RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)};
365 } else {
366 InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)};
367 }
368 }
369 // support for isa<> and dyn_cast.
classof(const RegAllocEvictionAdvisorAnalysis * R)370 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
371 return R->getAdvisorMode() == AdvisorMode::Release;
372 }
373
374 private:
375 std::vector<TensorSpec> InputFeatures;
376
getAnalysisUsage(AnalysisUsage & AU) const377 void getAnalysisUsage(AnalysisUsage &AU) const override {
378 AU.addRequired<MachineBlockFrequencyInfo>();
379 AU.addRequired<MachineLoopInfo>();
380 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
381 }
382
383 std::unique_ptr<RegAllocEvictionAdvisor>
getAdvisor(const MachineFunction & MF,const RAGreedy & RA)384 getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
385 if (!Runner)
386 Runner = std::make_unique<ReleaseModeModelRunner<CompiledModelType>>(
387 MF.getFunction().getContext(), InputFeatures, DecisionName);
388 return std::make_unique<MLEvictAdvisor>(
389 MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
390 getAnalysis<MachineLoopInfo>());
391 }
392 std::unique_ptr<ReleaseModeModelRunner<CompiledModelType>> Runner;
393 };
394
395 // ===================================
396 // Development mode-specifics
397 // ===================================
398 //
399 // Features we log
400 #ifdef LLVM_HAVE_TFLITE
401 static const TensorSpec Output =
402 TensorSpec::createSpec<int64_t>(DecisionName, {1});
403 static const TensorSpec Reward = TensorSpec::createSpec<float>("reward", {1});
404
405 // Features we bind on the model. The tensor names have a prefix, and we also
406 // need to include some tensors that are expected to be present by the
407 // training algo.
408 // TODO: can we just get rid of these?
409 #define _DECL_TRAIN_FEATURES(type, name, shape, _) \
410 TensorSpec::createSpec<type>(std::string("action_") + #name, shape),
411
412 class DevelopmentModeEvictAdvisor : public MLEvictAdvisor {
413 public:
DevelopmentModeEvictAdvisor(const MachineFunction & MF,const RAGreedy & RA,MLModelRunner * Runner,const MachineBlockFrequencyInfo & MBFI,const MachineLoopInfo & Loops,Logger * Log)414 DevelopmentModeEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
415 MLModelRunner *Runner,
416 const MachineBlockFrequencyInfo &MBFI,
417 const MachineLoopInfo &Loops, Logger *Log)
418 : MLEvictAdvisor(MF, RA, Runner, MBFI, Loops), Log(Log) {}
419
420 private:
421 int64_t tryFindEvictionCandidatePosition(
422 const LiveInterval &VirtReg, const AllocationOrder &Order,
423 unsigned OrderLimit, uint8_t CostPerUseLimit,
424 const SmallVirtRegSet &FixedRegisters) const override;
425
426 Logger *const Log;
427 };
428
429 class DevelopmentModeEvictionAdvisorAnalysis final
430 : public RegAllocEvictionAdvisorAnalysis {
431 public:
DevelopmentModeEvictionAdvisorAnalysis()432 DevelopmentModeEvictionAdvisorAnalysis()
433 : RegAllocEvictionAdvisorAnalysis(AdvisorMode::Development) {
434 if (EnableDevelopmentFeatures) {
435 InputFeatures = {RA_EVICT_FEATURES_LIST(
436 _DECL_FEATURES) RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_FEATURES)
437 RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_FEATURES)};
438 TrainingInputFeatures = {
439 RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES)
440 RA_EVICT_FIRST_DEVELOPMENT_FEATURE(_DECL_TRAIN_FEATURES)
441 RA_EVICT_REST_DEVELOPMENT_FEATURES(_DECL_TRAIN_FEATURES)
442 TensorSpec::createSpec<float>("action_discount", {1}),
443 TensorSpec::createSpec<int32_t>("action_step_type", {1}),
444 TensorSpec::createSpec<float>("action_reward", {1})};
445 } else {
446 InputFeatures = {RA_EVICT_FEATURES_LIST(_DECL_FEATURES)};
447 TrainingInputFeatures = {
448 RA_EVICT_FEATURES_LIST(_DECL_TRAIN_FEATURES)
449 TensorSpec::createSpec<float>("action_discount", {1}),
450 TensorSpec::createSpec<int32_t>("action_step_type", {1}),
451 TensorSpec::createSpec<float>("action_reward", {1})};
452 }
453 }
454 // support for isa<> and dyn_cast.
classof(const RegAllocEvictionAdvisorAnalysis * R)455 static bool classof(const RegAllocEvictionAdvisorAnalysis *R) {
456 return R->getAdvisorMode() == AdvisorMode::Development;
457 }
458
logRewardIfNeeded(const MachineFunction & MF,llvm::function_ref<float ()> GetReward)459 void logRewardIfNeeded(const MachineFunction &MF,
460 llvm::function_ref<float()> GetReward) override {
461 if (!Log)
462 return;
463 // The function pass manager would run all the function passes for a
464 // function, so we assume the last context belongs to this function. If
465 // this invariant ever changes, we can implement at that time switching
466 // contexts. At this point, it'd be an error
467 if (Log->currentContext() != MF.getName()) {
468 MF.getFunction().getContext().emitError(
469 "The training log context shouldn't have had changed.");
470 }
471 if (Log->hasObservationInProgress())
472 Log->logReward<float>(GetReward());
473 }
474
475 private:
476 std::vector<TensorSpec> InputFeatures;
477 std::vector<TensorSpec> TrainingInputFeatures;
478
getAnalysisUsage(AnalysisUsage & AU) const479 void getAnalysisUsage(AnalysisUsage &AU) const override {
480 AU.addRequired<MachineBlockFrequencyInfo>();
481 AU.addRequired<MachineLoopInfo>();
482 RegAllocEvictionAdvisorAnalysis::getAnalysisUsage(AU);
483 }
484
doInitialization(Module & M)485 bool doInitialization(Module &M) override {
486 LLVMContext &Ctx = M.getContext();
487 if (ModelUnderTraining.empty() && TrainingLog.empty()) {
488 Ctx.emitError("Regalloc development mode should be requested with at "
489 "least logging enabled and/or a training model");
490 return false;
491 }
492 if (ModelUnderTraining.empty())
493 Runner = std::make_unique<NoInferenceModelRunner>(Ctx, InputFeatures);
494 else
495 Runner = ModelUnderTrainingRunner::createAndEnsureValid(
496 Ctx, ModelUnderTraining, DecisionName, TrainingInputFeatures);
497 if (!Runner) {
498 Ctx.emitError("Regalloc: could not set up the model runner");
499 return false;
500 }
501 if (TrainingLog.empty())
502 return false;
503 std::error_code EC;
504 auto OS = std::make_unique<raw_fd_ostream>(TrainingLog, EC);
505 if (EC) {
506 M.getContext().emitError(EC.message() + ":" + TrainingLog);
507 return false;
508 }
509 std::vector<TensorSpec> LFS = InputFeatures;
510 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(Runner.get()))
511 append_range(LFS, MUTR->extraOutputsForLoggingSpecs());
512 // We always log the output; in particular, if we're not evaluating, we
513 // don't have an output spec json file. That's why we handle the
514 // 'normal' output separately.
515 LFS.push_back(Output);
516
517 Log = std::make_unique<Logger>(std::move(OS), LFS, Reward,
518 /*IncludeReward*/ true);
519 return false;
520 }
521
522 std::unique_ptr<RegAllocEvictionAdvisor>
getAdvisor(const MachineFunction & MF,const RAGreedy & RA)523 getAdvisor(const MachineFunction &MF, const RAGreedy &RA) override {
524 if (!Runner)
525 return nullptr;
526 if (Log)
527 Log->switchContext(MF.getName());
528 return std::make_unique<DevelopmentModeEvictAdvisor>(
529 MF, RA, Runner.get(), getAnalysis<MachineBlockFrequencyInfo>(),
530 getAnalysis<MachineLoopInfo>(), Log.get());
531 }
532
533 std::unique_ptr<MLModelRunner> Runner;
534 std::unique_ptr<Logger> Log;
535 };
536
537 #endif //#ifdef LLVM_HAVE_TFLITE
538 } // namespace
539
getInitialQueueSize(const MachineFunction & MF)540 float MLEvictAdvisor::getInitialQueueSize(const MachineFunction &MF) {
541 auto &MRI = MF.getRegInfo();
542 float Ret = 0.0;
543 for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
544 Register Reg = Register::index2VirtReg(I);
545 if (MRI.reg_nodbg_empty(Reg))
546 continue;
547 ++Ret;
548 }
549 return Ret;
550 }
551
MLEvictAdvisor(const MachineFunction & MF,const RAGreedy & RA,MLModelRunner * Runner,const MachineBlockFrequencyInfo & MBFI,const MachineLoopInfo & Loops)552 MLEvictAdvisor::MLEvictAdvisor(const MachineFunction &MF, const RAGreedy &RA,
553 MLModelRunner *Runner,
554 const MachineBlockFrequencyInfo &MBFI,
555 const MachineLoopInfo &Loops)
556 : RegAllocEvictionAdvisor(MF, RA), DefaultAdvisor(MF, RA),
557 Runner(std::move(Runner)), MBFI(MBFI), Loops(Loops),
558 InitialQSize(MLEvictAdvisor::getInitialQueueSize(MF)) {
559 assert(this->Runner);
560 DoNotNormalize.set(FeatureIDs::mask);
561 DoNotNormalize.set(FeatureIDs::is_free);
562 DoNotNormalize.set(FeatureIDs::is_hint);
563 DoNotNormalize.set(FeatureIDs::is_local);
564 DoNotNormalize.set(FeatureIDs::min_stage);
565 DoNotNormalize.set(FeatureIDs::max_stage);
566 DoNotNormalize.set(FeatureIDs::progress);
567 }
568
tryFindEvictionCandidatePosition(const LiveInterval &,const AllocationOrder &,unsigned,uint8_t,const SmallVirtRegSet &) const569 int64_t MLEvictAdvisor::tryFindEvictionCandidatePosition(
570 const LiveInterval &, const AllocationOrder &, unsigned, uint8_t,
571 const SmallVirtRegSet &) const {
572 int64_t Ret = Runner->evaluate<int64_t>();
573 assert(Ret >= 0);
574 assert(Ret <= CandidateVirtRegPos);
575 return Ret;
576 }
577
loadInterferenceFeatures(const LiveInterval & VirtReg,MCRegister PhysReg,bool IsHint,const SmallVirtRegSet & FixedRegisters,llvm::SmallVectorImpl<float> & Largest,size_t Pos,llvm::SmallVectorImpl<LRStartEndInfo> & LRPosInfo) const578 bool MLEvictAdvisor::loadInterferenceFeatures(
579 const LiveInterval &VirtReg, MCRegister PhysReg, bool IsHint,
580 const SmallVirtRegSet &FixedRegisters,
581 llvm::SmallVectorImpl<float> &Largest, size_t Pos,
582 llvm::SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const {
583 // It is only possible to evict virtual register interference.
584 if (Matrix->checkInterference(VirtReg, PhysReg) > LiveRegMatrix::IK_VirtReg) {
585 // leave unavailable
586 return false;
587 }
588
589 const bool IsLocal = LIS->intervalIsInOneMBB(VirtReg);
590 int64_t LocalIntfs = 0;
591 float NrUrgent = 0.0f;
592
593 // The cascade tracking is the same as in the default advisor
594 unsigned Cascade = RA.getExtraInfo().getCascadeOrCurrentNext(VirtReg.reg());
595
596 SmallVector<const LiveInterval *, MaxInterferences> InterferingIntervals;
597 for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units) {
598 LiveIntervalUnion::Query &Q = Matrix->query(VirtReg, *Units);
599 // Different from the default heuristic, we don't make any assumptions
600 // about what having more than 10 results in the query may mean.
601 const auto &IFIntervals = Q.interferingVRegs(EvictInterferenceCutoff);
602 if (IFIntervals.empty() && InterferingIntervals.empty())
603 continue;
604 if (IFIntervals.size() >= EvictInterferenceCutoff)
605 return false;
606 InterferingIntervals.append(IFIntervals.begin(), IFIntervals.end());
607 for (const LiveInterval *Intf : reverse(IFIntervals)) {
608 assert(Intf->reg().isVirtual() &&
609 "Only expecting virtual register interference from query");
610 // This is the same set of legality checks as in the default case: don't
611 // try to evict fixed regs or 'done' ones. Also don't break cascades,
612 // except in the urgent case, with the same nuances used in the default
613 // heuristic.
614 // We could try sharing this between the advisors, but it may end up
615 // more complex than it is right now.
616 if (FixedRegisters.count(Intf->reg()))
617 return false;
618 if (RA.getExtraInfo().getStage(*Intf) == RS_Done)
619 return false;
620 bool Urgent =
621 !VirtReg.isSpillable() &&
622 (Intf->isSpillable() ||
623 RegClassInfo.getNumAllocatableRegs(MRI->getRegClass(VirtReg.reg())) <
624 RegClassInfo.getNumAllocatableRegs(
625 MRI->getRegClass(Intf->reg())));
626 // Only evict older cascades or live ranges without a cascade.
627 unsigned IntfCascade = RA.getExtraInfo().getCascade(Intf->reg());
628 if (Cascade <= IntfCascade) {
629 if (!Urgent)
630 return false;
631 ++NrUrgent;
632 }
633
634 LocalIntfs += (IsLocal && LIS->intervalIsInOneMBB(*Intf) &&
635 (!EnableLocalReassign || !canReassign(*Intf, PhysReg)));
636 }
637 }
638 // OK, so if we made it this far, this LR is an eviction candidate, load its
639 // features.
640 extractFeatures(InterferingIntervals, Largest, Pos, IsHint, LocalIntfs,
641 NrUrgent, LRPosInfo);
642 return true;
643 }
644
tryFindEvictionCandidate(const LiveInterval & VirtReg,const AllocationOrder & Order,uint8_t CostPerUseLimit,const SmallVirtRegSet & FixedRegisters) const645 MCRegister MLEvictAdvisor::tryFindEvictionCandidate(
646 const LiveInterval &VirtReg, const AllocationOrder &Order,
647 uint8_t CostPerUseLimit, const SmallVirtRegSet &FixedRegisters) const {
648 auto MaybeOrderLimit = getOrderLimit(VirtReg, Order, CostPerUseLimit);
649 if (!MaybeOrderLimit)
650 return MCRegister::NoRegister;
651 unsigned OrderLimit = *MaybeOrderLimit;
652
653 // The heuristic sets initial costs such as, if CostPerUseLimit is
654 // max<uint8_t>, then any of the costs of the legally-evictable intervals
655 // would be lower. When that happens, one of those will be selected.
656 // Therefore, we allow the candidate be selected, unless the candidate is
657 // unspillable, in which case it would be incorrect to not find a register
658 // for it.
659 const bool MustFindEviction =
660 (!VirtReg.isSpillable() && CostPerUseLimit == static_cast<uint8_t>(~0u));
661 // Number of available candidates - if 0, no need to continue.
662 size_t Available = 0;
663 // Make sure we don't have leftover partial state from an attempt where we
664 // had no available candidates and bailed out early.
665 resetInputs(*Runner);
666
667 // Track the index->register mapping because AllocationOrder doesn't do that
668 // and we'd have to scan it.
669 // Also track their mask, to write asserts/debug.
670 CandidateRegList Regs;
671 Regs.fill({0, false});
672
673 // Track the largest value of features seen during this eviction session. We
674 // only normalize (some of) the float features, but it's just simpler to
675 // dimension 'Largest' to all the features, especially since we have the
676 // 'DoNotNormalize' list.
677 FeaturesListNormalizer Largest(FeatureIDs::FeatureCount, 0.0);
678
679 // Same overal idea as in the default eviction policy - we visit the values
680 // of AllocationOrder one at a time. If it's not legally available, we mask
681 // off the corresponding feature column (==do nothing because we already
682 // reset all the features to 0) Use Pos to capture the column we load
683 // features at - in AllocationOrder order.
684 size_t Pos = 0;
685 SmallVector<LRStartEndInfo, NumberOfInterferences> LRPosInfo;
686 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit); I != E;
687 ++I, ++Pos) {
688 MCRegister PhysReg = *I;
689 assert(!Regs[Pos].second);
690 assert(PhysReg);
691 if (!canAllocatePhysReg(CostPerUseLimit, PhysReg)) {
692 continue;
693 }
694 if (loadInterferenceFeatures(VirtReg, PhysReg, I.isHint(), FixedRegisters,
695 Largest, Pos, LRPosInfo)) {
696 ++Available;
697 Regs[Pos] = std::make_pair(PhysReg, true);
698 }
699 }
700 if (Available == 0) {
701 // Nothing to decide, nothing to learn.
702 assert(!MustFindEviction);
703 return MCRegister::NoRegister;
704 }
705 const size_t ValidPosLimit = Pos;
706 // If we must find eviction, the candidate should be masked out of the
707 // decision making process.
708 Regs[CandidateVirtRegPos].second = !MustFindEviction;
709 if (!MustFindEviction)
710 extractFeatures(SmallVector<const LiveInterval *, 1>(1, &VirtReg), Largest,
711 CandidateVirtRegPos, /*IsHint*/ 0,
712 /*LocalIntfsCount*/ 0,
713 /*NrUrgent*/ 0.0, LRPosInfo);
714 assert(InitialQSize > 0.0 && "We couldn't have gotten here if we had "
715 "nothing to allocate initially.");
716 #ifdef LLVM_HAVE_TFLITE
717 if (EnableDevelopmentFeatures) {
718 extractInstructionFeatures(
719 LRPosInfo, Runner,
720 [this](SlotIndex InputIndex) -> int {
721 auto *CurrentMachineInstruction =
722 LIS->getInstructionFromIndex(InputIndex);
723 if (!CurrentMachineInstruction) {
724 return -1;
725 }
726 return CurrentMachineInstruction->getOpcode();
727 },
728 [this](SlotIndex InputIndex) -> float {
729 auto *CurrentMachineInstruction =
730 LIS->getInstructionFromIndex(InputIndex);
731 return MBFI.getBlockFreqRelativeToEntryBlock(
732 CurrentMachineInstruction->getParent());
733 },
734 [this](SlotIndex InputIndex) -> MachineBasicBlock * {
735 auto *CurrentMachineInstruction =
736 LIS->getInstructionFromIndex(InputIndex);
737 return CurrentMachineInstruction->getParent();
738 },
739 FeatureIDs::instructions, FeatureIDs::instructions_mapping,
740 FeatureIDs::mbb_frequencies, FeatureIDs::mbb_mapping,
741 LIS->getSlotIndexes()->getLastIndex());
742 }
743 #endif // #ifdef LLVM_HAVE_TFLITE
744 // Normalize the features.
745 for (auto &V : Largest)
746 V = V ? V : 1.0;
747 for (size_t FeatureIndex = 0; FeatureIndex < FeatureIDs::FeatureCount;
748 ++FeatureIndex) {
749 if (DoNotNormalize.test(FeatureIndex))
750 continue;
751 for (size_t Pos = 0; Pos < NumberOfInterferences; ++Pos) {
752 Runner->getTensor<float>(FeatureIndex)[Pos] /= Largest[FeatureIndex];
753 }
754 }
755 *Runner->getTensor<float>(FeatureIDs::progress) =
756 static_cast<float>(RA.getQueueSize()) / InitialQSize;
757
758 // Get a decision.
759 size_t CandidatePos = tryFindEvictionCandidatePosition(
760 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
761 // The contract with the ML side is that CandidatePos is mask == 1 (i.e.
762 // Regs[CandidatePos].second)
763 assert(Regs[CandidatePos].second);
764 if (CandidatePos == CandidateVirtRegPos) {
765 assert(!MustFindEviction);
766 return MCRegister::NoRegister;
767 }
768 assert(CandidatePos < ValidPosLimit);
769 (void)ValidPosLimit;
770 return Regs[CandidatePos].first;
771 }
772
773 const LIFeatureComponents &
getLIFeatureComponents(const LiveInterval & LI) const774 MLEvictAdvisor::getLIFeatureComponents(const LiveInterval &LI) const {
775 RegID ID = LI.reg().id();
776 LIFeatureComponents Empty;
777 auto I = CachedFeatures.insert(std::make_pair(ID, Empty));
778 LIFeatureComponents &Ret = I.first->getSecond();
779 if (!I.second)
780 return Ret;
781
782 SmallPtrSet<MachineInstr *, 8> Visited;
783 const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
784
785 for (MachineRegisterInfo::reg_instr_nodbg_iterator
786 I = MRI->reg_instr_nodbg_begin(LI.reg()),
787 E = MRI->reg_instr_nodbg_end();
788 I != E;) {
789 MachineInstr *MI = &*(I++);
790
791 ++Ret.NrDefsAndUses;
792 if (!Visited.insert(MI).second)
793 continue;
794
795 if (MI->isIdentityCopy() || MI->isImplicitDef())
796 continue;
797
798 bool Reads, Writes;
799 std::tie(Reads, Writes) = MI->readsWritesVirtualRegister(LI.reg());
800
801 float Freq = MBFI.getBlockFreqRelativeToEntryBlock(MI->getParent());
802 Ret.HottestBlockFreq = std::max(Freq, Ret.HottestBlockFreq);
803
804 Ret.R += (Reads && !Writes) * Freq;
805 Ret.W += (!Reads && Writes) * Freq;
806 Ret.RW += (Reads && Writes) * Freq;
807
808 auto *MBB = MI->getParent();
809 auto *Loop = Loops.getLoopFor(MBB);
810 bool IsExiting = Loop ? Loop->isLoopExiting(MBB) : false;
811
812 if (Writes && IsExiting && LIS->isLiveOutOfMBB(LI, MBB))
813 Ret.IndVarUpdates += Freq;
814
815 if (MI->isCopy() && VirtRegAuxInfo::copyHint(MI, LI.reg(), TRI, *MRI))
816 Ret.HintWeights += Freq;
817 }
818 Ret.IsRemat = VirtRegAuxInfo::isRematerializable(
819 LI, *LIS, *VRM, *MF.getSubtarget().getInstrInfo());
820 return Ret;
821 }
822
823 // Overall, this currently mimics what we do for weight calculation, but instead
824 // of accummulating the various features, we keep them separate.
extractFeatures(const SmallVectorImpl<const LiveInterval * > & Intervals,llvm::SmallVectorImpl<float> & Largest,size_t Pos,int64_t IsHint,int64_t LocalIntfsCount,float NrUrgent,SmallVectorImpl<LRStartEndInfo> & LRPosInfo) const825 void MLEvictAdvisor::extractFeatures(
826 const SmallVectorImpl<const LiveInterval *> &Intervals,
827 llvm::SmallVectorImpl<float> &Largest, size_t Pos, int64_t IsHint,
828 int64_t LocalIntfsCount, float NrUrgent,
829 SmallVectorImpl<LRStartEndInfo> &LRPosInfo) const {
830 int64_t NrDefsAndUses = 0;
831 int64_t NrBrokenHints = 0;
832 double R = 0.0;
833 double W = 0.0;
834 double RW = 0.0;
835 double IndVarUpdates = 0.0;
836 double HintWeights = 0.0;
837 float StartBBFreq = 0.0;
838 float EndBBFreq = 0.0;
839 float HottestBlockFreq = 0.0;
840 int32_t NrRematerializable = 0;
841 float TotalWeight = 0.0;
842
843 SlotIndex EndSI = LIS->getSlotIndexes()->getZeroIndex();
844 SlotIndex StartSI = LIS->getSlotIndexes()->getLastIndex();
845 int64_t MaxStage = 0;
846 int64_t MinStage =
847 Intervals.empty() ? 0 : std::numeric_limits<int64_t>::max();
848
849 for (const auto *L : Intervals) {
850 const LiveInterval &LI = *L;
851 MaxStage = std::max<int64_t>(
852 MaxStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
853 MinStage = std::min<int64_t>(
854 MinStage, static_cast<int64_t>(RA.getExtraInfo().getStage(LI)));
855
856 TotalWeight = std::max(TotalWeight, LI.weight());
857
858 if (LI.beginIndex() < StartSI)
859 StartSI = LI.beginIndex();
860
861 if (LI.endIndex() > EndSI)
862 EndSI = LI.endIndex();
863 const LIFeatureComponents &LIFC = getLIFeatureComponents(LI);
864 NrBrokenHints += VRM->hasPreferredPhys(LI.reg());
865
866 NrDefsAndUses += LIFC.NrDefsAndUses;
867 HottestBlockFreq = std::max(HottestBlockFreq, LIFC.HottestBlockFreq);
868 R += LIFC.R;
869 W += LIFC.W;
870 RW += LIFC.RW;
871
872 IndVarUpdates += LIFC.IndVarUpdates;
873
874 HintWeights += LIFC.HintWeights;
875 NrRematerializable += LIFC.IsRemat;
876
877 if (EnableDevelopmentFeatures) {
878 for (auto CurrentSegment : LI) {
879 LRPosInfo.push_back(
880 LRStartEndInfo{CurrentSegment.start, CurrentSegment.end, Pos});
881 }
882 }
883 }
884 size_t Size = 0;
885 if (!Intervals.empty()) {
886 StartBBFreq =
887 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(StartSI));
888 if (EndSI >= LIS->getSlotIndexes()->getLastIndex())
889 EndSI = LIS->getSlotIndexes()->getLastIndex().getPrevIndex();
890 EndBBFreq =
891 MBFI.getBlockFreqRelativeToEntryBlock(LIS->getMBBFromIndex(EndSI));
892 Size = StartSI.distance(EndSI);
893 }
894 // Set the features at the column 'Pos'.
895 #define SET(ID, TYPE, VAL) \
896 do { \
897 Runner->getTensor<TYPE>(FeatureIDs::ID)[Pos] = static_cast<TYPE>(VAL); \
898 if (!DoNotNormalize.test(FeatureIDs::ID)) \
899 Largest[FeatureIDs::ID] = \
900 std::max(Largest[FeatureIDs::ID], static_cast<float>(VAL)); \
901 } while (false)
902 SET(mask, int64_t, 1);
903 SET(is_free, int64_t, Intervals.empty());
904 SET(nr_urgent, float, NrUrgent);
905 SET(nr_broken_hints, float, NrBrokenHints);
906 SET(is_hint, int64_t, IsHint);
907 SET(is_local, int64_t, LocalIntfsCount);
908 SET(nr_rematerializable, float, NrRematerializable);
909 SET(nr_defs_and_uses, float, NrDefsAndUses);
910 SET(weighed_reads_by_max, float, R);
911 SET(weighed_writes_by_max, float, W);
912 SET(weighed_read_writes_by_max, float, RW);
913 SET(weighed_indvars_by_max, float, IndVarUpdates);
914 SET(hint_weights_by_max, float, HintWeights);
915 SET(start_bb_freq_by_max, float, StartBBFreq);
916 SET(end_bb_freq_by_max, float, EndBBFreq);
917 SET(hottest_bb_freq_by_max, float, HottestBlockFreq);
918 SET(liverange_size, float, Size);
919 SET(use_def_density, float, TotalWeight);
920 SET(max_stage, int64_t, MaxStage);
921 SET(min_stage, int64_t, MinStage);
922 #undef SET
923 }
924
extractInstructionFeatures(SmallVectorImpl<LRStartEndInfo> & LRPosInfo,MLModelRunner * RegallocRunner,function_ref<int (SlotIndex)> GetOpcode,function_ref<float (SlotIndex)> GetMBBFreq,function_ref<MachineBasicBlock * (SlotIndex)> GetMBBReference,const int InstructionsIndex,const int InstructionsMappingIndex,const int MBBFreqIndex,const int MBBMappingIndex,const SlotIndex LastIndex)925 void extractInstructionFeatures(
926 SmallVectorImpl<LRStartEndInfo> &LRPosInfo, MLModelRunner *RegallocRunner,
927 function_ref<int(SlotIndex)> GetOpcode,
928 function_ref<float(SlotIndex)> GetMBBFreq,
929 function_ref<MachineBasicBlock *(SlotIndex)> GetMBBReference,
930 const int InstructionsIndex, const int InstructionsMappingIndex,
931 const int MBBFreqIndex, const int MBBMappingIndex,
932 const SlotIndex LastIndex) {
933 // This function extracts instruction based features relevant to the eviction
934 // problem currently being solved. This function ends up extracting two
935 // tensors.
936 // 1 - A vector of size max instruction count. It contains the opcodes of the
937 // instructions spanned by all the intervals in the current instance of the
938 // eviction problem.
939 // 2 - A binary mapping matrix of size (LR count * max
940 // instruction count) which maps where the LRs are live to the actual opcodes
941 // for which they are live.
942 // 3 - A vector of size max supported MBB count storing MBB frequencies,
943 // encompassing all of the MBBs covered by the eviction problem.
944 // 4 - A vector of size max instruction count of indices to members of the MBB
945 // frequency vector, mapping each instruction to its associated MBB.
946
947 // Start off by sorting the segments based on the beginning slot index.
948 std::sort(
949 LRPosInfo.begin(), LRPosInfo.end(),
950 [](LRStartEndInfo A, LRStartEndInfo B) { return A.Begin < B.Begin; });
951 size_t InstructionIndex = 0;
952 size_t CurrentSegmentIndex = 0;
953 SlotIndex CurrentIndex = LRPosInfo[0].Begin;
954 std::map<MachineBasicBlock *, size_t> VisitedMBBs;
955 size_t CurrentMBBIndex = 0;
956 // This loop processes all the segments sequentially by starting at the
957 // beginning slot index of the first segment, iterating through all the slot
958 // indices before the end slot index of that segment (while checking for
959 // overlaps with segments that start at greater slot indices). After hitting
960 // that end index, the current segment being processed gets bumped until they
961 // are all processed or the max instruction count is hit, where everything is
962 // just truncated.
963 while (true) {
964 // If the index that we are currently at is within the current segment and
965 // we haven't hit the max instruction count, continue processing the current
966 // segment.
967 while (CurrentIndex <= LRPosInfo[CurrentSegmentIndex].End &&
968 InstructionIndex < ModelMaxSupportedInstructionCount) {
969 int CurrentOpcode = GetOpcode(CurrentIndex);
970 // If the current machine instruction is null, skip it
971 if (CurrentOpcode == -1) {
972 // If we're currently at the last index in the SlotIndex analysis,
973 // we can't go any further, so return from the function
974 if (CurrentIndex >= LastIndex) {
975 return;
976 }
977 CurrentIndex = CurrentIndex.getNextIndex();
978 continue;
979 }
980 MachineBasicBlock *CurrentMBBReference = GetMBBReference(CurrentIndex);
981 if (VisitedMBBs.count(CurrentMBBReference) == 0) {
982 VisitedMBBs[CurrentMBBReference] = CurrentMBBIndex;
983 ++CurrentMBBIndex;
984 }
985 extractMBBFrequency(CurrentIndex, InstructionIndex, VisitedMBBs,
986 GetMBBFreq, CurrentMBBReference, RegallocRunner,
987 MBBFreqIndex, MBBMappingIndex);
988 // Current code assumes we're not going to get any disjointed segments
989 assert(LRPosInfo[CurrentSegmentIndex].Begin <= CurrentIndex);
990 RegallocRunner->getTensor<int64_t>(InstructionsIndex)[InstructionIndex] =
991 CurrentOpcode < OpcodeValueCutoff ? CurrentOpcode : 0;
992 // set value in the binary mapping matrix for the current instruction
993 auto CurrentSegmentPosition = LRPosInfo[CurrentSegmentIndex].Pos;
994 RegallocRunner->getTensor<int64_t>(
995 InstructionsMappingIndex)[CurrentSegmentPosition *
996 ModelMaxSupportedInstructionCount +
997 InstructionIndex] = 1;
998 // All of the segments are sorted based on the beginning slot index, but
999 // this doesn't mean that the beginning slot index of the next segment is
1000 // after the end segment of the one being currently processed. This while
1001 // loop checks for overlapping segments and modifies the portion of the
1002 // column in the mapping matrix for the currently processed instruction
1003 // for the LR it is checking. Also make sure that the beginning of the
1004 // current segment we're checking for overlap in is less than the current
1005 // index, otherwise we're done checking overlaps.
1006 size_t OverlapCheckCurrentSegment = CurrentSegmentIndex + 1;
1007 while (OverlapCheckCurrentSegment < LRPosInfo.size() &&
1008 LRPosInfo[OverlapCheckCurrentSegment].Begin <= CurrentIndex) {
1009 auto OverlapCurrentSegmentPosition =
1010 LRPosInfo[OverlapCheckCurrentSegment].Pos;
1011 if (LRPosInfo[OverlapCheckCurrentSegment].End >= CurrentIndex) {
1012 RegallocRunner->getTensor<int64_t>(
1013 InstructionsMappingIndex)[OverlapCurrentSegmentPosition *
1014 ModelMaxSupportedInstructionCount +
1015 InstructionIndex] = 1;
1016 }
1017 ++OverlapCheckCurrentSegment;
1018 }
1019 ++InstructionIndex;
1020 if (CurrentIndex >= LastIndex) {
1021 return;
1022 }
1023 CurrentIndex = CurrentIndex.getNextIndex();
1024 }
1025 // if we've just finished processing through the last segment or if we've
1026 // hit the maximum number of instructions, break out of the loop.
1027 if (CurrentSegmentIndex == LRPosInfo.size() - 1 ||
1028 InstructionIndex >= ModelMaxSupportedInstructionCount) {
1029 break;
1030 }
1031 // If the segments are not overlapping, we need to move to the beginning
1032 // index of the next segment to avoid having instructions not attached to
1033 // any register.
1034 if (LRPosInfo[CurrentSegmentIndex + 1].Begin >
1035 LRPosInfo[CurrentSegmentIndex].End) {
1036 CurrentIndex = LRPosInfo[CurrentSegmentIndex + 1].Begin;
1037 }
1038 ++CurrentSegmentIndex;
1039 }
1040 }
1041
extractMBBFrequency(const SlotIndex CurrentIndex,const size_t CurrentInstructionIndex,std::map<MachineBasicBlock *,size_t> & VisitedMBBs,function_ref<float (SlotIndex)> GetMBBFreq,MachineBasicBlock * CurrentMBBReference,MLModelRunner * RegallocRunner,const int MBBFreqIndex,const int MBBMappingIndex)1042 void extractMBBFrequency(const SlotIndex CurrentIndex,
1043 const size_t CurrentInstructionIndex,
1044 std::map<MachineBasicBlock *, size_t> &VisitedMBBs,
1045 function_ref<float(SlotIndex)> GetMBBFreq,
1046 MachineBasicBlock *CurrentMBBReference,
1047 MLModelRunner *RegallocRunner, const int MBBFreqIndex,
1048 const int MBBMappingIndex) {
1049 size_t CurrentMBBIndex = VisitedMBBs[CurrentMBBReference];
1050 float CurrentMBBFreq = GetMBBFreq(CurrentIndex);
1051 if (CurrentMBBIndex < ModelMaxSupportedMBBCount) {
1052 RegallocRunner->getTensor<float>(MBBFreqIndex)[CurrentMBBIndex] =
1053 CurrentMBBFreq;
1054 RegallocRunner->getTensor<int64_t>(
1055 MBBMappingIndex)[CurrentInstructionIndex] = CurrentMBBIndex;
1056 }
1057 }
1058
1059 // Development mode-specific implementations
1060 #ifdef LLVM_HAVE_TFLITE
1061
createDevelopmentModeAdvisor()1062 RegAllocEvictionAdvisorAnalysis *llvm::createDevelopmentModeAdvisor() {
1063 return new DevelopmentModeEvictionAdvisorAnalysis();
1064 }
1065
tryFindEvictionCandidatePosition(const LiveInterval & VirtReg,const AllocationOrder & Order,unsigned OrderLimit,uint8_t CostPerUseLimit,const SmallVirtRegSet & FixedRegisters) const1066 int64_t DevelopmentModeEvictAdvisor::tryFindEvictionCandidatePosition(
1067 const LiveInterval &VirtReg, const AllocationOrder &Order,
1068 unsigned OrderLimit, uint8_t CostPerUseLimit,
1069 const SmallVirtRegSet &FixedRegisters) const {
1070 int64_t Ret = 0;
1071 if (isa<ModelUnderTrainingRunner>(getRunner())) {
1072 Ret = MLEvictAdvisor::tryFindEvictionCandidatePosition(
1073 VirtReg, Order, OrderLimit, CostPerUseLimit, FixedRegisters);
1074 } else {
1075 MCRegister PhysReg = getDefaultAdvisor().tryFindEvictionCandidate(
1076 VirtReg, Order, CostPerUseLimit, FixedRegisters);
1077 // Find the index of the selected PhysReg. We need it for logging,
1078 // otherwise this is wasted cycles (but so would starting development mode
1079 // without a model nor logging)
1080 if (!PhysReg)
1081 Ret = CandidateVirtRegPos;
1082 else
1083 for (auto I = Order.begin(), E = Order.getOrderLimitEnd(OrderLimit);
1084 I != E; ++I, ++Ret)
1085 if (*I == PhysReg)
1086 break;
1087 }
1088 if (TrainingLog.empty())
1089 return Ret;
1090 // TODO(mtrofin): when we support optional rewards, this can go away. In the
1091 // meantime, we log the "pretend" reward (0) for the previous observation
1092 // before starting a new one.
1093 if (Log->hasObservationInProgress())
1094 Log->logReward<float>(0.0);
1095
1096 Log->startObservation();
1097 size_t CurrentFeature = 0;
1098 size_t FeatureCount = EnableDevelopmentFeatures
1099 ? FeatureIDs::FeaturesWithDevelopmentCount
1100 : FeatureIDs::FeatureCount;
1101 for (; CurrentFeature < FeatureCount; ++CurrentFeature) {
1102 Log->logTensorValue(CurrentFeature,
1103 reinterpret_cast<const char *>(
1104 getRunner().getTensorUntyped(CurrentFeature)));
1105 }
1106 if (auto *MUTR = dyn_cast<ModelUnderTrainingRunner>(&getRunner()))
1107 for (size_t I = 0; I < MUTR->extraOutputsForLoggingSpecs().size();
1108 ++I, ++CurrentFeature)
1109 Log->logTensorValue(
1110 CurrentFeature,
1111 reinterpret_cast<const char *>(MUTR->getUntypedExtraOutputValue(I)));
1112 // The output is right after the features and the extra outputs
1113 Log->logTensorValue(CurrentFeature, reinterpret_cast<const char *>(&Ret));
1114 Log->endObservation();
1115 return Ret;
1116 }
1117
runOnMachineFunction(MachineFunction & MF)1118 bool RegAllocScoring::runOnMachineFunction(MachineFunction &MF) {
1119 std::optional<float> CachedReward;
1120 auto GetReward = [&]() {
1121 if (!CachedReward)
1122 CachedReward = static_cast<float>(
1123 calculateRegAllocScore(MF, getAnalysis<MachineBlockFrequencyInfo>())
1124 .getScore());
1125 return *CachedReward;
1126 };
1127
1128 getAnalysis<RegAllocEvictionAdvisorAnalysis>().logRewardIfNeeded(MF,
1129 GetReward);
1130 getAnalysis<RegAllocPriorityAdvisorAnalysis>().logRewardIfNeeded(MF,
1131 GetReward);
1132 return false;
1133 }
1134 #endif // #ifdef LLVM_HAVE_TFLITE
1135
createReleaseModeAdvisor()1136 RegAllocEvictionAdvisorAnalysis *llvm::createReleaseModeAdvisor() {
1137 return new ReleaseModeEvictionAdvisorAnalysis();
1138 }
1139
1140 // In all cases except development mode, we don't need scoring.
1141 #if !defined(LLVM_HAVE_TFLITE)
runOnMachineFunction(MachineFunction &)1142 bool RegAllocScoring::runOnMachineFunction(MachineFunction &) { return false; }
1143 #endif
1144