1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_PGTABLE_H
3 #define _LINUX_PGTABLE_H
4
5 #include <linux/pfn.h>
6 #include <asm/pgtable.h>
7
8 #define PMD_ORDER (PMD_SHIFT - PAGE_SHIFT)
9 #define PUD_ORDER (PUD_SHIFT - PAGE_SHIFT)
10
11 #ifndef __ASSEMBLY__
12 #ifdef CONFIG_MMU
13
14 #include <linux/mm_types.h>
15 #include <linux/bug.h>
16 #include <linux/errno.h>
17 #include <asm-generic/pgtable_uffd.h>
18 #include <linux/page_table_check.h>
19
20 #if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
21 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
22 #error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
23 #endif
24
25 /*
26 * On almost all architectures and configurations, 0 can be used as the
27 * upper ceiling to free_pgtables(): on many architectures it has the same
28 * effect as using TASK_SIZE. However, there is one configuration which
29 * must impose a more careful limit, to avoid freeing kernel pgtables.
30 */
31 #ifndef USER_PGTABLES_CEILING
32 #define USER_PGTABLES_CEILING 0UL
33 #endif
34
35 /*
36 * This defines the first usable user address. Platforms
37 * can override its value with custom FIRST_USER_ADDRESS
38 * defined in their respective <asm/pgtable.h>.
39 */
40 #ifndef FIRST_USER_ADDRESS
41 #define FIRST_USER_ADDRESS 0UL
42 #endif
43
44 /*
45 * This defines the generic helper for accessing PMD page
46 * table page. Although platforms can still override this
47 * via their respective <asm/pgtable.h>.
48 */
49 #ifndef pmd_pgtable
50 #define pmd_pgtable(pmd) pmd_page(pmd)
51 #endif
52
53 #define pmd_folio(pmd) page_folio(pmd_page(pmd))
54
55 /*
56 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
57 *
58 * The pXx_index() functions return the index of the entry in the page
59 * table page which would control the given virtual address
60 *
61 * As these functions may be used by the same code for different levels of
62 * the page table folding, they are always available, regardless of
63 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
64 * because in such cases PTRS_PER_PxD equals 1.
65 */
66
pte_index(unsigned long address)67 static inline unsigned long pte_index(unsigned long address)
68 {
69 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
70 }
71
72 #ifndef pmd_index
pmd_index(unsigned long address)73 static inline unsigned long pmd_index(unsigned long address)
74 {
75 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
76 }
77 #define pmd_index pmd_index
78 #endif
79
80 #ifndef pud_index
pud_index(unsigned long address)81 static inline unsigned long pud_index(unsigned long address)
82 {
83 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
84 }
85 #define pud_index pud_index
86 #endif
87
88 #ifndef pgd_index
89 /* Must be a compile-time constant, so implement it as a macro */
90 #define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
91 #endif
92
93 #ifndef kernel_pte_init
kernel_pte_init(void * addr)94 static inline void kernel_pte_init(void *addr)
95 {
96 }
97 #define kernel_pte_init kernel_pte_init
98 #endif
99
100 #ifndef pmd_init
pmd_init(void * addr)101 static inline void pmd_init(void *addr)
102 {
103 }
104 #define pmd_init pmd_init
105 #endif
106
107 #ifndef pud_init
pud_init(void * addr)108 static inline void pud_init(void *addr)
109 {
110 }
111 #define pud_init pud_init
112 #endif
113
114 #ifndef pte_offset_kernel
pte_offset_kernel(pmd_t * pmd,unsigned long address)115 static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
116 {
117 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
118 }
119 #define pte_offset_kernel pte_offset_kernel
120 #endif
121
122 #ifdef CONFIG_HIGHPTE
123 #define __pte_map(pmd, address) \
124 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
125 #define pte_unmap(pte) do { \
126 kunmap_local((pte)); \
127 rcu_read_unlock(); \
128 } while (0)
129 #else
__pte_map(pmd_t * pmd,unsigned long address)130 static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
131 {
132 return pte_offset_kernel(pmd, address);
133 }
pte_unmap(pte_t * pte)134 static inline void pte_unmap(pte_t *pte)
135 {
136 rcu_read_unlock();
137 }
138 #endif
139
140 void pte_free_defer(struct mm_struct *mm, pgtable_t pgtable);
141
142 /* Find an entry in the second-level page table.. */
143 #ifndef pmd_offset
pmd_offset(pud_t * pud,unsigned long address)144 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
145 {
146 return pud_pgtable(*pud) + pmd_index(address);
147 }
148 #define pmd_offset pmd_offset
149 #endif
150
151 #ifndef pud_offset
pud_offset(p4d_t * p4d,unsigned long address)152 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
153 {
154 return p4d_pgtable(*p4d) + pud_index(address);
155 }
156 #define pud_offset pud_offset
157 #endif
158
pgd_offset_pgd(pgd_t * pgd,unsigned long address)159 static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
160 {
161 return (pgd + pgd_index(address));
162 };
163
164 /*
165 * a shortcut to get a pgd_t in a given mm
166 */
167 #ifndef pgd_offset
168 #define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
169 #endif
170
171 /*
172 * a shortcut which implies the use of the kernel's pgd, instead
173 * of a process's
174 */
175 #define pgd_offset_k(address) pgd_offset(&init_mm, (address))
176
177 /*
178 * In many cases it is known that a virtual address is mapped at PMD or PTE
179 * level, so instead of traversing all the page table levels, we can get a
180 * pointer to the PMD entry in user or kernel page table or translate a virtual
181 * address to the pointer in the PTE in the kernel page tables with simple
182 * helpers.
183 */
pmd_off(struct mm_struct * mm,unsigned long va)184 static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
185 {
186 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
187 }
188
pmd_off_k(unsigned long va)189 static inline pmd_t *pmd_off_k(unsigned long va)
190 {
191 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
192 }
193
virt_to_kpte(unsigned long vaddr)194 static inline pte_t *virt_to_kpte(unsigned long vaddr)
195 {
196 pmd_t *pmd = pmd_off_k(vaddr);
197
198 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
199 }
200
201 #ifndef pmd_young
pmd_young(pmd_t pmd)202 static inline int pmd_young(pmd_t pmd)
203 {
204 return 0;
205 }
206 #endif
207
208 #ifndef pmd_dirty
pmd_dirty(pmd_t pmd)209 static inline int pmd_dirty(pmd_t pmd)
210 {
211 return 0;
212 }
213 #endif
214
215 /*
216 * A facility to provide lazy MMU batching. This allows PTE updates and
217 * page invalidations to be delayed until a call to leave lazy MMU mode
218 * is issued. Some architectures may benefit from doing this, and it is
219 * beneficial for both shadow and direct mode hypervisors, which may batch
220 * the PTE updates which happen during this window. Note that using this
221 * interface requires that read hazards be removed from the code. A read
222 * hazard could result in the direct mode hypervisor case, since the actual
223 * write to the page tables may not yet have taken place, so reads though
224 * a raw PTE pointer after it has been modified are not guaranteed to be
225 * up to date.
226 *
227 * In the general case, no lock is guaranteed to be held between entry and exit
228 * of the lazy mode. So the implementation must assume preemption may be enabled
229 * and cpu migration is possible; it must take steps to be robust against this.
230 * (In practice, for user PTE updates, the appropriate page table lock(s) are
231 * held, but for kernel PTE updates, no lock is held). Nesting is not permitted
232 * and the mode cannot be used in interrupt context.
233 */
234 #ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
235 #define arch_enter_lazy_mmu_mode() do {} while (0)
236 #define arch_leave_lazy_mmu_mode() do {} while (0)
237 #define arch_flush_lazy_mmu_mode() do {} while (0)
238 #endif
239
240 #ifndef pte_batch_hint
241 /**
242 * pte_batch_hint - Number of pages that can be added to batch without scanning.
243 * @ptep: Page table pointer for the entry.
244 * @pte: Page table entry.
245 *
246 * Some architectures know that a set of contiguous ptes all map the same
247 * contiguous memory with the same permissions. In this case, it can provide a
248 * hint to aid pte batching without the core code needing to scan every pte.
249 *
250 * An architecture implementation may ignore the PTE accessed state. Further,
251 * the dirty state must apply atomically to all the PTEs described by the hint.
252 *
253 * May be overridden by the architecture, else pte_batch_hint is always 1.
254 */
pte_batch_hint(pte_t * ptep,pte_t pte)255 static inline unsigned int pte_batch_hint(pte_t *ptep, pte_t pte)
256 {
257 return 1;
258 }
259 #endif
260
261 #ifndef pte_advance_pfn
pte_advance_pfn(pte_t pte,unsigned long nr)262 static inline pte_t pte_advance_pfn(pte_t pte, unsigned long nr)
263 {
264 return __pte(pte_val(pte) + (nr << PFN_PTE_SHIFT));
265 }
266 #endif
267
268 #define pte_next_pfn(pte) pte_advance_pfn(pte, 1)
269
270 #ifndef set_ptes
271 /**
272 * set_ptes - Map consecutive pages to a contiguous range of addresses.
273 * @mm: Address space to map the pages into.
274 * @addr: Address to map the first page at.
275 * @ptep: Page table pointer for the first entry.
276 * @pte: Page table entry for the first page.
277 * @nr: Number of pages to map.
278 *
279 * When nr==1, initial state of pte may be present or not present, and new state
280 * may be present or not present. When nr>1, initial state of all ptes must be
281 * not present, and new state must be present.
282 *
283 * May be overridden by the architecture, or the architecture can define
284 * set_pte() and PFN_PTE_SHIFT.
285 *
286 * Context: The caller holds the page table lock. The pages all belong
287 * to the same folio. The PTEs are all in the same PMD.
288 */
set_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,pte_t pte,unsigned int nr)289 static inline void set_ptes(struct mm_struct *mm, unsigned long addr,
290 pte_t *ptep, pte_t pte, unsigned int nr)
291 {
292 page_table_check_ptes_set(mm, ptep, pte, nr);
293
294 for (;;) {
295 set_pte(ptep, pte);
296 if (--nr == 0)
297 break;
298 ptep++;
299 pte = pte_next_pfn(pte);
300 }
301 }
302 #endif
303 #define set_pte_at(mm, addr, ptep, pte) set_ptes(mm, addr, ptep, pte, 1)
304
305 #ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
306 extern int ptep_set_access_flags(struct vm_area_struct *vma,
307 unsigned long address, pte_t *ptep,
308 pte_t entry, int dirty);
309 #endif
310
311 #ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
314 unsigned long address, pmd_t *pmdp,
315 pmd_t entry, int dirty);
316 extern int pudp_set_access_flags(struct vm_area_struct *vma,
317 unsigned long address, pud_t *pudp,
318 pud_t entry, int dirty);
319 #else
pmdp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t entry,int dirty)320 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
321 unsigned long address, pmd_t *pmdp,
322 pmd_t entry, int dirty)
323 {
324 BUILD_BUG();
325 return 0;
326 }
pudp_set_access_flags(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,pud_t entry,int dirty)327 static inline int pudp_set_access_flags(struct vm_area_struct *vma,
328 unsigned long address, pud_t *pudp,
329 pud_t entry, int dirty)
330 {
331 BUILD_BUG();
332 return 0;
333 }
334 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
335 #endif
336
337 #ifndef ptep_get
ptep_get(pte_t * ptep)338 static inline pte_t ptep_get(pte_t *ptep)
339 {
340 return READ_ONCE(*ptep);
341 }
342 #endif
343
344 #ifndef pmdp_get
pmdp_get(pmd_t * pmdp)345 static inline pmd_t pmdp_get(pmd_t *pmdp)
346 {
347 return READ_ONCE(*pmdp);
348 }
349 #endif
350
351 #ifndef pudp_get
pudp_get(pud_t * pudp)352 static inline pud_t pudp_get(pud_t *pudp)
353 {
354 return READ_ONCE(*pudp);
355 }
356 #endif
357
358 #ifndef p4dp_get
p4dp_get(p4d_t * p4dp)359 static inline p4d_t p4dp_get(p4d_t *p4dp)
360 {
361 return READ_ONCE(*p4dp);
362 }
363 #endif
364
365 #ifndef pgdp_get
pgdp_get(pgd_t * pgdp)366 static inline pgd_t pgdp_get(pgd_t *pgdp)
367 {
368 return READ_ONCE(*pgdp);
369 }
370 #endif
371
372 #ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
ptep_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)373 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
374 unsigned long address,
375 pte_t *ptep)
376 {
377 pte_t pte = ptep_get(ptep);
378 int r = 1;
379 if (!pte_young(pte))
380 r = 0;
381 else
382 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
383 return r;
384 }
385 #endif
386
387 #ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
388 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)389 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
390 unsigned long address,
391 pmd_t *pmdp)
392 {
393 pmd_t pmd = *pmdp;
394 int r = 1;
395 if (!pmd_young(pmd))
396 r = 0;
397 else
398 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
399 return r;
400 }
401 #else
pmdp_test_and_clear_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)402 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
403 unsigned long address,
404 pmd_t *pmdp)
405 {
406 BUILD_BUG();
407 return 0;
408 }
409 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
410 #endif
411
412 #ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
413 int ptep_clear_flush_young(struct vm_area_struct *vma,
414 unsigned long address, pte_t *ptep);
415 #endif
416
417 #ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
419 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
420 unsigned long address, pmd_t *pmdp);
421 #else
422 /*
423 * Despite relevant to THP only, this API is called from generic rmap code
424 * under PageTransHuge(), hence needs a dummy implementation for !THP
425 */
pmdp_clear_flush_young(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)426 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
427 unsigned long address, pmd_t *pmdp)
428 {
429 BUILD_BUG();
430 return 0;
431 }
432 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
433 #endif
434
435 #ifndef arch_has_hw_nonleaf_pmd_young
436 /*
437 * Return whether the accessed bit in non-leaf PMD entries is supported on the
438 * local CPU.
439 */
arch_has_hw_nonleaf_pmd_young(void)440 static inline bool arch_has_hw_nonleaf_pmd_young(void)
441 {
442 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
443 }
444 #endif
445
446 #ifndef arch_has_hw_pte_young
447 /*
448 * Return whether the accessed bit is supported on the local CPU.
449 *
450 * This stub assumes accessing through an old PTE triggers a page fault.
451 * Architectures that automatically set the access bit should overwrite it.
452 */
arch_has_hw_pte_young(void)453 static inline bool arch_has_hw_pte_young(void)
454 {
455 return IS_ENABLED(CONFIG_ARCH_HAS_HW_PTE_YOUNG);
456 }
457 #endif
458
459 #ifndef arch_check_zapped_pte
arch_check_zapped_pte(struct vm_area_struct * vma,pte_t pte)460 static inline void arch_check_zapped_pte(struct vm_area_struct *vma,
461 pte_t pte)
462 {
463 }
464 #endif
465
466 #ifndef arch_check_zapped_pmd
arch_check_zapped_pmd(struct vm_area_struct * vma,pmd_t pmd)467 static inline void arch_check_zapped_pmd(struct vm_area_struct *vma,
468 pmd_t pmd)
469 {
470 }
471 #endif
472
473 #ifndef arch_check_zapped_pud
arch_check_zapped_pud(struct vm_area_struct * vma,pud_t pud)474 static inline void arch_check_zapped_pud(struct vm_area_struct *vma, pud_t pud)
475 {
476 }
477 #endif
478
479 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
ptep_get_and_clear(struct mm_struct * mm,unsigned long address,pte_t * ptep)480 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
481 unsigned long address,
482 pte_t *ptep)
483 {
484 pte_t pte = ptep_get(ptep);
485 pte_clear(mm, address, ptep);
486 page_table_check_pte_clear(mm, pte);
487 return pte;
488 }
489 #endif
490
491 #ifndef clear_young_dirty_ptes
492 /**
493 * clear_young_dirty_ptes - Mark PTEs that map consecutive pages of the
494 * same folio as old/clean.
495 * @mm: Address space the pages are mapped into.
496 * @addr: Address the first page is mapped at.
497 * @ptep: Page table pointer for the first entry.
498 * @nr: Number of entries to mark old/clean.
499 * @flags: Flags to modify the PTE batch semantics.
500 *
501 * May be overridden by the architecture; otherwise, implemented by
502 * get_and_clear/modify/set for each pte in the range.
503 *
504 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
505 * some PTEs might be write-protected.
506 *
507 * Context: The caller holds the page table lock. The PTEs map consecutive
508 * pages that belong to the same folio. The PTEs are all in the same PMD.
509 */
clear_young_dirty_ptes(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,unsigned int nr,cydp_t flags)510 static inline void clear_young_dirty_ptes(struct vm_area_struct *vma,
511 unsigned long addr, pte_t *ptep,
512 unsigned int nr, cydp_t flags)
513 {
514 pte_t pte;
515
516 for (;;) {
517 if (flags == CYDP_CLEAR_YOUNG)
518 ptep_test_and_clear_young(vma, addr, ptep);
519 else {
520 pte = ptep_get_and_clear(vma->vm_mm, addr, ptep);
521 if (flags & CYDP_CLEAR_YOUNG)
522 pte = pte_mkold(pte);
523 if (flags & CYDP_CLEAR_DIRTY)
524 pte = pte_mkclean(pte);
525 set_pte_at(vma->vm_mm, addr, ptep, pte);
526 }
527 if (--nr == 0)
528 break;
529 ptep++;
530 addr += PAGE_SIZE;
531 }
532 }
533 #endif
534
ptep_clear(struct mm_struct * mm,unsigned long addr,pte_t * ptep)535 static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
536 pte_t *ptep)
537 {
538 pte_t pte = ptep_get(ptep);
539
540 pte_clear(mm, addr, ptep);
541 /*
542 * No need for ptep_get_and_clear(): page table check doesn't care about
543 * any bits that could have been set by HW concurrently.
544 */
545 page_table_check_pte_clear(mm, pte);
546 }
547
548 #ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
549 /*
550 * For walking the pagetables without holding any locks. Some architectures
551 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
552 * instructions. We are guaranteed that a PTE will only either go from not
553 * present to present, or present to not present -- it will not switch to a
554 * completely different present page without a TLB flush inbetween; which we
555 * are blocking by holding interrupts off.
556 *
557 * Setting ptes from not present to present goes:
558 *
559 * ptep->pte_high = h;
560 * smp_wmb();
561 * ptep->pte_low = l;
562 *
563 * And present to not present goes:
564 *
565 * ptep->pte_low = 0;
566 * smp_wmb();
567 * ptep->pte_high = 0;
568 *
569 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
570 * We load pte_high *after* loading pte_low, which ensures we don't see an older
571 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
572 * picked up a changed pte high. We might have gotten rubbish values from
573 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
574 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
575 * operates on present ptes we're safe.
576 */
ptep_get_lockless(pte_t * ptep)577 static inline pte_t ptep_get_lockless(pte_t *ptep)
578 {
579 pte_t pte;
580
581 do {
582 pte.pte_low = ptep->pte_low;
583 smp_rmb();
584 pte.pte_high = ptep->pte_high;
585 smp_rmb();
586 } while (unlikely(pte.pte_low != ptep->pte_low));
587
588 return pte;
589 }
590 #define ptep_get_lockless ptep_get_lockless
591
592 #if CONFIG_PGTABLE_LEVELS > 2
pmdp_get_lockless(pmd_t * pmdp)593 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
594 {
595 pmd_t pmd;
596
597 do {
598 pmd.pmd_low = pmdp->pmd_low;
599 smp_rmb();
600 pmd.pmd_high = pmdp->pmd_high;
601 smp_rmb();
602 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
603
604 return pmd;
605 }
606 #define pmdp_get_lockless pmdp_get_lockless
607 #define pmdp_get_lockless_sync() tlb_remove_table_sync_one()
608 #endif /* CONFIG_PGTABLE_LEVELS > 2 */
609 #endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
610
611 /*
612 * We require that the PTE can be read atomically.
613 */
614 #ifndef ptep_get_lockless
ptep_get_lockless(pte_t * ptep)615 static inline pte_t ptep_get_lockless(pte_t *ptep)
616 {
617 return ptep_get(ptep);
618 }
619 #endif
620
621 #ifndef pmdp_get_lockless
pmdp_get_lockless(pmd_t * pmdp)622 static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
623 {
624 return pmdp_get(pmdp);
625 }
pmdp_get_lockless_sync(void)626 static inline void pmdp_get_lockless_sync(void)
627 {
628 }
629 #endif
630
631 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
632 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
pmdp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)633 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
634 unsigned long address,
635 pmd_t *pmdp)
636 {
637 pmd_t pmd = *pmdp;
638
639 pmd_clear(pmdp);
640 page_table_check_pmd_clear(mm, pmd);
641
642 return pmd;
643 }
644 #endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
645 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
pudp_huge_get_and_clear(struct mm_struct * mm,unsigned long address,pud_t * pudp)646 static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
647 unsigned long address,
648 pud_t *pudp)
649 {
650 pud_t pud = *pudp;
651
652 pud_clear(pudp);
653 page_table_check_pud_clear(mm, pud);
654
655 return pud;
656 }
657 #endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
658 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
659
660 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
661 #ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
pmdp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,int full)662 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
663 unsigned long address, pmd_t *pmdp,
664 int full)
665 {
666 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
667 }
668 #endif
669
670 #ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
pudp_huge_get_and_clear_full(struct vm_area_struct * vma,unsigned long address,pud_t * pudp,int full)671 static inline pud_t pudp_huge_get_and_clear_full(struct vm_area_struct *vma,
672 unsigned long address, pud_t *pudp,
673 int full)
674 {
675 return pudp_huge_get_and_clear(vma->vm_mm, address, pudp);
676 }
677 #endif
678 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
679
680 #ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
ptep_get_and_clear_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)681 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
682 unsigned long address, pte_t *ptep,
683 int full)
684 {
685 return ptep_get_and_clear(mm, address, ptep);
686 }
687 #endif
688
689 #ifndef get_and_clear_full_ptes
690 /**
691 * get_and_clear_full_ptes - Clear present PTEs that map consecutive pages of
692 * the same folio, collecting dirty/accessed bits.
693 * @mm: Address space the pages are mapped into.
694 * @addr: Address the first page is mapped at.
695 * @ptep: Page table pointer for the first entry.
696 * @nr: Number of entries to clear.
697 * @full: Whether we are clearing a full mm.
698 *
699 * May be overridden by the architecture; otherwise, implemented as a simple
700 * loop over ptep_get_and_clear_full(), merging dirty/accessed bits into the
701 * returned PTE.
702 *
703 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
704 * some PTEs might be write-protected.
705 *
706 * Context: The caller holds the page table lock. The PTEs map consecutive
707 * pages that belong to the same folio. The PTEs are all in the same PMD.
708 */
get_and_clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)709 static inline pte_t get_and_clear_full_ptes(struct mm_struct *mm,
710 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
711 {
712 pte_t pte, tmp_pte;
713
714 pte = ptep_get_and_clear_full(mm, addr, ptep, full);
715 while (--nr) {
716 ptep++;
717 addr += PAGE_SIZE;
718 tmp_pte = ptep_get_and_clear_full(mm, addr, ptep, full);
719 if (pte_dirty(tmp_pte))
720 pte = pte_mkdirty(pte);
721 if (pte_young(tmp_pte))
722 pte = pte_mkyoung(pte);
723 }
724 return pte;
725 }
726 #endif
727
728 #ifndef clear_full_ptes
729 /**
730 * clear_full_ptes - Clear present PTEs that map consecutive pages of the same
731 * folio.
732 * @mm: Address space the pages are mapped into.
733 * @addr: Address the first page is mapped at.
734 * @ptep: Page table pointer for the first entry.
735 * @nr: Number of entries to clear.
736 * @full: Whether we are clearing a full mm.
737 *
738 * May be overridden by the architecture; otherwise, implemented as a simple
739 * loop over ptep_get_and_clear_full().
740 *
741 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
742 * some PTEs might be write-protected.
743 *
744 * Context: The caller holds the page table lock. The PTEs map consecutive
745 * pages that belong to the same folio. The PTEs are all in the same PMD.
746 */
clear_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)747 static inline void clear_full_ptes(struct mm_struct *mm, unsigned long addr,
748 pte_t *ptep, unsigned int nr, int full)
749 {
750 for (;;) {
751 ptep_get_and_clear_full(mm, addr, ptep, full);
752 if (--nr == 0)
753 break;
754 ptep++;
755 addr += PAGE_SIZE;
756 }
757 }
758 #endif
759
760 /*
761 * If two threads concurrently fault at the same page, the thread that
762 * won the race updates the PTE and its local TLB/Cache. The other thread
763 * gives up, simply does nothing, and continues; on architectures where
764 * software can update TLB, local TLB can be updated here to avoid next page
765 * fault. This function updates TLB only, do nothing with cache or others.
766 * It is the difference with function update_mmu_cache.
767 */
768 #ifndef update_mmu_tlb_range
update_mmu_tlb_range(struct vm_area_struct * vma,unsigned long address,pte_t * ptep,unsigned int nr)769 static inline void update_mmu_tlb_range(struct vm_area_struct *vma,
770 unsigned long address, pte_t *ptep, unsigned int nr)
771 {
772 }
773 #endif
774
update_mmu_tlb(struct vm_area_struct * vma,unsigned long address,pte_t * ptep)775 static inline void update_mmu_tlb(struct vm_area_struct *vma,
776 unsigned long address, pte_t *ptep)
777 {
778 update_mmu_tlb_range(vma, address, ptep, 1);
779 }
780
781 /*
782 * Some architectures may be able to avoid expensive synchronization
783 * primitives when modifications are made to PTE's which are already
784 * not present, or in the process of an address space destruction.
785 */
786 #ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
pte_clear_not_present_full(struct mm_struct * mm,unsigned long address,pte_t * ptep,int full)787 static inline void pte_clear_not_present_full(struct mm_struct *mm,
788 unsigned long address,
789 pte_t *ptep,
790 int full)
791 {
792 pte_clear(mm, address, ptep);
793 }
794 #endif
795
796 #ifndef clear_not_present_full_ptes
797 /**
798 * clear_not_present_full_ptes - Clear multiple not present PTEs which are
799 * consecutive in the pgtable.
800 * @mm: Address space the ptes represent.
801 * @addr: Address of the first pte.
802 * @ptep: Page table pointer for the first entry.
803 * @nr: Number of entries to clear.
804 * @full: Whether we are clearing a full mm.
805 *
806 * May be overridden by the architecture; otherwise, implemented as a simple
807 * loop over pte_clear_not_present_full().
808 *
809 * Context: The caller holds the page table lock. The PTEs are all not present.
810 * The PTEs are all in the same PMD.
811 */
clear_not_present_full_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr,int full)812 static inline void clear_not_present_full_ptes(struct mm_struct *mm,
813 unsigned long addr, pte_t *ptep, unsigned int nr, int full)
814 {
815 for (;;) {
816 pte_clear_not_present_full(mm, addr, ptep, full);
817 if (--nr == 0)
818 break;
819 ptep++;
820 addr += PAGE_SIZE;
821 }
822 }
823 #endif
824
825 #ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
826 extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
827 unsigned long address,
828 pte_t *ptep);
829 #endif
830
831 #ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
832 extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
833 unsigned long address,
834 pmd_t *pmdp);
835 extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
836 unsigned long address,
837 pud_t *pudp);
838 #endif
839
840 #ifndef pte_mkwrite
pte_mkwrite(pte_t pte,struct vm_area_struct * vma)841 static inline pte_t pte_mkwrite(pte_t pte, struct vm_area_struct *vma)
842 {
843 return pte_mkwrite_novma(pte);
844 }
845 #endif
846
847 #if defined(CONFIG_ARCH_WANT_PMD_MKWRITE) && !defined(pmd_mkwrite)
pmd_mkwrite(pmd_t pmd,struct vm_area_struct * vma)848 static inline pmd_t pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
849 {
850 return pmd_mkwrite_novma(pmd);
851 }
852 #endif
853
854 #ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
855 struct mm_struct;
ptep_set_wrprotect(struct mm_struct * mm,unsigned long address,pte_t * ptep)856 static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
857 {
858 pte_t old_pte = ptep_get(ptep);
859 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
860 }
861 #endif
862
863 #ifndef wrprotect_ptes
864 /**
865 * wrprotect_ptes - Write-protect PTEs that map consecutive pages of the same
866 * folio.
867 * @mm: Address space the pages are mapped into.
868 * @addr: Address the first page is mapped at.
869 * @ptep: Page table pointer for the first entry.
870 * @nr: Number of entries to write-protect.
871 *
872 * May be overridden by the architecture; otherwise, implemented as a simple
873 * loop over ptep_set_wrprotect().
874 *
875 * Note that PTE bits in the PTE range besides the PFN can differ. For example,
876 * some PTEs might be write-protected.
877 *
878 * Context: The caller holds the page table lock. The PTEs map consecutive
879 * pages that belong to the same folio. The PTEs are all in the same PMD.
880 */
wrprotect_ptes(struct mm_struct * mm,unsigned long addr,pte_t * ptep,unsigned int nr)881 static inline void wrprotect_ptes(struct mm_struct *mm, unsigned long addr,
882 pte_t *ptep, unsigned int nr)
883 {
884 for (;;) {
885 ptep_set_wrprotect(mm, addr, ptep);
886 if (--nr == 0)
887 break;
888 ptep++;
889 addr += PAGE_SIZE;
890 }
891 }
892 #endif
893
894 /*
895 * On some architectures hardware does not set page access bit when accessing
896 * memory page, it is responsibility of software setting this bit. It brings
897 * out extra page fault penalty to track page access bit. For optimization page
898 * access bit can be set during all page fault flow on these arches.
899 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
900 * where software maintains page access bit.
901 */
902 #ifndef pte_sw_mkyoung
pte_sw_mkyoung(pte_t pte)903 static inline pte_t pte_sw_mkyoung(pte_t pte)
904 {
905 return pte;
906 }
907 #define pte_sw_mkyoung pte_sw_mkyoung
908 #endif
909
910 #ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)912 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
913 unsigned long address, pmd_t *pmdp)
914 {
915 pmd_t old_pmd = *pmdp;
916 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
917 }
918 #else
pmdp_set_wrprotect(struct mm_struct * mm,unsigned long address,pmd_t * pmdp)919 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
920 unsigned long address, pmd_t *pmdp)
921 {
922 BUILD_BUG();
923 }
924 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
925 #endif
926 #ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
927 #ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
928 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)929 static inline void pudp_set_wrprotect(struct mm_struct *mm,
930 unsigned long address, pud_t *pudp)
931 {
932 pud_t old_pud = *pudp;
933
934 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
935 }
936 #else
pudp_set_wrprotect(struct mm_struct * mm,unsigned long address,pud_t * pudp)937 static inline void pudp_set_wrprotect(struct mm_struct *mm,
938 unsigned long address, pud_t *pudp)
939 {
940 BUILD_BUG();
941 }
942 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
943 #endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
944 #endif
945
946 #ifndef pmdp_collapse_flush
947 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
948 extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
949 unsigned long address, pmd_t *pmdp);
950 #else
pmdp_collapse_flush(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp)951 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
952 unsigned long address,
953 pmd_t *pmdp)
954 {
955 BUILD_BUG();
956 return *pmdp;
957 }
958 #define pmdp_collapse_flush pmdp_collapse_flush
959 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
960 #endif
961
962 #ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
963 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
964 pgtable_t pgtable);
965 #endif
966
967 #ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
968 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
969 #endif
970
971 #ifndef arch_needs_pgtable_deposit
972 #define arch_needs_pgtable_deposit() (false)
973 #endif
974
975 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
976 /*
977 * This is an implementation of pmdp_establish() that is only suitable for an
978 * architecture that doesn't have hardware dirty/accessed bits. In this case we
979 * can't race with CPU which sets these bits and non-atomic approach is fine.
980 */
generic_pmdp_establish(struct vm_area_struct * vma,unsigned long address,pmd_t * pmdp,pmd_t pmd)981 static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
982 unsigned long address, pmd_t *pmdp, pmd_t pmd)
983 {
984 pmd_t old_pmd = *pmdp;
985 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
986 return old_pmd;
987 }
988 #endif
989
990 #ifndef __HAVE_ARCH_PMDP_INVALIDATE
991 extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
992 pmd_t *pmdp);
993 #endif
994
995 #ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
996
997 /*
998 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
999 * hugepage mapping in the page tables. This function is similar to
1000 * pmdp_invalidate(), but should only be used if the access and dirty bits would
1001 * not be cleared by the software in the new PMD value. The function ensures
1002 * that hardware changes of the access and dirty bits updates would not be lost.
1003 *
1004 * Doing so can allow in certain architectures to avoid a TLB flush in most
1005 * cases. Yet, another TLB flush might be necessary later if the PMD update
1006 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
1007 * even when a TLB flush is needed because of the update, the caller may be able
1008 * to batch these TLB flushing operations, so fewer TLB flush operations are
1009 * needed.
1010 */
1011 extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
1012 unsigned long address, pmd_t *pmdp);
1013 #endif
1014
1015 #ifndef __HAVE_ARCH_PTE_SAME
pte_same(pte_t pte_a,pte_t pte_b)1016 static inline int pte_same(pte_t pte_a, pte_t pte_b)
1017 {
1018 return pte_val(pte_a) == pte_val(pte_b);
1019 }
1020 #endif
1021
1022 #ifndef __HAVE_ARCH_PTE_UNUSED
1023 /*
1024 * Some architectures provide facilities to virtualization guests
1025 * so that they can flag allocated pages as unused. This allows the
1026 * host to transparently reclaim unused pages. This function returns
1027 * whether the pte's page is unused.
1028 */
pte_unused(pte_t pte)1029 static inline int pte_unused(pte_t pte)
1030 {
1031 return 0;
1032 }
1033 #endif
1034
1035 #ifndef pte_access_permitted
1036 #define pte_access_permitted(pte, write) \
1037 (pte_present(pte) && (!(write) || pte_write(pte)))
1038 #endif
1039
1040 #ifndef pmd_access_permitted
1041 #define pmd_access_permitted(pmd, write) \
1042 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
1043 #endif
1044
1045 #ifndef pud_access_permitted
1046 #define pud_access_permitted(pud, write) \
1047 (pud_present(pud) && (!(write) || pud_write(pud)))
1048 #endif
1049
1050 #ifndef p4d_access_permitted
1051 #define p4d_access_permitted(p4d, write) \
1052 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
1053 #endif
1054
1055 #ifndef pgd_access_permitted
1056 #define pgd_access_permitted(pgd, write) \
1057 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
1058 #endif
1059
1060 #ifndef __HAVE_ARCH_PMD_SAME
pmd_same(pmd_t pmd_a,pmd_t pmd_b)1061 static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
1062 {
1063 return pmd_val(pmd_a) == pmd_val(pmd_b);
1064 }
1065 #endif
1066
1067 #ifndef pud_same
pud_same(pud_t pud_a,pud_t pud_b)1068 static inline int pud_same(pud_t pud_a, pud_t pud_b)
1069 {
1070 return pud_val(pud_a) == pud_val(pud_b);
1071 }
1072 #define pud_same pud_same
1073 #endif
1074
1075 #ifndef __HAVE_ARCH_P4D_SAME
p4d_same(p4d_t p4d_a,p4d_t p4d_b)1076 static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
1077 {
1078 return p4d_val(p4d_a) == p4d_val(p4d_b);
1079 }
1080 #endif
1081
1082 #ifndef __HAVE_ARCH_PGD_SAME
pgd_same(pgd_t pgd_a,pgd_t pgd_b)1083 static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
1084 {
1085 return pgd_val(pgd_a) == pgd_val(pgd_b);
1086 }
1087 #endif
1088
1089 #ifndef __HAVE_ARCH_DO_SWAP_PAGE
arch_do_swap_page_nr(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte,int nr)1090 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1091 struct vm_area_struct *vma,
1092 unsigned long addr,
1093 pte_t pte, pte_t oldpte,
1094 int nr)
1095 {
1096
1097 }
1098 #else
1099 /*
1100 * Some architectures support metadata associated with a page. When a
1101 * page is being swapped out, this metadata must be saved so it can be
1102 * restored when the page is swapped back in. SPARC M7 and newer
1103 * processors support an ADI (Application Data Integrity) tag for the
1104 * page as metadata for the page. arch_do_swap_page() can restore this
1105 * metadata when a page is swapped back in.
1106 */
arch_do_swap_page_nr(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t pte,pte_t oldpte,int nr)1107 static inline void arch_do_swap_page_nr(struct mm_struct *mm,
1108 struct vm_area_struct *vma,
1109 unsigned long addr,
1110 pte_t pte, pte_t oldpte,
1111 int nr)
1112 {
1113 for (int i = 0; i < nr; i++) {
1114 arch_do_swap_page(vma->vm_mm, vma, addr + i * PAGE_SIZE,
1115 pte_advance_pfn(pte, i),
1116 pte_advance_pfn(oldpte, i));
1117 }
1118 }
1119 #endif
1120
1121 #ifndef __HAVE_ARCH_UNMAP_ONE
1122 /*
1123 * Some architectures support metadata associated with a page. When a
1124 * page is being swapped out, this metadata must be saved so it can be
1125 * restored when the page is swapped back in. SPARC M7 and newer
1126 * processors support an ADI (Application Data Integrity) tag for the
1127 * page as metadata for the page. arch_unmap_one() can save this
1128 * metadata on a swap-out of a page.
1129 */
arch_unmap_one(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,pte_t orig_pte)1130 static inline int arch_unmap_one(struct mm_struct *mm,
1131 struct vm_area_struct *vma,
1132 unsigned long addr,
1133 pte_t orig_pte)
1134 {
1135 return 0;
1136 }
1137 #endif
1138
1139 /*
1140 * Allow architectures to preserve additional metadata associated with
1141 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
1142 * prototypes must be defined in the arch-specific asm/pgtable.h file.
1143 */
1144 #ifndef __HAVE_ARCH_PREPARE_TO_SWAP
arch_prepare_to_swap(struct folio * folio)1145 static inline int arch_prepare_to_swap(struct folio *folio)
1146 {
1147 return 0;
1148 }
1149 #endif
1150
1151 #ifndef __HAVE_ARCH_SWAP_INVALIDATE
arch_swap_invalidate_page(int type,pgoff_t offset)1152 static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
1153 {
1154 }
1155
arch_swap_invalidate_area(int type)1156 static inline void arch_swap_invalidate_area(int type)
1157 {
1158 }
1159 #endif
1160
1161 #ifndef __HAVE_ARCH_SWAP_RESTORE
arch_swap_restore(swp_entry_t entry,struct folio * folio)1162 static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
1163 {
1164 }
1165 #endif
1166
1167 #ifndef __HAVE_ARCH_PGD_OFFSET_GATE
1168 #define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
1169 #endif
1170
1171 #ifndef __HAVE_ARCH_MOVE_PTE
1172 #define move_pte(pte, old_addr, new_addr) (pte)
1173 #endif
1174
1175 #ifndef pte_accessible
1176 # define pte_accessible(mm, pte) ((void)(pte), 1)
1177 #endif
1178
1179 #ifndef flush_tlb_fix_spurious_fault
1180 #define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
1181 #endif
1182
1183 /*
1184 * When walking page tables, get the address of the next boundary,
1185 * or the end address of the range if that comes earlier. Although no
1186 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1187 */
1188
1189 #define pgd_addr_end(addr, end) \
1190 ({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
1191 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1192 })
1193
1194 #ifndef p4d_addr_end
1195 #define p4d_addr_end(addr, end) \
1196 ({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
1197 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1198 })
1199 #endif
1200
1201 #ifndef pud_addr_end
1202 #define pud_addr_end(addr, end) \
1203 ({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
1204 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1205 })
1206 #endif
1207
1208 #ifndef pmd_addr_end
1209 #define pmd_addr_end(addr, end) \
1210 ({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
1211 (__boundary - 1 < (end) - 1)? __boundary: (end); \
1212 })
1213 #endif
1214
1215 /*
1216 * When walking page tables, we usually want to skip any p?d_none entries;
1217 * and any p?d_bad entries - reporting the error before resetting to none.
1218 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
1219 */
1220 void pgd_clear_bad(pgd_t *);
1221
1222 #ifndef __PAGETABLE_P4D_FOLDED
1223 void p4d_clear_bad(p4d_t *);
1224 #else
1225 #define p4d_clear_bad(p4d) do { } while (0)
1226 #endif
1227
1228 #ifndef __PAGETABLE_PUD_FOLDED
1229 void pud_clear_bad(pud_t *);
1230 #else
1231 #define pud_clear_bad(p4d) do { } while (0)
1232 #endif
1233
1234 void pmd_clear_bad(pmd_t *);
1235
pgd_none_or_clear_bad(pgd_t * pgd)1236 static inline int pgd_none_or_clear_bad(pgd_t *pgd)
1237 {
1238 if (pgd_none(*pgd))
1239 return 1;
1240 if (unlikely(pgd_bad(*pgd))) {
1241 pgd_clear_bad(pgd);
1242 return 1;
1243 }
1244 return 0;
1245 }
1246
p4d_none_or_clear_bad(p4d_t * p4d)1247 static inline int p4d_none_or_clear_bad(p4d_t *p4d)
1248 {
1249 if (p4d_none(*p4d))
1250 return 1;
1251 if (unlikely(p4d_bad(*p4d))) {
1252 p4d_clear_bad(p4d);
1253 return 1;
1254 }
1255 return 0;
1256 }
1257
pud_none_or_clear_bad(pud_t * pud)1258 static inline int pud_none_or_clear_bad(pud_t *pud)
1259 {
1260 if (pud_none(*pud))
1261 return 1;
1262 if (unlikely(pud_bad(*pud))) {
1263 pud_clear_bad(pud);
1264 return 1;
1265 }
1266 return 0;
1267 }
1268
pmd_none_or_clear_bad(pmd_t * pmd)1269 static inline int pmd_none_or_clear_bad(pmd_t *pmd)
1270 {
1271 if (pmd_none(*pmd))
1272 return 1;
1273 if (unlikely(pmd_bad(*pmd))) {
1274 pmd_clear_bad(pmd);
1275 return 1;
1276 }
1277 return 0;
1278 }
1279
__ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1280 static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
1281 unsigned long addr,
1282 pte_t *ptep)
1283 {
1284 /*
1285 * Get the current pte state, but zero it out to make it
1286 * non-present, preventing the hardware from asynchronously
1287 * updating it.
1288 */
1289 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
1290 }
1291
__ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t pte)1292 static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
1293 unsigned long addr,
1294 pte_t *ptep, pte_t pte)
1295 {
1296 /*
1297 * The pte is non-present, so there's no hardware state to
1298 * preserve.
1299 */
1300 set_pte_at(vma->vm_mm, addr, ptep, pte);
1301 }
1302
1303 #ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1304 /*
1305 * Start a pte protection read-modify-write transaction, which
1306 * protects against asynchronous hardware modifications to the pte.
1307 * The intention is not to prevent the hardware from making pte
1308 * updates, but to prevent any updates it may make from being lost.
1309 *
1310 * This does not protect against other software modifications of the
1311 * pte; the appropriate pte lock must be held over the transaction.
1312 *
1313 * Note that this interface is intended to be batchable, meaning that
1314 * ptep_modify_prot_commit may not actually update the pte, but merely
1315 * queue the update to be done at some later time. The update must be
1316 * actually committed before the pte lock is released, however.
1317 */
ptep_modify_prot_start(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep)1318 static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
1319 unsigned long addr,
1320 pte_t *ptep)
1321 {
1322 return __ptep_modify_prot_start(vma, addr, ptep);
1323 }
1324
1325 /*
1326 * Commit an update to a pte, leaving any hardware-controlled bits in
1327 * the PTE unmodified.
1328 */
ptep_modify_prot_commit(struct vm_area_struct * vma,unsigned long addr,pte_t * ptep,pte_t old_pte,pte_t pte)1329 static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
1330 unsigned long addr,
1331 pte_t *ptep, pte_t old_pte, pte_t pte)
1332 {
1333 __ptep_modify_prot_commit(vma, addr, ptep, pte);
1334 }
1335 #endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
1336 #endif /* CONFIG_MMU */
1337
1338 /*
1339 * No-op macros that just return the current protection value. Defined here
1340 * because these macros can be used even if CONFIG_MMU is not defined.
1341 */
1342
1343 #ifndef pgprot_nx
1344 #define pgprot_nx(prot) (prot)
1345 #endif
1346
1347 #ifndef pgprot_noncached
1348 #define pgprot_noncached(prot) (prot)
1349 #endif
1350
1351 #ifndef pgprot_writecombine
1352 #define pgprot_writecombine pgprot_noncached
1353 #endif
1354
1355 #ifndef pgprot_writethrough
1356 #define pgprot_writethrough pgprot_noncached
1357 #endif
1358
1359 #ifndef pgprot_device
1360 #define pgprot_device pgprot_noncached
1361 #endif
1362
1363 #ifndef pgprot_mhp
1364 #define pgprot_mhp(prot) (prot)
1365 #endif
1366
1367 #ifdef CONFIG_MMU
1368 #ifndef pgprot_modify
1369 #define pgprot_modify pgprot_modify
pgprot_modify(pgprot_t oldprot,pgprot_t newprot)1370 static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1371 {
1372 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1373 newprot = pgprot_noncached(newprot);
1374 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1375 newprot = pgprot_writecombine(newprot);
1376 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1377 newprot = pgprot_device(newprot);
1378 return newprot;
1379 }
1380 #endif
1381 #endif /* CONFIG_MMU */
1382
1383 #ifndef pgprot_encrypted
1384 #define pgprot_encrypted(prot) (prot)
1385 #endif
1386
1387 #ifndef pgprot_decrypted
1388 #define pgprot_decrypted(prot) (prot)
1389 #endif
1390
1391 /*
1392 * A facility to provide batching of the reload of page tables and
1393 * other process state with the actual context switch code for
1394 * paravirtualized guests. By convention, only one of the batched
1395 * update (lazy) modes (CPU, MMU) should be active at any given time,
1396 * entry should never be nested, and entry and exits should always be
1397 * paired. This is for sanity of maintaining and reasoning about the
1398 * kernel code. In this case, the exit (end of the context switch) is
1399 * in architecture-specific code, and so doesn't need a generic
1400 * definition.
1401 */
1402 #ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1403 #define arch_start_context_switch(prev) do {} while (0)
1404 #endif
1405
1406 #ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1407 #ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
pmd_swp_mksoft_dirty(pmd_t pmd)1408 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1409 {
1410 return pmd;
1411 }
1412
pmd_swp_soft_dirty(pmd_t pmd)1413 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1414 {
1415 return 0;
1416 }
1417
pmd_swp_clear_soft_dirty(pmd_t pmd)1418 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1419 {
1420 return pmd;
1421 }
1422 #endif
1423 #else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
pte_soft_dirty(pte_t pte)1424 static inline int pte_soft_dirty(pte_t pte)
1425 {
1426 return 0;
1427 }
1428
pmd_soft_dirty(pmd_t pmd)1429 static inline int pmd_soft_dirty(pmd_t pmd)
1430 {
1431 return 0;
1432 }
1433
pte_mksoft_dirty(pte_t pte)1434 static inline pte_t pte_mksoft_dirty(pte_t pte)
1435 {
1436 return pte;
1437 }
1438
pmd_mksoft_dirty(pmd_t pmd)1439 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1440 {
1441 return pmd;
1442 }
1443
pte_clear_soft_dirty(pte_t pte)1444 static inline pte_t pte_clear_soft_dirty(pte_t pte)
1445 {
1446 return pte;
1447 }
1448
pmd_clear_soft_dirty(pmd_t pmd)1449 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1450 {
1451 return pmd;
1452 }
1453
pte_swp_mksoft_dirty(pte_t pte)1454 static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1455 {
1456 return pte;
1457 }
1458
pte_swp_soft_dirty(pte_t pte)1459 static inline int pte_swp_soft_dirty(pte_t pte)
1460 {
1461 return 0;
1462 }
1463
pte_swp_clear_soft_dirty(pte_t pte)1464 static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1465 {
1466 return pte;
1467 }
1468
pmd_swp_mksoft_dirty(pmd_t pmd)1469 static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1470 {
1471 return pmd;
1472 }
1473
pmd_swp_soft_dirty(pmd_t pmd)1474 static inline int pmd_swp_soft_dirty(pmd_t pmd)
1475 {
1476 return 0;
1477 }
1478
pmd_swp_clear_soft_dirty(pmd_t pmd)1479 static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1480 {
1481 return pmd;
1482 }
1483 #endif
1484
1485 #ifndef __HAVE_PFNMAP_TRACKING
1486 /*
1487 * Interfaces that can be used by architecture code to keep track of
1488 * memory type of pfn mappings specified by the remap_pfn_range,
1489 * vmf_insert_pfn.
1490 */
1491
1492 /*
1493 * track_pfn_remap is called when a _new_ pfn mapping is being established
1494 * by remap_pfn_range() for physical range indicated by pfn and size.
1495 */
track_pfn_remap(struct vm_area_struct * vma,pgprot_t * prot,unsigned long pfn,unsigned long addr,unsigned long size)1496 static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1497 unsigned long pfn, unsigned long addr,
1498 unsigned long size)
1499 {
1500 return 0;
1501 }
1502
1503 /*
1504 * track_pfn_insert is called when a _new_ single pfn is established
1505 * by vmf_insert_pfn().
1506 */
track_pfn_insert(struct vm_area_struct * vma,pgprot_t * prot,pfn_t pfn)1507 static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1508 pfn_t pfn)
1509 {
1510 }
1511
1512 /*
1513 * track_pfn_copy is called when a VM_PFNMAP VMA is about to get the page
1514 * tables copied during copy_page_range(). On success, stores the pfn to be
1515 * passed to untrack_pfn_copy().
1516 */
track_pfn_copy(struct vm_area_struct * dst_vma,struct vm_area_struct * src_vma,unsigned long * pfn)1517 static inline int track_pfn_copy(struct vm_area_struct *dst_vma,
1518 struct vm_area_struct *src_vma, unsigned long *pfn)
1519 {
1520 return 0;
1521 }
1522
1523 /*
1524 * untrack_pfn_copy is called when a VM_PFNMAP VMA failed to copy during
1525 * copy_page_range(), but after track_pfn_copy() was already called.
1526 */
untrack_pfn_copy(struct vm_area_struct * dst_vma,unsigned long pfn)1527 static inline void untrack_pfn_copy(struct vm_area_struct *dst_vma,
1528 unsigned long pfn)
1529 {
1530 }
1531
1532 /*
1533 * untrack_pfn is called while unmapping a pfnmap for a region.
1534 * untrack can be called for a specific region indicated by pfn and size or
1535 * can be for the entire vma (in which case pfn, size are zero).
1536 */
untrack_pfn(struct vm_area_struct * vma,unsigned long pfn,unsigned long size,bool mm_wr_locked)1537 static inline void untrack_pfn(struct vm_area_struct *vma,
1538 unsigned long pfn, unsigned long size,
1539 bool mm_wr_locked)
1540 {
1541 }
1542
1543 /*
1544 * untrack_pfn_clear is called in the following cases on a VM_PFNMAP VMA:
1545 *
1546 * 1) During mremap() on the src VMA after the page tables were moved.
1547 * 2) During fork() on the dst VMA, immediately after duplicating the src VMA.
1548 */
untrack_pfn_clear(struct vm_area_struct * vma)1549 static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1550 {
1551 }
1552 #else
1553 extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1554 unsigned long pfn, unsigned long addr,
1555 unsigned long size);
1556 extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1557 pfn_t pfn);
1558 extern int track_pfn_copy(struct vm_area_struct *dst_vma,
1559 struct vm_area_struct *src_vma, unsigned long *pfn);
1560 extern void untrack_pfn_copy(struct vm_area_struct *dst_vma,
1561 unsigned long pfn);
1562 extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1563 unsigned long size, bool mm_wr_locked);
1564 extern void untrack_pfn_clear(struct vm_area_struct *vma);
1565 #endif
1566
1567 #ifdef CONFIG_MMU
1568 #ifdef __HAVE_COLOR_ZERO_PAGE
is_zero_pfn(unsigned long pfn)1569 static inline int is_zero_pfn(unsigned long pfn)
1570 {
1571 extern unsigned long zero_pfn;
1572 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1573 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1574 }
1575
1576 #define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1577
1578 #else
is_zero_pfn(unsigned long pfn)1579 static inline int is_zero_pfn(unsigned long pfn)
1580 {
1581 extern unsigned long zero_pfn;
1582 return pfn == zero_pfn;
1583 }
1584
my_zero_pfn(unsigned long addr)1585 static inline unsigned long my_zero_pfn(unsigned long addr)
1586 {
1587 extern unsigned long zero_pfn;
1588 return zero_pfn;
1589 }
1590 #endif
1591 #else
is_zero_pfn(unsigned long pfn)1592 static inline int is_zero_pfn(unsigned long pfn)
1593 {
1594 return 0;
1595 }
1596
my_zero_pfn(unsigned long addr)1597 static inline unsigned long my_zero_pfn(unsigned long addr)
1598 {
1599 return 0;
1600 }
1601 #endif /* CONFIG_MMU */
1602
1603 #ifdef CONFIG_MMU
1604
1605 #ifndef CONFIG_TRANSPARENT_HUGEPAGE
pmd_trans_huge(pmd_t pmd)1606 static inline int pmd_trans_huge(pmd_t pmd)
1607 {
1608 return 0;
1609 }
1610 #ifndef pmd_write
pmd_write(pmd_t pmd)1611 static inline int pmd_write(pmd_t pmd)
1612 {
1613 BUG();
1614 return 0;
1615 }
1616 #endif /* pmd_write */
1617 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1618
1619 #ifndef pud_write
pud_write(pud_t pud)1620 static inline int pud_write(pud_t pud)
1621 {
1622 BUG();
1623 return 0;
1624 }
1625 #endif /* pud_write */
1626
1627 #if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
pmd_devmap(pmd_t pmd)1628 static inline int pmd_devmap(pmd_t pmd)
1629 {
1630 return 0;
1631 }
pud_devmap(pud_t pud)1632 static inline int pud_devmap(pud_t pud)
1633 {
1634 return 0;
1635 }
pgd_devmap(pgd_t pgd)1636 static inline int pgd_devmap(pgd_t pgd)
1637 {
1638 return 0;
1639 }
1640 #endif
1641
1642 #if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1643 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
pud_trans_huge(pud_t pud)1644 static inline int pud_trans_huge(pud_t pud)
1645 {
1646 return 0;
1647 }
1648 #endif
1649
pud_trans_unstable(pud_t * pud)1650 static inline int pud_trans_unstable(pud_t *pud)
1651 {
1652 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1653 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1654 pud_t pudval = READ_ONCE(*pud);
1655
1656 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1657 return 1;
1658 if (unlikely(pud_bad(pudval))) {
1659 pud_clear_bad(pud);
1660 return 1;
1661 }
1662 #endif
1663 return 0;
1664 }
1665
1666 #ifndef CONFIG_NUMA_BALANCING
1667 /*
1668 * In an inaccessible (PROT_NONE) VMA, pte_protnone() may indicate "yes". It is
1669 * perfectly valid to indicate "no" in that case, which is why our default
1670 * implementation defaults to "always no".
1671 *
1672 * In an accessible VMA, however, pte_protnone() reliably indicates PROT_NONE
1673 * page protection due to NUMA hinting. NUMA hinting faults only apply in
1674 * accessible VMAs.
1675 *
1676 * So, to reliably identify PROT_NONE PTEs that require a NUMA hinting fault,
1677 * looking at the VMA accessibility is sufficient.
1678 */
pte_protnone(pte_t pte)1679 static inline int pte_protnone(pte_t pte)
1680 {
1681 return 0;
1682 }
1683
pmd_protnone(pmd_t pmd)1684 static inline int pmd_protnone(pmd_t pmd)
1685 {
1686 return 0;
1687 }
1688 #endif /* CONFIG_NUMA_BALANCING */
1689
1690 #endif /* CONFIG_MMU */
1691
1692 #ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1693
1694 #ifndef __PAGETABLE_P4D_FOLDED
1695 int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1696 void p4d_clear_huge(p4d_t *p4d);
1697 #else
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1698 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1699 {
1700 return 0;
1701 }
p4d_clear_huge(p4d_t * p4d)1702 static inline void p4d_clear_huge(p4d_t *p4d) { }
1703 #endif /* !__PAGETABLE_P4D_FOLDED */
1704
1705 int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1706 int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1707 int pud_clear_huge(pud_t *pud);
1708 int pmd_clear_huge(pmd_t *pmd);
1709 int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1710 int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1711 int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1712 #else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
p4d_set_huge(p4d_t * p4d,phys_addr_t addr,pgprot_t prot)1713 static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1714 {
1715 return 0;
1716 }
pud_set_huge(pud_t * pud,phys_addr_t addr,pgprot_t prot)1717 static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1718 {
1719 return 0;
1720 }
pmd_set_huge(pmd_t * pmd,phys_addr_t addr,pgprot_t prot)1721 static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1722 {
1723 return 0;
1724 }
p4d_clear_huge(p4d_t * p4d)1725 static inline void p4d_clear_huge(p4d_t *p4d) { }
pud_clear_huge(pud_t * pud)1726 static inline int pud_clear_huge(pud_t *pud)
1727 {
1728 return 0;
1729 }
pmd_clear_huge(pmd_t * pmd)1730 static inline int pmd_clear_huge(pmd_t *pmd)
1731 {
1732 return 0;
1733 }
p4d_free_pud_page(p4d_t * p4d,unsigned long addr)1734 static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1735 {
1736 return 0;
1737 }
pud_free_pmd_page(pud_t * pud,unsigned long addr)1738 static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1739 {
1740 return 0;
1741 }
pmd_free_pte_page(pmd_t * pmd,unsigned long addr)1742 static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1743 {
1744 return 0;
1745 }
1746 #endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1747
1748 #ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1749 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1750 /*
1751 * ARCHes with special requirements for evicting THP backing TLB entries can
1752 * implement this. Otherwise also, it can help optimize normal TLB flush in
1753 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1754 * entire TLB if flush span is greater than a threshold, which will
1755 * likely be true for a single huge page. Thus a single THP flush will
1756 * invalidate the entire TLB which is not desirable.
1757 * e.g. see arch/arc: flush_pmd_tlb_range
1758 */
1759 #define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1760 #define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1761 #else
1762 #define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1763 #define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1764 #endif
1765 #endif
1766
1767 struct file;
1768 int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1769 unsigned long size, pgprot_t *vma_prot);
1770
1771 #ifndef CONFIG_X86_ESPFIX64
init_espfix_bsp(void)1772 static inline void init_espfix_bsp(void) { }
1773 #endif
1774
1775 extern void __init pgtable_cache_init(void);
1776
1777 #ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
pfn_modify_allowed(unsigned long pfn,pgprot_t prot)1778 static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1779 {
1780 return true;
1781 }
1782
arch_has_pfn_modify_check(void)1783 static inline bool arch_has_pfn_modify_check(void)
1784 {
1785 return false;
1786 }
1787 #endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1788
1789 /*
1790 * Architecture PAGE_KERNEL_* fallbacks
1791 *
1792 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1793 * because they really don't support them, or the port needs to be updated to
1794 * reflect the required functionality. Below are a set of relatively safe
1795 * fallbacks, as best effort, which we can count on in lieu of the architectures
1796 * not defining them on their own yet.
1797 */
1798
1799 #ifndef PAGE_KERNEL_RO
1800 # define PAGE_KERNEL_RO PAGE_KERNEL
1801 #endif
1802
1803 #ifndef PAGE_KERNEL_EXEC
1804 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1805 #endif
1806
1807 /*
1808 * Page Table Modification bits for pgtbl_mod_mask.
1809 *
1810 * These are used by the p?d_alloc_track*() set of functions an in the generic
1811 * vmalloc/ioremap code to track at which page-table levels entries have been
1812 * modified. Based on that the code can better decide when vmalloc and ioremap
1813 * mapping changes need to be synchronized to other page-tables in the system.
1814 */
1815 #define __PGTBL_PGD_MODIFIED 0
1816 #define __PGTBL_P4D_MODIFIED 1
1817 #define __PGTBL_PUD_MODIFIED 2
1818 #define __PGTBL_PMD_MODIFIED 3
1819 #define __PGTBL_PTE_MODIFIED 4
1820
1821 #define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1822 #define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1823 #define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1824 #define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1825 #define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1826
1827 /* Page-Table Modification Mask */
1828 typedef unsigned int pgtbl_mod_mask;
1829
1830 #endif /* !__ASSEMBLY__ */
1831
1832 #if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1833 #ifdef CONFIG_PHYS_ADDR_T_64BIT
1834 /*
1835 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1836 * with physical address space extension, but falls back to
1837 * BITS_PER_LONG otherwise.
1838 */
1839 #error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1840 #else
1841 #define MAX_POSSIBLE_PHYSMEM_BITS 32
1842 #endif
1843 #endif
1844
1845 #ifndef has_transparent_hugepage
1846 #define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1847 #endif
1848
1849 #ifndef has_transparent_pud_hugepage
1850 #define has_transparent_pud_hugepage() IS_BUILTIN(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1851 #endif
1852 /*
1853 * On some architectures it depends on the mm if the p4d/pud or pmd
1854 * layer of the page table hierarchy is folded or not.
1855 */
1856 #ifndef mm_p4d_folded
1857 #define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1858 #endif
1859
1860 #ifndef mm_pud_folded
1861 #define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1862 #endif
1863
1864 #ifndef mm_pmd_folded
1865 #define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1866 #endif
1867
1868 #ifndef p4d_offset_lockless
1869 #define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1870 #endif
1871 #ifndef pud_offset_lockless
1872 #define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1873 #endif
1874 #ifndef pmd_offset_lockless
1875 #define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1876 #endif
1877
1878 /*
1879 * pXd_leaf() is the API to check whether a pgtable entry is a huge page
1880 * mapping. It should work globally across all archs, without any
1881 * dependency on CONFIG_* options. For architectures that do not support
1882 * huge mappings on specific levels, below fallbacks will be used.
1883 *
1884 * A leaf pgtable entry should always imply the following:
1885 *
1886 * - It is a "present" entry. IOW, before using this API, please check it
1887 * with pXd_present() first. NOTE: it may not always mean the "present
1888 * bit" is set. For example, PROT_NONE entries are always "present".
1889 *
1890 * - It should _never_ be a swap entry of any type. Above "present" check
1891 * should have guarded this, but let's be crystal clear on this.
1892 *
1893 * - It should contain a huge PFN, which points to a huge page larger than
1894 * PAGE_SIZE of the platform. The PFN format isn't important here.
1895 *
1896 * - It should cover all kinds of huge mappings (e.g., pXd_trans_huge(),
1897 * pXd_devmap(), or hugetlb mappings).
1898 */
1899 #ifndef pgd_leaf
1900 #define pgd_leaf(x) false
1901 #endif
1902 #ifndef p4d_leaf
1903 #define p4d_leaf(x) false
1904 #endif
1905 #ifndef pud_leaf
1906 #define pud_leaf(x) false
1907 #endif
1908 #ifndef pmd_leaf
1909 #define pmd_leaf(x) false
1910 #endif
1911
1912 #ifndef pgd_leaf_size
1913 #define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1914 #endif
1915 #ifndef p4d_leaf_size
1916 #define p4d_leaf_size(x) P4D_SIZE
1917 #endif
1918 #ifndef pud_leaf_size
1919 #define pud_leaf_size(x) PUD_SIZE
1920 #endif
1921 #ifndef pmd_leaf_size
1922 #define pmd_leaf_size(x) PMD_SIZE
1923 #endif
1924 #ifndef __pte_leaf_size
1925 #ifndef pte_leaf_size
1926 #define pte_leaf_size(x) PAGE_SIZE
1927 #endif
1928 #define __pte_leaf_size(x,y) pte_leaf_size(y)
1929 #endif
1930
1931 /*
1932 * We always define pmd_pfn for all archs as it's used in lots of generic
1933 * code. Now it happens too for pud_pfn (and can happen for larger
1934 * mappings too in the future; we're not there yet). Instead of defining
1935 * it for all archs (like pmd_pfn), provide a fallback.
1936 *
1937 * Note that returning 0 here means any arch that didn't define this can
1938 * get severely wrong when it hits a real pud leaf. It's arch's
1939 * responsibility to properly define it when a huge pud is possible.
1940 */
1941 #ifndef pud_pfn
1942 #define pud_pfn(x) 0
1943 #endif
1944
1945 /*
1946 * Some architectures have MMUs that are configurable or selectable at boot
1947 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1948 * helps to have a static maximum value.
1949 */
1950
1951 #ifndef MAX_PTRS_PER_PTE
1952 #define MAX_PTRS_PER_PTE PTRS_PER_PTE
1953 #endif
1954
1955 #ifndef MAX_PTRS_PER_PMD
1956 #define MAX_PTRS_PER_PMD PTRS_PER_PMD
1957 #endif
1958
1959 #ifndef MAX_PTRS_PER_PUD
1960 #define MAX_PTRS_PER_PUD PTRS_PER_PUD
1961 #endif
1962
1963 #ifndef MAX_PTRS_PER_P4D
1964 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
1965 #endif
1966
1967 #ifndef pte_pgprot
1968 #define pte_pgprot(x) ((pgprot_t) {0})
1969 #endif
1970
1971 #ifndef pmd_pgprot
1972 #define pmd_pgprot(x) ((pgprot_t) {0})
1973 #endif
1974
1975 #ifndef pud_pgprot
1976 #define pud_pgprot(x) ((pgprot_t) {0})
1977 #endif
1978
1979 /* description of effects of mapping type and prot in current implementation.
1980 * this is due to the limited x86 page protection hardware. The expected
1981 * behavior is in parens:
1982 *
1983 * map_type prot
1984 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1985 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1986 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1987 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1988 *
1989 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1990 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1991 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1992 *
1993 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1994 * MAP_PRIVATE (with Enhanced PAN supported):
1995 * r: (no) no
1996 * w: (no) no
1997 * x: (yes) yes
1998 */
1999 #define DECLARE_VM_GET_PAGE_PROT \
2000 pgprot_t vm_get_page_prot(unsigned long vm_flags) \
2001 { \
2002 return protection_map[vm_flags & \
2003 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
2004 } \
2005 EXPORT_SYMBOL(vm_get_page_prot);
2006
2007 #endif /* _LINUX_PGTABLE_H */
2008