xref: /aosp_15_r20/external/libusb/libusb/io.c (revision 86b64dcb59b3a0b37502ecd56e119234366a6f7e)
1 /* -*- Mode: C; indent-tabs-mode:t ; c-basic-offset:8 -*- */
2 /*
3  * I/O functions for libusb
4  * Copyright © 2007-2009 Daniel Drake <[email protected]>
5  * Copyright © 2001 Johannes Erdfelt <[email protected]>
6  * Copyright © 2019-2022 Nathan Hjelm <[email protected]>
7  * Copyright © 2019-2022 Google LLC. All rights reserved.
8  *
9  * This library is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2.1 of the License, or (at your option) any later version.
13  *
14  * This library is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with this library; if not, write to the Free Software
21  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22  */
23 
24 #include "libusbi.h"
25 
26 /**
27  * \page libusb_io Synchronous and asynchronous device I/O
28  *
29  * \section io_intro Introduction
30  *
31  * If you're using libusb in your application, you're probably wanting to
32  * perform I/O with devices - you want to perform USB data transfers.
33  *
34  * libusb offers two separate interfaces for device I/O. This page aims to
35  * introduce the two in order to help you decide which one is more suitable
36  * for your application. You can also choose to use both interfaces in your
37  * application by considering each transfer on a case-by-case basis.
38  *
39  * Once you have read through the following discussion, you should consult the
40  * detailed API documentation pages for the details:
41  * - \ref libusb_syncio
42  * - \ref libusb_asyncio
43  *
44  * \section theory Transfers at a logical level
45  *
46  * At a logical level, USB transfers typically happen in two parts. For
47  * example, when reading data from a endpoint:
48  * -# A request for data is sent to the device
49  * -# Some time later, the incoming data is received by the host
50  *
51  * or when writing data to an endpoint:
52  *
53  * -# The data is sent to the device
54  * -# Some time later, the host receives acknowledgement from the device that
55  *    the data has been transferred.
56  *
57  * There may be an indefinite delay between the two steps. Consider a
58  * fictional USB input device with a button that the user can press. In order
59  * to determine when the button is pressed, you would likely submit a request
60  * to read data on a bulk or interrupt endpoint and wait for data to arrive.
61  * Data will arrive when the button is pressed by the user, which is
62  * potentially hours later.
63  *
64  * libusb offers both a synchronous and an asynchronous interface to performing
65  * USB transfers. The main difference is that the synchronous interface
66  * combines both steps indicated above into a single function call, whereas
67  * the asynchronous interface separates them.
68  *
69  * \section sync The synchronous interface
70  *
71  * The synchronous I/O interface allows you to perform a USB transfer with
72  * a single function call. When the function call returns, the transfer has
73  * completed and you can parse the results.
74  *
75  * If you have used libusb-0.1 before, this I/O style will seem familiar to
76  * you. libusb-0.1 only offered a synchronous interface.
77  *
78  * In our input device example, to read button presses you might write code
79  * in the following style:
80 \code
81 unsigned char data[4];
82 int actual_length;
83 int r = libusb_bulk_transfer(dev_handle, LIBUSB_ENDPOINT_IN, data, sizeof(data), &actual_length, 0);
84 if (r == 0 && actual_length == sizeof(data)) {
85 	// results of the transaction can now be found in the data buffer
86 	// parse them here and report button press
87 } else {
88 	error();
89 }
90 \endcode
91  *
92  * The main advantage of this model is simplicity: you did everything with
93  * a single simple function call.
94  *
95  * However, this interface has its limitations. Your application will sleep
96  * inside libusb_bulk_transfer() until the transaction has completed. If it
97  * takes the user 3 hours to press the button, your application will be
98  * sleeping for that long. Execution will be tied up inside the library -
99  * the entire thread will be useless for that duration.
100  *
101  * Another issue is that by tying up the thread with that single transaction
102  * there is no possibility of performing I/O with multiple endpoints and/or
103  * multiple devices simultaneously, unless you resort to creating one thread
104  * per transaction.
105  *
106  * Additionally, there is no opportunity to cancel the transfer after the
107  * request has been submitted.
108  *
109  * For details on how to use the synchronous API, see the
110  * \ref libusb_syncio "synchronous I/O API documentation" pages.
111  *
112  * \section async The asynchronous interface
113  *
114  * Asynchronous I/O is the most significant new feature in libusb-1.0.
115  * Although it is a more complex interface, it solves all the issues detailed
116  * above.
117  *
118  * Instead of providing which functions that block until the I/O has complete,
119  * libusb's asynchronous interface presents non-blocking functions which
120  * begin a transfer and then return immediately. Your application passes a
121  * callback function pointer to this non-blocking function, which libusb will
122  * call with the results of the transaction when it has completed.
123  *
124  * Transfers which have been submitted through the non-blocking functions
125  * can be cancelled with a separate function call.
126  *
127  * The non-blocking nature of this interface allows you to be simultaneously
128  * performing I/O to multiple endpoints on multiple devices, without having
129  * to use threads.
130  *
131  * This added flexibility does come with some complications though:
132  * - In the interest of being a lightweight library, libusb does not create
133  * threads and can only operate when your application is calling into it. Your
134  * application must call into libusb from it's main loop when events are ready
135  * to be handled, or you must use some other scheme to allow libusb to
136  * undertake whatever work needs to be done.
137  * - libusb also needs to be called into at certain fixed points in time in
138  * order to accurately handle transfer timeouts.
139  * - Memory handling becomes more complex. You cannot use stack memory unless
140  * the function with that stack is guaranteed not to return until the transfer
141  * callback has finished executing.
142  * - You generally lose some linearity from your code flow because submitting
143  * the transfer request is done in a separate function from where the transfer
144  * results are handled. This becomes particularly obvious when you want to
145  * submit a second transfer based on the results of an earlier transfer.
146  *
147  * Internally, libusb's synchronous interface is expressed in terms of function
148  * calls to the asynchronous interface.
149  *
150  * For details on how to use the asynchronous API, see the
151  * \ref libusb_asyncio "asynchronous I/O API" documentation pages.
152  */
153 
154 
155 /**
156  * \page libusb_packetoverflow Packets and overflows
157  *
158  * \section packets Packet abstraction
159  *
160  * The USB specifications describe how data is transmitted in packets, with
161  * constraints on packet size defined by endpoint descriptors. The host must
162  * not send data payloads larger than the endpoint's maximum packet size.
163  *
164  * libusb and the underlying OS abstract out the packet concept, allowing you
165  * to request transfers of any size. Internally, the request will be divided
166  * up into correctly-sized packets. You do not have to be concerned with
167  * packet sizes, but there is one exception when considering overflows.
168  *
169  * \section overflow Bulk/interrupt transfer overflows
170  *
171  * When requesting data on a bulk endpoint, libusb requires you to supply a
172  * buffer and the maximum number of bytes of data that libusb can put in that
173  * buffer. However, the size of the buffer is not communicated to the device -
174  * the device is just asked to send any amount of data.
175  *
176  * There is no problem if the device sends an amount of data that is less than
177  * or equal to the buffer size. libusb reports this condition to you through
178  * the \ref libusb_transfer::actual_length "libusb_transfer.actual_length"
179  * field.
180  *
181  * Problems may occur if the device attempts to send more data than can fit in
182  * the buffer. libusb reports LIBUSB_TRANSFER_OVERFLOW for this condition but
183  * other behaviour is largely undefined: actual_length may or may not be
184  * accurate, the chunk of data that can fit in the buffer (before overflow)
185  * may or may not have been transferred.
186  *
187  * Overflows are nasty, but can be avoided. Even though you were told to
188  * ignore packets above, think about the lower level details: each transfer is
189  * split into packets (typically small, with a maximum size of 512 bytes).
190  * Overflows can only happen if the final packet in an incoming data transfer
191  * is smaller than the actual packet that the device wants to transfer.
192  * Therefore, you will never see an overflow if your transfer buffer size is a
193  * multiple of the endpoint's packet size: the final packet will either
194  * fill up completely or will be only partially filled.
195  */
196 
197 /**
198  * @defgroup libusb_asyncio Asynchronous device I/O
199  *
200  * This page details libusb's asynchronous (non-blocking) API for USB device
201  * I/O. This interface is very powerful but is also quite complex - you will
202  * need to read this page carefully to understand the necessary considerations
203  * and issues surrounding use of this interface. Simplistic applications
204  * may wish to consider the \ref libusb_syncio "synchronous I/O API" instead.
205  *
206  * The asynchronous interface is built around the idea of separating transfer
207  * submission and handling of transfer completion (the synchronous model
208  * combines both of these into one). There may be a long delay between
209  * submission and completion, however the asynchronous submission function
210  * is non-blocking so will return control to your application during that
211  * potentially long delay.
212  *
213  * \section asyncabstraction Transfer abstraction
214  *
215  * For the asynchronous I/O, libusb implements the concept of a generic
216  * transfer entity for all types of I/O (control, bulk, interrupt,
217  * isochronous). The generic transfer object must be treated slightly
218  * differently depending on which type of I/O you are performing with it.
219  *
220  * This is represented by the public libusb_transfer structure type.
221  *
222  * \section asynctrf Asynchronous transfers
223  *
224  * We can view asynchronous I/O as a 5 step process:
225  * -# <b>Allocation</b>: allocate a libusb_transfer
226  * -# <b>Filling</b>: populate the libusb_transfer instance with information
227  *    about the transfer you wish to perform
228  * -# <b>Submission</b>: ask libusb to submit the transfer
229  * -# <b>Completion handling</b>: examine transfer results in the
230  *    libusb_transfer structure
231  * -# <b>Deallocation</b>: clean up resources
232  *
233  *
234  * \subsection asyncalloc Allocation
235  *
236  * This step involves allocating memory for a USB transfer. This is the
237  * generic transfer object mentioned above. At this stage, the transfer
238  * is "blank" with no details about what type of I/O it will be used for.
239  *
240  * Allocation is done with the libusb_alloc_transfer() function. You must use
241  * this function rather than allocating your own transfers.
242  *
243  * \subsection asyncfill Filling
244  *
245  * This step is where you take a previously allocated transfer and fill it
246  * with information to determine the message type and direction, data buffer,
247  * callback function, etc.
248  *
249  * You can either fill the required fields yourself or you can use the
250  * helper functions: libusb_fill_control_transfer(), libusb_fill_bulk_transfer()
251  * and libusb_fill_interrupt_transfer().
252  *
253  * \subsection asyncsubmit Submission
254  *
255  * When you have allocated a transfer and filled it, you can submit it using
256  * libusb_submit_transfer(). This function returns immediately but can be
257  * regarded as firing off the I/O request in the background.
258  *
259  * \subsection asynccomplete Completion handling
260  *
261  * After a transfer has been submitted, one of four things can happen to it:
262  *
263  * - The transfer completes (i.e. some data was transferred)
264  * - The transfer has a timeout and the timeout expires before all data is
265  * transferred
266  * - The transfer fails due to an error
267  * - The transfer is cancelled
268  *
269  * Each of these will cause the user-specified transfer callback function to
270  * be invoked. It is up to the callback function to determine which of the
271  * above actually happened and to act accordingly.
272  *
273  * The user-specified callback is passed a pointer to the libusb_transfer
274  * structure which was used to setup and submit the transfer. At completion
275  * time, libusb has populated this structure with results of the transfer:
276  * success or failure reason, number of bytes of data transferred, etc. See
277  * the libusb_transfer structure documentation for more information.
278  *
279  * <b>Important Note</b>: The user-specified callback is called from an event
280  * handling context. It is therefore important that no calls are made into
281  * libusb that will attempt to perform any event handling. Examples of such
282  * functions are any listed in the \ref libusb_syncio "synchronous API" and any of
283  * the blocking functions that retrieve \ref libusb_desc "USB descriptors".
284  *
285  * \subsection Deallocation
286  *
287  * When a transfer has completed (i.e. the callback function has been invoked),
288  * you are advised to free the transfer (unless you wish to resubmit it, see
289  * below). Transfers are deallocated with libusb_free_transfer().
290  *
291  * It is undefined behaviour to free a transfer which has not completed.
292  *
293  * \section asyncresubmit Resubmission
294  *
295  * You may be wondering why allocation, filling, and submission are all
296  * separated above where they could reasonably be combined into a single
297  * operation.
298  *
299  * The reason for separation is to allow you to resubmit transfers without
300  * having to allocate new ones every time. This is especially useful for
301  * common situations dealing with interrupt endpoints - you allocate one
302  * transfer, fill and submit it, and when it returns with results you just
303  * resubmit it for the next interrupt.
304  *
305  * \section asynccancel Cancellation
306  *
307  * Another advantage of using the asynchronous interface is that you have
308  * the ability to cancel transfers which have not yet completed. This is
309  * done by calling the libusb_cancel_transfer() function.
310  *
311  * libusb_cancel_transfer() is asynchronous/non-blocking in itself. When the
312  * cancellation actually completes, the transfer's callback function will
313  * be invoked, and the callback function should check the transfer status to
314  * determine that it was cancelled.
315  *
316  * On macOS and iOS it is not possible to cancel a single transfer. In this
317  * case cancelling one transfer on an endpoint will cause all transfers on
318  * that endpoint to be cancelled.
319  *
320  * Freeing the transfer after it has been cancelled but before cancellation
321  * has completed will result in undefined behaviour.
322  *
323  * \attention
324  * When a transfer is cancelled, some of the data may have been transferred.
325  * libusb will communicate this to you in the transfer callback.
326  * <b>Do not assume that no data was transferred.</b>
327  *
328  * \section asyncpartial Partial data transfer resulting from cancellation
329  *
330  * As noted above, some of the data may have been transferred at the time a
331  * transfer is cancelled. It is helpful to see how this is possible if you
332  * consider a bulk transfer to an endpoint with a packet size of 64 bytes.
333  * Supposing you submit a 512-byte transfer to this endpoint, the operating
334  * system will divide this transfer up into 8 separate 64-byte frames that the
335  * host controller will schedule for the device to transfer data. If this
336  * transfer is cancelled while the device is transferring data, a subset of
337  * these frames may be descheduled from the host controller before the device
338  * has the opportunity to finish transferring data to the host.
339  *
340  * What your application should do with a partial data transfer is a policy
341  * decision; there is no single answer that satisfies the needs of every
342  * application. The data that was successfully transferred should be
343  * considered entirely valid, but your application must decide what to do with
344  * the remaining data that was not transferred. Some possible actions to take
345  * are:
346  * - Resubmit another transfer for the remaining data, possibly with a shorter
347  *   timeout
348  * - Discard the partially transferred data and report an error
349  *
350  * \section asynctimeout Timeouts
351  *
352  * When a transfer times out, libusb internally notes this and attempts to
353  * cancel the transfer. As noted in \ref asyncpartial "above", it is possible
354  * that some of the data may actually have been transferred. Your application
355  * should <b>always</b> check how much data was actually transferred once the
356  * transfer completes and act accordingly.
357  *
358  * \section bulk_overflows Overflows on device-to-host bulk/interrupt endpoints
359  *
360  * If your device does not have predictable transfer sizes (or it misbehaves),
361  * your application may submit a request for data on an IN endpoint which is
362  * smaller than the data that the device wishes to send. In some circumstances
363  * this will cause an overflow, which is a nasty condition to deal with. See
364  * the \ref libusb_packetoverflow page for discussion.
365  *
366  * \section asyncctrl Considerations for control transfers
367  *
368  * The <tt>libusb_transfer</tt> structure is generic and hence does not
369  * include specific fields for the control-specific setup packet structure.
370  *
371  * In order to perform a control transfer, you must place the 8-byte setup
372  * packet at the start of the data buffer. To simplify this, you could
373  * cast the buffer pointer to type struct libusb_control_setup, or you can
374  * use the helper function libusb_fill_control_setup().
375  *
376  * The wLength field placed in the setup packet must be the length you would
377  * expect to be sent in the setup packet: the length of the payload that
378  * follows (or the expected maximum number of bytes to receive). However,
379  * the length field of the libusb_transfer object must be the length of
380  * the data buffer - i.e. it should be wLength <em>plus</em> the size of
381  * the setup packet (LIBUSB_CONTROL_SETUP_SIZE).
382  *
383  * If you use the helper functions, this is simplified for you:
384  * -# Allocate a buffer of size LIBUSB_CONTROL_SETUP_SIZE plus the size of the
385  * data you are sending/requesting.
386  * -# Call libusb_fill_control_setup() on the data buffer, using the transfer
387  * request size as the wLength value (i.e. do not include the extra space you
388  * allocated for the control setup).
389  * -# If this is a host-to-device transfer, place the data to be transferred
390  * in the data buffer, starting at offset LIBUSB_CONTROL_SETUP_SIZE.
391  * -# Call libusb_fill_control_transfer() to associate the data buffer with
392  * the transfer (and to set the remaining details such as callback and timeout).
393  *   - Note that there is no parameter to set the length field of the transfer.
394  *     The length is automatically inferred from the wLength field of the setup
395  *     packet.
396  * -# Submit the transfer.
397  *
398  * The multi-byte control setup fields (wValue, wIndex and wLength) must
399  * be given in little-endian byte order (the endianness of the USB bus).
400  * Endianness conversion is transparently handled by
401  * libusb_fill_control_setup() which is documented to accept host-endian
402  * values.
403  *
404  * Further considerations are needed when handling transfer completion in
405  * your callback function:
406  * - As you might expect, the setup packet will still be sitting at the start
407  * of the data buffer.
408  * - If this was a device-to-host transfer, the received data will be sitting
409  * at offset LIBUSB_CONTROL_SETUP_SIZE into the buffer.
410  * - The actual_length field of the transfer structure is relative to the
411  * wLength of the setup packet, rather than the size of the data buffer. So,
412  * if your wLength was 4, your transfer's <tt>length</tt> was 12, then you
413  * should expect an <tt>actual_length</tt> of 4 to indicate that the data was
414  * transferred in entirety.
415  *
416  * To simplify parsing of setup packets and obtaining the data from the
417  * correct offset, you may wish to use the libusb_control_transfer_get_data()
418  * and libusb_control_transfer_get_setup() functions within your transfer
419  * callback.
420  *
421  * Even though control endpoints do not halt, a completed control transfer
422  * may have a LIBUSB_TRANSFER_STALL status code. This indicates the control
423  * request was not supported.
424  *
425  * \section asyncintr Considerations for interrupt transfers
426  *
427  * All interrupt transfers are performed using the polling interval presented
428  * by the bInterval value of the endpoint descriptor.
429  *
430  * \section asynciso Considerations for isochronous transfers
431  *
432  * Isochronous transfers are more complicated than transfers to
433  * non-isochronous endpoints.
434  *
435  * To perform I/O to an isochronous endpoint, allocate the transfer by calling
436  * libusb_alloc_transfer() with an appropriate number of isochronous packets.
437  *
438  * During filling, set \ref libusb_transfer::type "type" to
439  * \ref libusb_transfer_type::LIBUSB_TRANSFER_TYPE_ISOCHRONOUS
440  * "LIBUSB_TRANSFER_TYPE_ISOCHRONOUS", and set
441  * \ref libusb_transfer::num_iso_packets "num_iso_packets" to a value less than
442  * or equal to the number of packets you requested during allocation.
443  * libusb_alloc_transfer() does not set either of these fields for you, given
444  * that you might not even use the transfer on an isochronous endpoint.
445  *
446  * Next, populate the length field for the first num_iso_packets entries in
447  * the \ref libusb_transfer::iso_packet_desc "iso_packet_desc" array. Section
448  * 5.6.3 of the USB2 specifications describe how the maximum isochronous
449  * packet length is determined by the wMaxPacketSize field in the endpoint
450  * descriptor.
451  * Two functions can help you here:
452  *
453  * - libusb_get_max_iso_packet_size() is an easy way to determine the max
454  *   packet size for an isochronous endpoint. Note that the maximum packet
455  *   size is actually the maximum number of bytes that can be transmitted in
456  *   a single microframe, therefore this function multiplies the maximum number
457  *   of bytes per transaction by the number of transaction opportunities per
458  *   microframe.
459  * - libusb_set_iso_packet_lengths() assigns the same length to all packets
460  *   within a transfer, which is usually what you want.
461  *
462  * For outgoing transfers, you'll obviously fill the buffer and populate the
463  * packet descriptors in hope that all the data gets transferred. For incoming
464  * transfers, you must ensure the buffer has sufficient capacity for
465  * the situation where all packets transfer the full amount of requested data.
466  *
467  * Completion handling requires some extra consideration. The
468  * \ref libusb_transfer::actual_length "actual_length" field of the transfer
469  * is meaningless and should not be examined; instead you must refer to the
470  * \ref libusb_iso_packet_descriptor::actual_length "actual_length" field of
471  * each individual packet.
472  *
473  * The \ref libusb_transfer::status "status" field of the transfer is also a
474  * little misleading:
475  *  - If the packets were submitted and the isochronous data microframes
476  *    completed normally, status will have value
477  *    \ref libusb_transfer_status::LIBUSB_TRANSFER_COMPLETED
478  *    "LIBUSB_TRANSFER_COMPLETED". Note that bus errors and software-incurred
479  *    delays are not counted as transfer errors; the transfer.status field may
480  *    indicate COMPLETED even if some or all of the packets failed. Refer to
481  *    the \ref libusb_iso_packet_descriptor::status "status" field of each
482  *    individual packet to determine packet failures.
483  *  - The status field will have value
484  *    \ref libusb_transfer_status::LIBUSB_TRANSFER_ERROR
485  *    "LIBUSB_TRANSFER_ERROR" only when serious errors were encountered.
486  *  - Other transfer status codes occur with normal behaviour.
487  *
488  * The data for each packet will be found at an offset into the buffer that
489  * can be calculated as if each prior packet completed in full. The
490  * libusb_get_iso_packet_buffer() and libusb_get_iso_packet_buffer_simple()
491  * functions may help you here.
492  *
493  * \section asynclimits Transfer length limitations
494  *
495  * Some operating systems may impose limits on the length of the transfer data
496  * buffer or, in the case of isochronous transfers, the length of individual
497  * isochronous packets. Such limits can be difficult for libusb to detect, so
498  * in most cases the library will simply try and submit the transfer as set up
499  * by you. If the transfer fails to submit because it is too large,
500  * libusb_submit_transfer() will return
501  * \ref libusb_error::LIBUSB_ERROR_INVALID_PARAM "LIBUSB_ERROR_INVALID_PARAM".
502  *
503  * The following are known limits for control transfer lengths. Note that this
504  * length includes the 8-byte setup packet.
505  * - Linux (4,096 bytes)
506  * - Windows (4,096 bytes)
507  *
508  * \section asyncmem Memory caveats
509  *
510  * In most circumstances, it is not safe to use stack memory for transfer
511  * buffers. This is because the function that fired off the asynchronous
512  * transfer may return before libusb has finished using the buffer, and when
513  * the function returns it's stack gets destroyed. This is true for both
514  * host-to-device and device-to-host transfers.
515  *
516  * The only case in which it is safe to use stack memory is where you can
517  * guarantee that the function owning the stack space for the buffer does not
518  * return until after the transfer's callback function has completed. In every
519  * other case, you need to use heap memory instead.
520  *
521  * \section asyncflags Fine control
522  *
523  * Through using this asynchronous interface, you may find yourself repeating
524  * a few simple operations many times. You can apply a bitwise OR of certain
525  * flags to a transfer to simplify certain things:
526  * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_SHORT_NOT_OK
527  *   "LIBUSB_TRANSFER_SHORT_NOT_OK" results in transfers which transferred
528  *   less than the requested amount of data being marked with status
529  *   \ref libusb_transfer_status::LIBUSB_TRANSFER_ERROR "LIBUSB_TRANSFER_ERROR"
530  *   (they would normally be regarded as COMPLETED)
531  * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_BUFFER
532  *   "LIBUSB_TRANSFER_FREE_BUFFER" allows you to ask libusb to free the transfer
533  *   buffer when freeing the transfer.
534  * - \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_TRANSFER
535  *   "LIBUSB_TRANSFER_FREE_TRANSFER" causes libusb to automatically free the
536  *   transfer after the transfer callback returns.
537  *
538  * \section asyncevent Event handling
539  *
540  * An asynchronous model requires that libusb perform work at various
541  * points in time - namely processing the results of previously-submitted
542  * transfers and invoking the user-supplied callback function.
543  *
544  * This gives rise to the libusb_handle_events() function which your
545  * application must call into when libusb has work do to. This gives libusb
546  * the opportunity to reap pending transfers, invoke callbacks, etc.
547  *
548  * \note
549  * All event handling is performed by whichever thread calls the
550  * libusb_handle_events() function. libusb does not invoke any callbacks
551  * outside of this context. Consequently, any callbacks will be run on the
552  * thread that calls the libusb_handle_events() function.
553  *
554  * When to call the libusb_handle_events() function depends on which model
555  * your application decides to use. The 2 different approaches:
556  *
557  * -# Repeatedly call libusb_handle_events() in blocking mode from a dedicated
558  *    thread.
559  * -# Integrate libusb with your application's main event loop. libusb
560  *    exposes a set of file descriptors which allow you to do this.
561  *
562  * The first approach has the big advantage that it will also work on Windows
563  * were libusb' poll API for select / poll integration is not available. So
564  * if you want to support Windows and use the async API, you must use this
565  * approach, see the \ref eventthread "Using an event handling thread" section
566  * below for details.
567  *
568  * If you prefer a single threaded approach with a single central event loop,
569  * see the \ref libusb_poll "polling and timing" section for how to integrate libusb
570  * into your application's main event loop.
571  *
572  * \section eventthread Using an event handling thread
573  *
574  * Lets begin with stating the obvious: If you're going to use a separate
575  * thread for libusb event handling, your callback functions MUST be
576  * thread-safe.
577  *
578  * Other then that doing event handling from a separate thread, is mostly
579  * simple. You can use an event thread function as follows:
580 \code
581 void *event_thread_func(void *ctx)
582 {
583     while (event_thread_run)
584         libusb_handle_events(ctx);
585 
586     return NULL;
587 }
588 \endcode
589  *
590  * There is one caveat though, stopping this thread requires setting the
591  * event_thread_run variable to 0, and after that libusb_handle_events() needs
592  * to return control to event_thread_func. But unless some event happens,
593  * libusb_handle_events() will not return.
594  *
595  * There are 2 different ways of dealing with this, depending on if your
596  * application uses libusb' \ref libusb_hotplug "hotplug" support or not.
597  *
598  * Applications which do not use hotplug support, should not start the event
599  * thread until after their first call to libusb_open(), and should stop the
600  * thread when closing the last open device as follows:
601 \code
602 void my_close_handle(libusb_device_handle *dev_handle)
603 {
604     if (open_devs == 1)
605         event_thread_run = 0;
606 
607     libusb_close(dev_handle); // This wakes up libusb_handle_events()
608 
609     if (open_devs == 1)
610         pthread_join(event_thread);
611 
612     open_devs--;
613 }
614 \endcode
615  *
616  * Applications using hotplug support should start the thread at program init,
617  * after having successfully called libusb_hotplug_register_callback(), and
618  * should stop the thread at program exit as follows:
619 \code
620 void my_libusb_exit(void)
621 {
622     event_thread_run = 0;
623     libusb_hotplug_deregister_callback(ctx, hotplug_cb_handle); // This wakes up libusb_handle_events()
624     pthread_join(event_thread);
625     libusb_exit(ctx);
626 }
627 \endcode
628  */
629 
630 /**
631  * @defgroup libusb_poll Polling and timing
632  *
633  * This page documents libusb's functions for polling events and timing.
634  * These functions are only necessary for users of the
635  * \ref libusb_asyncio "asynchronous API". If you are only using the simpler
636  * \ref libusb_syncio "synchronous API" then you do not need to ever call these
637  * functions.
638  *
639  * The justification for the functionality described here has already been
640  * discussed in the \ref asyncevent "event handling" section of the
641  * asynchronous API documentation. In summary, libusb does not create internal
642  * threads for event processing and hence relies on your application calling
643  * into libusb at certain points in time so that pending events can be handled.
644  *
645  * Your main loop is probably already calling poll() or select() or a
646  * variant on a set of file descriptors for other event sources (e.g. keyboard
647  * button presses, mouse movements, network sockets, etc). You then add
648  * libusb's file descriptors to your poll()/select() calls, and when activity
649  * is detected on such descriptors you know it is time to call
650  * libusb_handle_events().
651  *
652  * There is one final event handling complication. libusb supports
653  * asynchronous transfers which time out after a specified time period.
654  *
655  * On some platforms a timerfd is used, so the timeout handling is just another
656  * fd, on other platforms this requires that libusb is called into at or after
657  * the timeout to handle it. So, in addition to considering libusb's file
658  * descriptors in your main event loop, you must also consider that libusb
659  * sometimes needs to be called into at fixed points in time even when there
660  * is no file descriptor activity, see \ref polltime details.
661  *
662  * In order to know precisely when libusb needs to be called into, libusb
663  * offers you a set of pollable file descriptors and information about when
664  * the next timeout expires.
665  *
666  * If you are using the asynchronous I/O API, you must take one of the two
667  * following options, otherwise your I/O will not complete.
668  *
669  * \section pollsimple The simple option
670  *
671  * If your application revolves solely around libusb and does not need to
672  * handle other event sources, you can have a program structure as follows:
673 \code
674 // initialize libusb
675 // find and open device
676 // maybe fire off some initial async I/O
677 
678 while (user_has_not_requested_exit)
679 	libusb_handle_events(ctx);
680 
681 // clean up and exit
682 \endcode
683  *
684  * With such a simple main loop, you do not have to worry about managing
685  * sets of file descriptors or handling timeouts. libusb_handle_events() will
686  * handle those details internally.
687  *
688  * \section libusb_pollmain The more advanced option
689  *
690  * \note This functionality is currently only available on Unix-like platforms.
691  * On Windows, libusb_get_pollfds() simply returns NULL. Applications which
692  * want to support Windows are advised to use an \ref eventthread
693  * "event handling thread" instead.
694  *
695  * In more advanced applications, you will already have a main loop which
696  * is monitoring other event sources: network sockets, X11 events, mouse
697  * movements, etc. Through exposing a set of file descriptors, libusb is
698  * designed to cleanly integrate into such main loops.
699  *
700  * In addition to polling file descriptors for the other event sources, you
701  * take a set of file descriptors from libusb and monitor those too. When you
702  * detect activity on libusb's file descriptors, you call
703  * libusb_handle_events_timeout() in non-blocking mode.
704  *
705  * What's more, libusb may also need to handle events at specific moments in
706  * time. No file descriptor activity is generated at these times, so your
707  * own application needs to be continually aware of when the next one of these
708  * moments occurs (through calling libusb_get_next_timeout()), and then it
709  * needs to call libusb_handle_events_timeout() in non-blocking mode when
710  * these moments occur. This means that you need to adjust your
711  * poll()/select() timeout accordingly.
712  *
713  * libusb provides you with a set of file descriptors to poll and expects you
714  * to poll all of them, treating them as a single entity. The meaning of each
715  * file descriptor in the set is an internal implementation detail,
716  * platform-dependent and may vary from release to release. Don't try and
717  * interpret the meaning of the file descriptors, just do as libusb indicates,
718  * polling all of them at once.
719  *
720  * In pseudo-code, you want something that looks like:
721 \code
722 // initialise libusb
723 
724 libusb_get_pollfds(ctx)
725 while (user has not requested application exit) {
726 	libusb_get_next_timeout(ctx);
727 	poll(on libusb file descriptors plus any other event sources of interest,
728 		using a timeout no larger than the value libusb just suggested)
729 	if (poll() indicated activity on libusb file descriptors)
730 		libusb_handle_events_timeout(ctx, &zero_tv);
731 	if (time has elapsed to or beyond the libusb timeout)
732 		libusb_handle_events_timeout(ctx, &zero_tv);
733 	// handle events from other sources here
734 }
735 
736 // clean up and exit
737 \endcode
738  *
739  * \subsection polltime Notes on time-based events
740  *
741  * The above complication with having to track time and call into libusb at
742  * specific moments is a bit of a headache. For maximum compatibility, you do
743  * need to write your main loop as above, but you may decide that you can
744  * restrict the supported platforms of your application and get away with
745  * a more simplistic scheme.
746  *
747  * These time-based event complications are \b not required on the following
748  * platforms:
749  *  - Darwin
750  *  - Linux, provided that the following version requirements are satisfied:
751  *   - Linux v2.6.27 or newer, compiled with timerfd support
752  *   - glibc v2.9 or newer
753  *   - libusb v1.0.5 or newer
754  *
755  * Under these configurations, libusb_get_next_timeout() will \em always return
756  * 0, so your main loop can be simplified to:
757 \code
758 // initialise libusb
759 
760 libusb_get_pollfds(ctx)
761 while (user has not requested application exit) {
762 	poll(on libusb file descriptors plus any other event sources of interest,
763 		using any timeout that you like)
764 	if (poll() indicated activity on libusb file descriptors)
765 		libusb_handle_events_timeout(ctx, &zero_tv);
766 	// handle events from other sources here
767 }
768 
769 // clean up and exit
770 \endcode
771  *
772  * Do remember that if you simplify your main loop to the above, you will
773  * lose compatibility with some platforms (including legacy Linux platforms,
774  * and <em>any future platforms supported by libusb which may have time-based
775  * event requirements</em>). The resultant problems will likely appear as
776  * strange bugs in your application.
777  *
778  * You can use the libusb_pollfds_handle_timeouts() function to do a runtime
779  * check to see if it is safe to ignore the time-based event complications.
780  * If your application has taken the shortcut of ignoring libusb's next timeout
781  * in your main loop, then you are advised to check the return value of
782  * libusb_pollfds_handle_timeouts() during application startup, and to abort
783  * if the platform does suffer from these timing complications.
784  *
785  * \subsection fdsetchange Changes in the file descriptor set
786  *
787  * The set of file descriptors that libusb uses as event sources may change
788  * during the life of your application. Rather than having to repeatedly
789  * call libusb_get_pollfds(), you can set up notification functions for when
790  * the file descriptor set changes using libusb_set_pollfd_notifiers().
791  *
792  * \subsection mtissues Multi-threaded considerations
793  *
794  * Unfortunately, the situation is complicated further when multiple threads
795  * come into play. If two threads are monitoring the same file descriptors,
796  * the fact that only one thread will be woken up when an event occurs causes
797  * some headaches.
798  *
799  * The events lock, event waiters lock, and libusb_handle_events_locked()
800  * entities are added to solve these problems. You do not need to be concerned
801  * with these entities otherwise.
802  *
803  * See the extra documentation: \ref libusb_mtasync
804  */
805 
806 /** \page libusb_mtasync Multi-threaded applications and asynchronous I/O
807  *
808  * libusb is a thread-safe library, but extra considerations must be applied
809  * to applications which interact with libusb from multiple threads.
810  *
811  * The underlying issue that must be addressed is that all libusb I/O
812  * revolves around monitoring file descriptors through the poll()/select()
813  * system calls. This is directly exposed at the
814  * \ref libusb_asyncio "asynchronous interface" but it is important to note that the
815  * \ref libusb_syncio "synchronous interface" is implemented on top of the
816  * asynchronous interface, therefore the same considerations apply.
817  *
818  * The issue is that if two or more threads are concurrently calling poll()
819  * or select() on libusb's file descriptors then only one of those threads
820  * will be woken up when an event arrives. The others will be completely
821  * oblivious that anything has happened.
822  *
823  * Consider the following pseudo-code, which submits an asynchronous transfer
824  * then waits for its completion. This style is one way you could implement a
825  * synchronous interface on top of the asynchronous interface (and libusb
826  * does something similar, albeit more advanced due to the complications
827  * explained on this page).
828  *
829 \code
830 void cb(struct libusb_transfer *transfer)
831 {
832 	int *completed = transfer->user_data;
833 	*completed = 1;
834 }
835 
836 void myfunc() {
837 	struct libusb_transfer *transfer;
838 	unsigned char buffer[LIBUSB_CONTROL_SETUP_SIZE] __attribute__ ((aligned (2)));
839 	int completed = 0;
840 
841 	transfer = libusb_alloc_transfer(0);
842 	libusb_fill_control_setup(buffer,
843 		LIBUSB_REQUEST_TYPE_VENDOR | LIBUSB_ENDPOINT_OUT, 0x04, 0x01, 0, 0);
844 	libusb_fill_control_transfer(transfer, dev, buffer, cb, &completed, 1000);
845 	libusb_submit_transfer(transfer);
846 
847 	while (!completed) {
848 		poll(libusb file descriptors, 120*1000);
849 		if (poll indicates activity)
850 			libusb_handle_events_timeout(ctx, &zero_tv);
851 	}
852 	printf("completed!");
853 	// other code here
854 }
855 \endcode
856  *
857  * Here we are <em>serializing</em> completion of an asynchronous event
858  * against a condition - the condition being completion of a specific transfer.
859  * The poll() loop has a long timeout to minimize CPU usage during situations
860  * when nothing is happening (it could reasonably be unlimited).
861  *
862  * If this is the only thread that is polling libusb's file descriptors, there
863  * is no problem: there is no danger that another thread will swallow up the
864  * event that we are interested in. On the other hand, if there is another
865  * thread polling the same descriptors, there is a chance that it will receive
866  * the event that we were interested in. In this situation, <tt>myfunc()</tt>
867  * will only realise that the transfer has completed on the next iteration of
868  * the loop, <em>up to 120 seconds later.</em> Clearly a two-minute delay is
869  * undesirable, and don't even think about using short timeouts to circumvent
870  * this issue!
871  *
872  * The solution here is to ensure that no two threads are ever polling the
873  * file descriptors at the same time. A naive implementation of this would
874  * impact the capabilities of the library, so libusb offers the scheme
875  * documented below to ensure no loss of functionality.
876  *
877  * Before we go any further, it is worth mentioning that all libusb-wrapped
878  * event handling procedures fully adhere to the scheme documented below.
879  * This includes libusb_handle_events() and its variants, and all the
880  * synchronous I/O functions - libusb hides this headache from you.
881  *
882  * \section Using libusb_handle_events() from multiple threads
883  *
884  * Even when only using libusb_handle_events() and synchronous I/O functions,
885  * you can still have a race condition. You might be tempted to solve the
886  * above with libusb_handle_events() like so:
887  *
888 \code
889 	libusb_submit_transfer(transfer);
890 
891 	while (!completed) {
892 		libusb_handle_events(ctx);
893 	}
894 	printf("completed!");
895 \endcode
896  *
897  * This however has a race between the checking of completed and
898  * libusb_handle_events() acquiring the events lock, so another thread
899  * could have completed the transfer, resulting in this thread hanging
900  * until either a timeout or another event occurs. See also commit
901  * 6696512aade99bb15d6792af90ae329af270eba6 which fixes this in the
902  * synchronous API implementation of libusb.
903  *
904  * Fixing this race requires checking the variable completed only after
905  * taking the event lock, which defeats the concept of just calling
906  * libusb_handle_events() without worrying about locking. This is why
907  * libusb-1.0.9 introduces the new libusb_handle_events_timeout_completed()
908  * and libusb_handle_events_completed() functions, which handles doing the
909  * completion check for you after they have acquired the lock:
910  *
911 \code
912 	libusb_submit_transfer(transfer);
913 
914 	while (!completed) {
915 		libusb_handle_events_completed(ctx, &completed);
916 	}
917 	printf("completed!");
918 \endcode
919  *
920  * This nicely fixes the race in our example. Note that if all you want to
921  * do is submit a single transfer and wait for its completion, then using
922  * one of the synchronous I/O functions is much easier.
923  *
924  * \note
925  * The `completed` variable must be modified while holding the event lock,
926  * otherwise a race condition can still exist. It is simplest to do so from
927  * within the transfer callback as shown above.
928  *
929  * \section eventlock The events lock
930  *
931  * The problem is when we consider the fact that libusb exposes file
932  * descriptors to allow for you to integrate asynchronous USB I/O into
933  * existing main loops, effectively allowing you to do some work behind
934  * libusb's back. If you do take libusb's file descriptors and pass them to
935  * poll()/select() yourself, you need to be aware of the associated issues.
936  *
937  * The first concept to be introduced is the events lock. The events lock
938  * is used to serialize threads that want to handle events, such that only
939  * one thread is handling events at any one time.
940  *
941  * You must take the events lock before polling libusb file descriptors,
942  * using libusb_lock_events(). You must release the lock as soon as you have
943  * aborted your poll()/select() loop, using libusb_unlock_events().
944  *
945  * \section threadwait Letting other threads do the work for you
946  *
947  * Although the events lock is a critical part of the solution, it is not
948  * enough on it's own. You might wonder if the following is sufficient...
949 \code
950 	libusb_lock_events(ctx);
951 	while (!completed) {
952 		poll(libusb file descriptors, 120*1000);
953 		if (poll indicates activity)
954 			libusb_handle_events_timeout(ctx, &zero_tv);
955 	}
956 	libusb_unlock_events(ctx);
957 \endcode
958  * ...and the answer is that it is not. This is because the transfer in the
959  * code shown above may take a long time (say 30 seconds) to complete, and
960  * the lock is not released until the transfer is completed.
961  *
962  * Another thread with similar code that wants to do event handling may be
963  * working with a transfer that completes after a few milliseconds. Despite
964  * having such a quick completion time, the other thread cannot check that
965  * status of its transfer until the code above has finished (30 seconds later)
966  * due to contention on the lock.
967  *
968  * To solve this, libusb offers you a mechanism to determine when another
969  * thread is handling events. It also offers a mechanism to block your thread
970  * until the event handling thread has completed an event (and this mechanism
971  * does not involve polling of file descriptors).
972  *
973  * After determining that another thread is currently handling events, you
974  * obtain the <em>event waiters</em> lock using libusb_lock_event_waiters().
975  * You then re-check that some other thread is still handling events, and if
976  * so, you call libusb_wait_for_event().
977  *
978  * libusb_wait_for_event() puts your application to sleep until an event
979  * occurs, or until a thread releases the events lock. When either of these
980  * things happen, your thread is woken up, and should re-check the condition
981  * it was waiting on. It should also re-check that another thread is handling
982  * events, and if not, it should start handling events itself.
983  *
984  * This looks like the following, as pseudo-code:
985 \code
986 retry:
987 if (libusb_try_lock_events(ctx) == 0) {
988 	// we obtained the event lock: do our own event handling
989 	while (!completed) {
990 		if (!libusb_event_handling_ok(ctx)) {
991 			libusb_unlock_events(ctx);
992 			goto retry;
993 		}
994 		poll(libusb file descriptors, 120*1000);
995 		if (poll indicates activity)
996 			libusb_handle_events_locked(ctx, 0);
997 	}
998 	libusb_unlock_events(ctx);
999 } else {
1000 	// another thread is doing event handling. wait for it to signal us that
1001 	// an event has completed
1002 	libusb_lock_event_waiters(ctx);
1003 
1004 	while (!completed) {
1005 		// now that we have the event waiters lock, double check that another
1006 		// thread is still handling events for us. (it may have ceased handling
1007 		// events in the time it took us to reach this point)
1008 		if (!libusb_event_handler_active(ctx)) {
1009 			// whoever was handling events is no longer doing so, try again
1010 			libusb_unlock_event_waiters(ctx);
1011 			goto retry;
1012 		}
1013 
1014 		libusb_wait_for_event(ctx, NULL);
1015 	}
1016 	libusb_unlock_event_waiters(ctx);
1017 }
1018 printf("completed!\n");
1019 \endcode
1020  *
1021  * A naive look at the above code may suggest that this can only support
1022  * one event waiter (hence a total of 2 competing threads, the other doing
1023  * event handling), because the event waiter seems to have taken the event
1024  * waiters lock while waiting for an event. However, the system does support
1025  * multiple event waiters, because libusb_wait_for_event() actually drops
1026  * the lock while waiting, and reacquires it before continuing.
1027  *
1028  * We have now implemented code which can dynamically handle situations where
1029  * nobody is handling events (so we should do it ourselves), and it can also
1030  * handle situations where another thread is doing event handling (so we can
1031  * piggyback onto them). It is also equipped to handle a combination of
1032  * the two, for example, another thread is doing event handling, but for
1033  * whatever reason it stops doing so before our condition is met, so we take
1034  * over the event handling.
1035  *
1036  * Four functions were introduced in the above pseudo-code. Their importance
1037  * should be apparent from the code shown above.
1038  * -# libusb_try_lock_events() is a non-blocking function which attempts
1039  *    to acquire the events lock but returns a failure code if it is contended.
1040  * -# libusb_event_handling_ok() checks that libusb is still happy for your
1041  *    thread to be performing event handling. Sometimes, libusb needs to
1042  *    interrupt the event handler, and this is how you can check if you have
1043  *    been interrupted. If this function returns 0, the correct behaviour is
1044  *    for you to give up the event handling lock, and then to repeat the cycle.
1045  *    The following libusb_try_lock_events() will fail, so you will become an
1046  *    events waiter. For more information on this, read \ref fullstory below.
1047  * -# libusb_handle_events_locked() is a variant of
1048  *    libusb_handle_events_timeout() that you can call while holding the
1049  *    events lock. libusb_handle_events_timeout() itself implements similar
1050  *    logic to the above, so be sure not to call it when you are
1051  *    "working behind libusb's back", as is the case here.
1052  * -# libusb_event_handler_active() determines if someone is currently
1053  *    holding the events lock
1054  *
1055  * You might be wondering why there is no function to wake up all threads
1056  * blocked on libusb_wait_for_event(). This is because libusb can do this
1057  * internally: it will wake up all such threads when someone calls
1058  * libusb_unlock_events() or when a transfer completes (at the point after its
1059  * callback has returned).
1060  *
1061  * \subsection fullstory The full story
1062  *
1063  * The above explanation should be enough to get you going, but if you're
1064  * really thinking through the issues then you may be left with some more
1065  * questions regarding libusb's internals. If you're curious, read on, and if
1066  * not, skip to the next section to avoid confusing yourself!
1067  *
1068  * The immediate question that may spring to mind is: what if one thread
1069  * modifies the set of file descriptors that need to be polled while another
1070  * thread is doing event handling?
1071  *
1072  * There are 2 situations in which this may happen.
1073  * -# libusb_open() will add another file descriptor to the poll set,
1074  *    therefore it is desirable to interrupt the event handler so that it
1075  *    restarts, picking up the new descriptor.
1076  * -# libusb_close() will remove a file descriptor from the poll set. There
1077  *    are all kinds of race conditions that could arise here, so it is
1078  *    important that nobody is doing event handling at this time.
1079  *
1080  * libusb handles these issues internally, so application developers do not
1081  * have to stop their event handlers while opening/closing devices. Here's how
1082  * it works, focusing on the libusb_close() situation first:
1083  *
1084  * -# During initialization, libusb opens an internal pipe, and it adds the read
1085  *    end of this pipe to the set of file descriptors to be polled.
1086  * -# During libusb_close(), libusb writes some dummy data on this event pipe.
1087  *    This immediately interrupts the event handler. libusb also records
1088  *    internally that it is trying to interrupt event handlers for this
1089  *    high-priority event.
1090  * -# At this point, some of the functions described above start behaving
1091  *    differently:
1092  *   - libusb_event_handling_ok() starts returning 1, indicating that it is NOT
1093  *     OK for event handling to continue.
1094  *   - libusb_try_lock_events() starts returning 1, indicating that another
1095  *     thread holds the event handling lock, even if the lock is uncontended.
1096  *   - libusb_event_handler_active() starts returning 1, indicating that
1097  *     another thread is doing event handling, even if that is not true.
1098  * -# The above changes in behaviour result in the event handler stopping and
1099  *    giving up the events lock very quickly, giving the high-priority
1100  *    libusb_close() operation a "free ride" to acquire the events lock. All
1101  *    threads that are competing to do event handling become event waiters.
1102  * -# With the events lock held inside libusb_close(), libusb can safely remove
1103  *    a file descriptor from the poll set, in the safety of knowledge that
1104  *    nobody is polling those descriptors or trying to access the poll set.
1105  * -# After obtaining the events lock, the close operation completes very
1106  *    quickly (usually a matter of milliseconds) and then immediately releases
1107  *    the events lock.
1108  * -# At the same time, the behaviour of libusb_event_handling_ok() and friends
1109  *    reverts to the original, documented behaviour.
1110  * -# The release of the events lock causes the threads that are waiting for
1111  *    events to be woken up and to start competing to become event handlers
1112  *    again. One of them will succeed; it will then re-obtain the list of poll
1113  *    descriptors, and USB I/O will then continue as normal.
1114  *
1115  * libusb_open() is similar, and is actually a more simplistic case. Upon a
1116  * call to libusb_open():
1117  *
1118  * -# The device is opened and a file descriptor is added to the poll set.
1119  * -# libusb sends some dummy data on the event pipe, and records that it
1120  *    is trying to modify the poll descriptor set.
1121  * -# The event handler is interrupted, and the same behaviour change as for
1122  *    libusb_close() takes effect, causing all event handling threads to become
1123  *    event waiters.
1124  * -# The libusb_open() implementation takes its free ride to the events lock.
1125  * -# Happy that it has successfully paused the events handler, libusb_open()
1126  *    releases the events lock.
1127  * -# The event waiter threads are all woken up and compete to become event
1128  *    handlers again. The one that succeeds will obtain the list of poll
1129  *    descriptors again, which will include the addition of the new device.
1130  *
1131  * \subsection concl Closing remarks
1132  *
1133  * The above may seem a little complicated, but hopefully I have made it clear
1134  * why such complications are necessary. Also, do not forget that this only
1135  * applies to applications that take libusb's file descriptors and integrate
1136  * them into their own polling loops.
1137  *
1138  * You may decide that it is OK for your multi-threaded application to ignore
1139  * some of the rules and locks detailed above, because you don't think that
1140  * two threads can ever be polling the descriptors at the same time. If that
1141  * is the case, then that's good news for you because you don't have to worry.
1142  * But be careful here; remember that the synchronous I/O functions do event
1143  * handling internally. If you have one thread doing event handling in a loop
1144  * (without implementing the rules and locking semantics documented above)
1145  * and another trying to send a synchronous USB transfer, you will end up with
1146  * two threads monitoring the same descriptors, and the above-described
1147  * undesirable behaviour occurring. The solution is for your polling thread to
1148  * play by the rules; the synchronous I/O functions do so, and this will result
1149  * in them getting along in perfect harmony.
1150  *
1151  * If you do have a dedicated thread doing event handling, it is perfectly
1152  * legal for it to take the event handling lock for long periods of time. Any
1153  * synchronous I/O functions you call from other threads will transparently
1154  * fall back to the "event waiters" mechanism detailed above. The only
1155  * consideration that your event handling thread must apply is the one related
1156  * to libusb_event_handling_ok(): you must call this before every poll(), and
1157  * give up the events lock if instructed.
1158  */
1159 
usbi_io_init(struct libusb_context * ctx)1160 int usbi_io_init(struct libusb_context *ctx)
1161 {
1162 	int r;
1163 
1164 	usbi_mutex_init(&ctx->flying_transfers_lock);
1165 	usbi_mutex_init(&ctx->events_lock);
1166 	usbi_mutex_init(&ctx->event_waiters_lock);
1167 	usbi_cond_init(&ctx->event_waiters_cond);
1168 	usbi_mutex_init(&ctx->event_data_lock);
1169 	usbi_tls_key_create(&ctx->event_handling_key);
1170 	list_init(&ctx->flying_transfers);
1171 	list_init(&ctx->event_sources);
1172 	list_init(&ctx->removed_event_sources);
1173 	list_init(&ctx->hotplug_msgs);
1174 	list_init(&ctx->completed_transfers);
1175 
1176 	r = usbi_create_event(&ctx->event);
1177 	if (r < 0)
1178 		goto err;
1179 
1180 	r = usbi_add_event_source(ctx, USBI_EVENT_OS_HANDLE(&ctx->event), USBI_EVENT_POLL_EVENTS);
1181 	if (r < 0)
1182 		goto err_destroy_event;
1183 
1184 #ifdef HAVE_OS_TIMER
1185 	r = usbi_create_timer(&ctx->timer);
1186 	if (r == 0) {
1187 		usbi_dbg(ctx, "using timer for timeouts");
1188 		r = usbi_add_event_source(ctx, USBI_TIMER_OS_HANDLE(&ctx->timer), USBI_TIMER_POLL_EVENTS);
1189 		if (r < 0)
1190 			goto err_destroy_timer;
1191 	} else {
1192 		usbi_dbg(ctx, "timer not available for timeouts");
1193 	}
1194 #endif
1195 
1196 	return 0;
1197 
1198 #ifdef HAVE_OS_TIMER
1199 err_destroy_timer:
1200 	usbi_destroy_timer(&ctx->timer);
1201 	usbi_remove_event_source(ctx, USBI_EVENT_OS_HANDLE(&ctx->event));
1202 #endif
1203 err_destroy_event:
1204 	usbi_destroy_event(&ctx->event);
1205 err:
1206 	usbi_mutex_destroy(&ctx->flying_transfers_lock);
1207 	usbi_mutex_destroy(&ctx->events_lock);
1208 	usbi_mutex_destroy(&ctx->event_waiters_lock);
1209 	usbi_cond_destroy(&ctx->event_waiters_cond);
1210 	usbi_mutex_destroy(&ctx->event_data_lock);
1211 	usbi_tls_key_delete(ctx->event_handling_key);
1212 	return r;
1213 }
1214 
cleanup_removed_event_sources(struct libusb_context * ctx)1215 static void cleanup_removed_event_sources(struct libusb_context *ctx)
1216 {
1217 	struct usbi_event_source *ievent_source, *tmp;
1218 
1219 	for_each_removed_event_source_safe(ctx, ievent_source, tmp) {
1220 		list_del(&ievent_source->list);
1221 		free(ievent_source);
1222 	}
1223 }
1224 
usbi_io_exit(struct libusb_context * ctx)1225 void usbi_io_exit(struct libusb_context *ctx)
1226 {
1227 #ifdef HAVE_OS_TIMER
1228 	if (usbi_using_timer(ctx)) {
1229 		usbi_remove_event_source(ctx, USBI_TIMER_OS_HANDLE(&ctx->timer));
1230 		usbi_destroy_timer(&ctx->timer);
1231 	}
1232 #endif
1233 	usbi_remove_event_source(ctx, USBI_EVENT_OS_HANDLE(&ctx->event));
1234 	usbi_destroy_event(&ctx->event);
1235 	usbi_mutex_destroy(&ctx->flying_transfers_lock);
1236 	usbi_mutex_destroy(&ctx->events_lock);
1237 	usbi_mutex_destroy(&ctx->event_waiters_lock);
1238 	usbi_cond_destroy(&ctx->event_waiters_cond);
1239 	usbi_mutex_destroy(&ctx->event_data_lock);
1240 	usbi_tls_key_delete(ctx->event_handling_key);
1241 	cleanup_removed_event_sources(ctx);
1242 	free(ctx->event_data);
1243 }
1244 
calculate_timeout(struct usbi_transfer * itransfer)1245 static void calculate_timeout(struct usbi_transfer *itransfer)
1246 {
1247 	struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
1248 	unsigned int timeout = transfer->timeout;
1249 
1250 	if (!timeout) {
1251 		TIMESPEC_CLEAR(&itransfer->timeout);
1252 		return;
1253 	}
1254 
1255 	usbi_get_monotonic_time(&itransfer->timeout);
1256 
1257 	itransfer->timeout.tv_sec += timeout / 1000U;
1258 	itransfer->timeout.tv_nsec += (timeout % 1000U) * 1000000L;
1259 	if (itransfer->timeout.tv_nsec >= NSEC_PER_SEC) {
1260 		++itransfer->timeout.tv_sec;
1261 		itransfer->timeout.tv_nsec -= NSEC_PER_SEC;
1262 	}
1263 }
1264 
1265 /** \ingroup libusb_asyncio
1266  * Allocate a libusb transfer with a specified number of isochronous packet
1267  * descriptors. The returned transfer is pre-initialized for you. When the new
1268  * transfer is no longer needed, it should be freed with
1269  * libusb_free_transfer().
1270  *
1271  * Transfers intended for non-isochronous endpoints (e.g. control, bulk,
1272  * interrupt) should specify an iso_packets count of zero.
1273  *
1274  * For transfers intended for isochronous endpoints, specify an appropriate
1275  * number of packet descriptors to be allocated as part of the transfer.
1276  * The returned transfer is not specially initialized for isochronous I/O;
1277  * you are still required to set the
1278  * \ref libusb_transfer::num_iso_packets "num_iso_packets" and
1279  * \ref libusb_transfer::type "type" fields accordingly.
1280  *
1281  * It is safe to allocate a transfer with some isochronous packets and then
1282  * use it on a non-isochronous endpoint. If you do this, ensure that at time
1283  * of submission, num_iso_packets is 0 and that type is set appropriately.
1284  *
1285  * \param iso_packets number of isochronous packet descriptors to allocate. Must be non-negative.
1286  * \returns a newly allocated transfer, or NULL on error
1287  */
1288 DEFAULT_VISIBILITY
libusb_alloc_transfer(int iso_packets)1289 struct libusb_transfer * LIBUSB_CALL libusb_alloc_transfer(
1290 	int iso_packets)
1291 {
1292 	assert(iso_packets >= 0);
1293 	if (iso_packets < 0)
1294 		return NULL;
1295 
1296 	size_t priv_size = PTR_ALIGN(usbi_backend.transfer_priv_size);
1297 	size_t usbi_transfer_size = PTR_ALIGN(sizeof(struct usbi_transfer));
1298 	size_t libusb_transfer_size = PTR_ALIGN(sizeof(struct libusb_transfer));
1299 	size_t iso_packets_size = sizeof(struct libusb_iso_packet_descriptor) * (size_t)iso_packets;
1300 	size_t alloc_size = priv_size + usbi_transfer_size + libusb_transfer_size + iso_packets_size;
1301 	unsigned char *ptr = calloc(1, alloc_size);
1302 	if (!ptr)
1303 		return NULL;
1304 
1305 	struct usbi_transfer *itransfer = (struct usbi_transfer *)(ptr + priv_size);
1306 	itransfer->num_iso_packets = iso_packets;
1307 	itransfer->priv = ptr;
1308 	usbi_mutex_init(&itransfer->lock);
1309 	struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
1310 
1311 	return transfer;
1312 }
1313 
1314 /** \ingroup libusb_asyncio
1315  * Free a transfer structure. This should be called for all transfers
1316  * allocated with libusb_alloc_transfer().
1317  *
1318  * If the \ref libusb_transfer_flags::LIBUSB_TRANSFER_FREE_BUFFER
1319  * "LIBUSB_TRANSFER_FREE_BUFFER" flag is set and the transfer buffer is
1320  * non-NULL, this function will also free the transfer buffer using the
1321  * standard system memory allocator (e.g. free()).
1322  *
1323  * It is legal to call this function with a NULL transfer. In this case,
1324  * the function will simply return safely.
1325  *
1326  * It is not legal to free an active transfer (one which has been submitted
1327  * and has not yet completed).
1328  *
1329  * \param transfer the transfer to free
1330  */
libusb_free_transfer(struct libusb_transfer * transfer)1331 void API_EXPORTED libusb_free_transfer(struct libusb_transfer *transfer)
1332 {
1333 	if (!transfer)
1334 		return;
1335 
1336 	usbi_dbg(TRANSFER_CTX(transfer), "transfer %p", (void *) transfer);
1337 	if (transfer->flags & LIBUSB_TRANSFER_FREE_BUFFER)
1338 		free(transfer->buffer);
1339 
1340 	struct usbi_transfer *itransfer = LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1341 	usbi_mutex_destroy(&itransfer->lock);
1342 	if (itransfer->dev)
1343 		libusb_unref_device(itransfer->dev);
1344 
1345 	unsigned char *ptr = USBI_TRANSFER_TO_TRANSFER_PRIV(itransfer);
1346 	assert(ptr == itransfer->priv);
1347 	free(ptr);
1348 }
1349 
1350 /* iterates through the flying transfers, and rearms the timer based on the
1351  * next upcoming timeout.
1352  * NB: flying_transfers_lock must be held when calling this.
1353  * returns 0 on success or a LIBUSB_ERROR code on failure.
1354  */
1355 #ifdef HAVE_OS_TIMER
arm_timer_for_next_timeout(struct libusb_context * ctx)1356 static int arm_timer_for_next_timeout(struct libusb_context *ctx)
1357 {
1358 	struct usbi_transfer *itransfer;
1359 
1360 	if (!usbi_using_timer(ctx))
1361 		return 0;
1362 
1363 	for_each_transfer(ctx, itransfer) {
1364 		struct timespec *cur_ts = &itransfer->timeout;
1365 
1366 		/* if we've reached transfers of infinite timeout, then we have no
1367 		 * arming to do */
1368 		if (!TIMESPEC_IS_SET(cur_ts))
1369 			break;
1370 
1371 		/* act on first transfer that has not already been handled */
1372 		if (!(itransfer->timeout_flags & (USBI_TRANSFER_TIMEOUT_HANDLED | USBI_TRANSFER_OS_HANDLES_TIMEOUT))) {
1373 			struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
1374 			usbi_dbg(ctx, "next timeout originally %ums", transfer->timeout);
1375 			return usbi_arm_timer(&ctx->timer, cur_ts);
1376 		}
1377 	}
1378 
1379 	usbi_dbg(ctx, "no timeouts, disarming timer");
1380 	return usbi_disarm_timer(&ctx->timer);
1381 }
1382 #else
arm_timer_for_next_timeout(struct libusb_context * ctx)1383 static inline int arm_timer_for_next_timeout(struct libusb_context *ctx)
1384 {
1385 	UNUSED(ctx);
1386 	return 0;
1387 }
1388 #endif
1389 
1390 /* add a transfer to the (timeout-sorted) active transfers list.
1391  * This function will return non 0 if fails to update the timer,
1392  * in which case the transfer is *not* on the flying_transfers list.
1393  * NB: flying_transfers_lock MUST be held when calling this. */
add_to_flying_list(struct usbi_transfer * itransfer)1394 static int add_to_flying_list(struct usbi_transfer *itransfer)
1395 {
1396 	struct usbi_transfer *cur;
1397 	struct timespec *timeout = &itransfer->timeout;
1398 	struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
1399 	int r = 0;
1400 	int first = 1;
1401 
1402 	calculate_timeout(itransfer);
1403 
1404 	/* if we have no other flying transfers, start the list with this one */
1405 	if (list_empty(&ctx->flying_transfers)) {
1406 		list_add(&itransfer->list, &ctx->flying_transfers);
1407 		goto out;
1408 	}
1409 
1410 	/* if we have infinite timeout, append to end of list */
1411 	if (!TIMESPEC_IS_SET(timeout)) {
1412 		list_add_tail(&itransfer->list, &ctx->flying_transfers);
1413 		/* first is irrelevant in this case */
1414 		goto out;
1415 	}
1416 
1417 	/* otherwise, find appropriate place in list */
1418 	for_each_transfer(ctx, cur) {
1419 		/* find first timeout that occurs after the transfer in question */
1420 		struct timespec *cur_ts = &cur->timeout;
1421 
1422 		if (!TIMESPEC_IS_SET(cur_ts) || TIMESPEC_CMP(cur_ts, timeout, >)) {
1423 			list_add_tail(&itransfer->list, &cur->list);
1424 			goto out;
1425 		}
1426 		first = 0;
1427 	}
1428 	/* first is 0 at this stage (list not empty) */
1429 
1430 	/* otherwise we need to be inserted at the end */
1431 	list_add_tail(&itransfer->list, &ctx->flying_transfers);
1432 out:
1433 #ifdef HAVE_OS_TIMER
1434 	if (first && usbi_using_timer(ctx) && TIMESPEC_IS_SET(timeout)) {
1435 		/* if this transfer has the lowest timeout of all active transfers,
1436 		 * rearm the timer with this transfer's timeout */
1437 		struct libusb_transfer *transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
1438 		usbi_dbg(ctx, "arm timer for timeout in %ums (first in line)",
1439 			transfer->timeout);
1440 		r = usbi_arm_timer(&ctx->timer, timeout);
1441 	}
1442 #else
1443 	UNUSED(first);
1444 #endif
1445 
1446 	if (r)
1447 		list_del(&itransfer->list);
1448 
1449 	return r;
1450 }
1451 
1452 /* remove a transfer from the active transfers list.
1453  * This function will *always* remove the transfer from the
1454  * flying_transfers list. It will return a LIBUSB_ERROR code
1455  * if it fails to update the timer for the next timeout.
1456  * NB: flying_transfers_lock MUST be held when calling this. */
remove_from_flying_list(struct usbi_transfer * itransfer)1457 static int remove_from_flying_list(struct usbi_transfer *itransfer)
1458 {
1459 	struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
1460 	int rearm_timer;
1461 	int r = 0;
1462 
1463 	rearm_timer = (TIMESPEC_IS_SET(&itransfer->timeout) &&
1464 		list_first_entry(&ctx->flying_transfers, struct usbi_transfer, list) == itransfer);
1465 	list_del(&itransfer->list);
1466 	if (rearm_timer)
1467 		r = arm_timer_for_next_timeout(ctx);
1468 
1469 	return r;
1470 }
1471 
1472 /** \ingroup libusb_asyncio
1473  * Submit a transfer. This function will fire off the USB transfer and then
1474  * return immediately.
1475  *
1476  * \param transfer the transfer to submit
1477  * \returns 0 on success
1478  * \returns \ref LIBUSB_ERROR_NO_DEVICE if the device has been disconnected
1479  * \returns \ref LIBUSB_ERROR_BUSY if the transfer has already been submitted.
1480  * \returns \ref LIBUSB_ERROR_NOT_SUPPORTED if the transfer flags are not supported
1481  * by the operating system.
1482  * \returns \ref LIBUSB_ERROR_INVALID_PARAM if the transfer size is larger than
1483  * the operating system and/or hardware can support (see \ref asynclimits)
1484  * \returns another LIBUSB_ERROR code on other failure
1485  */
libusb_submit_transfer(struct libusb_transfer * transfer)1486 int API_EXPORTED libusb_submit_transfer(struct libusb_transfer *transfer)
1487 {
1488 	struct usbi_transfer *itransfer =
1489 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1490 	struct libusb_context *ctx;
1491 	int r;
1492 
1493 	assert(transfer->dev_handle);
1494 	if (itransfer->dev)
1495 		libusb_unref_device(itransfer->dev);
1496 	itransfer->dev = libusb_ref_device(transfer->dev_handle->dev);
1497 
1498 	ctx = HANDLE_CTX(transfer->dev_handle);
1499 	usbi_dbg(ctx, "transfer %p", (void *) transfer);
1500 
1501 	/*
1502 	 * Important note on locking, this function takes / releases locks
1503 	 * in the following order:
1504 	 *  take flying_transfers_lock
1505 	 *  take itransfer->lock
1506 	 *  clear transfer
1507 	 *  add to flying_transfers list
1508 	 *  release flying_transfers_lock
1509 	 *  submit transfer
1510 	 *  release itransfer->lock
1511 	 *  if submit failed:
1512 	 *   take flying_transfers_lock
1513 	 *   remove from flying_transfers list
1514 	 *   release flying_transfers_lock
1515 	 *
1516 	 * Note that it takes locks in the order a-b and then releases them
1517 	 * in the same order a-b. This is somewhat unusual but not wrong,
1518 	 * release order is not important as long as *all* locks are released
1519 	 * before re-acquiring any locks.
1520 	 *
1521 	 * This means that the ordering of first releasing itransfer->lock
1522 	 * and then re-acquiring the flying_transfers_list on error is
1523 	 * important and must not be changed!
1524 	 *
1525 	 * This is done this way because when we take both locks we must always
1526 	 * take flying_transfers_lock first to avoid ab-ba style deadlocks with
1527 	 * the timeout handling and usbi_handle_disconnect paths.
1528 	 *
1529 	 * And we cannot release itransfer->lock before the submission is
1530 	 * complete otherwise timeout handling for transfers with short
1531 	 * timeouts may run before submission.
1532 	 */
1533 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1534 	usbi_mutex_lock(&itransfer->lock);
1535 	if (itransfer->state_flags & USBI_TRANSFER_IN_FLIGHT) {
1536 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
1537 		usbi_mutex_unlock(&itransfer->lock);
1538 		return LIBUSB_ERROR_BUSY;
1539 	}
1540 	itransfer->transferred = 0;
1541 	itransfer->state_flags = 0;
1542 	itransfer->timeout_flags = 0;
1543 	r = add_to_flying_list(itransfer);
1544 	if (r) {
1545 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
1546 		usbi_mutex_unlock(&itransfer->lock);
1547 		return r;
1548 	}
1549 	/*
1550 	 * We must release the flying transfers lock here, because with
1551 	 * some backends the submit_transfer method is synchronous.
1552 	 */
1553 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1554 
1555 	r = usbi_backend.submit_transfer(itransfer);
1556 	if (r == LIBUSB_SUCCESS) {
1557 		itransfer->state_flags |= USBI_TRANSFER_IN_FLIGHT;
1558 	}
1559 	usbi_mutex_unlock(&itransfer->lock);
1560 
1561 	if (r != LIBUSB_SUCCESS) {
1562 		usbi_mutex_lock(&ctx->flying_transfers_lock);
1563 		remove_from_flying_list(itransfer);
1564 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
1565 	}
1566 
1567 	return r;
1568 }
1569 
1570 /** \ingroup libusb_asyncio
1571  * Asynchronously cancel a previously submitted transfer.
1572  * This function returns immediately, but this does not indicate cancellation
1573  * is complete. Your callback function will be invoked at some later time
1574  * with a transfer status of
1575  * \ref libusb_transfer_status::LIBUSB_TRANSFER_CANCELLED
1576  * "LIBUSB_TRANSFER_CANCELLED."
1577  *
1578  * This function behaves differently on Darwin-based systems (macOS and iOS):
1579  *
1580  * - Calling this function for one transfer will cause all transfers on the
1581  *   same endpoint to be cancelled. Your callback function will be invoked with
1582  *   a transfer status of
1583  *   \ref libusb_transfer_status::LIBUSB_TRANSFER_CANCELLED
1584  *   "LIBUSB_TRANSFER_CANCELLED" for each transfer that was cancelled.
1585 
1586  * - When built for macOS versions prior to 10.5, this function sends a
1587  *   \c ClearFeature(ENDPOINT_HALT) request for the transfer's endpoint.
1588  *   (Prior to libusb 1.0.27, this request was sent on all Darwin systems.)
1589  *   If the device does not handle this request correctly, the data toggle
1590  *   bits for the endpoint can be left out of sync between host and device,
1591  *   which can have unpredictable results when the next data is sent on
1592  *   the endpoint, including data being silently lost. A call to
1593  *   \ref libusb_clear_halt will not resolve this situation, since that
1594  *   function uses the same request. Therefore, if your program runs on
1595  *   macOS < 10.5 (or libusb < 1.0.27), and uses a device that does not
1596  *   correctly implement \c ClearFeature(ENDPOINT_HALT) requests, it may
1597  *   only be safe to cancel transfers when followed by a device reset using
1598  *   \ref libusb_reset_device.
1599  *
1600  * \param transfer the transfer to cancel
1601  * \returns 0 on success
1602  * \returns \ref LIBUSB_ERROR_NOT_FOUND if the transfer is not in progress,
1603  * already complete, or already cancelled.
1604  * \returns a LIBUSB_ERROR code on failure
1605  */
libusb_cancel_transfer(struct libusb_transfer * transfer)1606 int API_EXPORTED libusb_cancel_transfer(struct libusb_transfer *transfer)
1607 {
1608 	struct usbi_transfer *itransfer =
1609 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1610 	struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
1611 	int r;
1612 
1613 	usbi_dbg(ctx, "transfer %p", (void *) transfer );
1614 	usbi_mutex_lock(&itransfer->lock);
1615 	if (!(itransfer->state_flags & USBI_TRANSFER_IN_FLIGHT)
1616 			|| (itransfer->state_flags & USBI_TRANSFER_CANCELLING)) {
1617 		r = LIBUSB_ERROR_NOT_FOUND;
1618 		goto out;
1619 	}
1620 	r = usbi_backend.cancel_transfer(itransfer);
1621 	if (r < 0) {
1622 		if (r != LIBUSB_ERROR_NOT_FOUND &&
1623 		    r != LIBUSB_ERROR_NO_DEVICE)
1624 			usbi_err(ctx, "cancel transfer failed error %d", r);
1625 		else
1626 			usbi_dbg(ctx, "cancel transfer failed error %d", r);
1627 
1628 		if (r == LIBUSB_ERROR_NO_DEVICE)
1629 			itransfer->state_flags |= USBI_TRANSFER_DEVICE_DISAPPEARED;
1630 	}
1631 
1632 	itransfer->state_flags |= USBI_TRANSFER_CANCELLING;
1633 
1634 out:
1635 	usbi_mutex_unlock(&itransfer->lock);
1636 	return r;
1637 }
1638 
1639 /** \ingroup libusb_asyncio
1640  * Set a transfers bulk stream id. Note users are advised to use
1641  * libusb_fill_bulk_stream_transfer() instead of calling this function
1642  * directly.
1643  *
1644  * Since version 1.0.19, \ref LIBUSB_API_VERSION >= 0x01000103
1645  *
1646  * \param transfer the transfer to set the stream id for
1647  * \param stream_id the stream id to set
1648  * \see libusb_alloc_streams()
1649  */
libusb_transfer_set_stream_id(struct libusb_transfer * transfer,uint32_t stream_id)1650 void API_EXPORTED libusb_transfer_set_stream_id(
1651 	struct libusb_transfer *transfer, uint32_t stream_id)
1652 {
1653 	struct usbi_transfer *itransfer =
1654 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1655 
1656 	itransfer->stream_id = stream_id;
1657 }
1658 
1659 /** \ingroup libusb_asyncio
1660  * Get a transfers bulk stream id.
1661  *
1662  * Since version 1.0.19, \ref LIBUSB_API_VERSION >= 0x01000103
1663  *
1664  * \param transfer the transfer to get the stream id for
1665  * \returns the stream id for the transfer
1666  */
libusb_transfer_get_stream_id(struct libusb_transfer * transfer)1667 uint32_t API_EXPORTED libusb_transfer_get_stream_id(
1668 	struct libusb_transfer *transfer)
1669 {
1670 	struct usbi_transfer *itransfer =
1671 		LIBUSB_TRANSFER_TO_USBI_TRANSFER(transfer);
1672 
1673 	return itransfer->stream_id;
1674 }
1675 
1676 /* Handle completion of a transfer (completion might be an error condition).
1677  * This will invoke the user-supplied callback function, which may end up
1678  * freeing the transfer. Therefore you cannot use the transfer structure
1679  * after calling this function, and you should free all backend-specific
1680  * data before calling it.
1681  * Do not call this function with the usbi_transfer lock held. User-specified
1682  * callback functions may attempt to directly resubmit the transfer, which
1683  * will attempt to take the lock. */
usbi_handle_transfer_completion(struct usbi_transfer * itransfer,enum libusb_transfer_status status)1684 int usbi_handle_transfer_completion(struct usbi_transfer *itransfer,
1685 	enum libusb_transfer_status status)
1686 {
1687 	struct libusb_transfer *transfer =
1688 		USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
1689 	struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
1690 	uint8_t flags;
1691 	int r;
1692 
1693 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1694 	r = remove_from_flying_list(itransfer);
1695 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1696 	if (r < 0)
1697 		usbi_err(ctx, "failed to set timer for next timeout");
1698 
1699 	usbi_mutex_lock(&itransfer->lock);
1700 	itransfer->state_flags &= ~USBI_TRANSFER_IN_FLIGHT;
1701 	usbi_mutex_unlock(&itransfer->lock);
1702 
1703 	if (status == LIBUSB_TRANSFER_COMPLETED
1704 			&& transfer->flags & LIBUSB_TRANSFER_SHORT_NOT_OK) {
1705 		int rqlen = transfer->length;
1706 		if (transfer->type == LIBUSB_TRANSFER_TYPE_CONTROL)
1707 			rqlen -= LIBUSB_CONTROL_SETUP_SIZE;
1708 		if (rqlen != itransfer->transferred) {
1709 			usbi_dbg(ctx, "interpreting short transfer as error");
1710 			status = LIBUSB_TRANSFER_ERROR;
1711 		}
1712 	}
1713 
1714 	flags = transfer->flags;
1715 	transfer->status = status;
1716 	transfer->actual_length = itransfer->transferred;
1717 	assert(transfer->actual_length >= 0);
1718 	usbi_dbg(ctx, "transfer %p has callback %p",
1719 		 (void *) transfer, transfer->callback);
1720 	if (transfer->callback) {
1721 		libusb_lock_event_waiters (ctx);
1722 		transfer->callback(transfer);
1723 		libusb_unlock_event_waiters(ctx);
1724 	}
1725 	/* transfer might have been freed by the above call, do not use from
1726 	 * this point. */
1727 	if (flags & LIBUSB_TRANSFER_FREE_TRANSFER)
1728 		libusb_free_transfer(transfer);
1729 	return r;
1730 }
1731 
1732 /* Similar to usbi_handle_transfer_completion() but exclusively for transfers
1733  * that were asynchronously cancelled. The same concerns w.r.t. freeing of
1734  * transfers exist here.
1735  * Do not call this function with the usbi_transfer lock held. User-specified
1736  * callback functions may attempt to directly resubmit the transfer, which
1737  * will attempt to take the lock. */
usbi_handle_transfer_cancellation(struct usbi_transfer * itransfer)1738 int usbi_handle_transfer_cancellation(struct usbi_transfer *itransfer)
1739 {
1740 	struct libusb_context *ctx = ITRANSFER_CTX(itransfer);
1741 	uint8_t timed_out;
1742 
1743 	usbi_mutex_lock(&ctx->flying_transfers_lock);
1744 	timed_out = itransfer->timeout_flags & USBI_TRANSFER_TIMED_OUT;
1745 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
1746 
1747 	/* if the URB was cancelled due to timeout, report timeout to the user */
1748 	if (timed_out) {
1749 		usbi_dbg(ctx, "detected timeout cancellation");
1750 		return usbi_handle_transfer_completion(itransfer, LIBUSB_TRANSFER_TIMED_OUT);
1751 	}
1752 
1753 	/* otherwise its a normal async cancel */
1754 	return usbi_handle_transfer_completion(itransfer, LIBUSB_TRANSFER_CANCELLED);
1755 }
1756 
1757 /* Add a completed transfer to the completed_transfers list of the
1758  * context and signal the event. The backend's handle_transfer_completion()
1759  * function will be called the next time an event handler runs. */
usbi_signal_transfer_completion(struct usbi_transfer * itransfer)1760 void usbi_signal_transfer_completion(struct usbi_transfer *itransfer)
1761 {
1762 	struct libusb_device *dev = itransfer->dev;
1763 
1764 	if (dev) {
1765 		struct libusb_context *ctx = DEVICE_CTX(dev);
1766 		unsigned int event_flags;
1767 
1768 		usbi_mutex_lock(&ctx->event_data_lock);
1769 		event_flags = ctx->event_flags;
1770 		ctx->event_flags |= USBI_EVENT_TRANSFER_COMPLETED;
1771 		list_add_tail(&itransfer->completed_list, &ctx->completed_transfers);
1772 		if (!event_flags)
1773 			usbi_signal_event(&ctx->event);
1774 		usbi_mutex_unlock(&ctx->event_data_lock);
1775 	}
1776 }
1777 
1778 /** \ingroup libusb_poll
1779  * Attempt to acquire the event handling lock. This lock is used to ensure that
1780  * only one thread is monitoring libusb event sources at any one time.
1781  *
1782  * You only need to use this lock if you are developing an application
1783  * which calls poll() or select() on libusb's file descriptors directly.
1784  * If you stick to libusb's event handling loop functions (e.g.
1785  * libusb_handle_events()) then you do not need to be concerned with this
1786  * locking.
1787  *
1788  * While holding this lock, you are trusted to actually be handling events.
1789  * If you are no longer handling events, you must call libusb_unlock_events()
1790  * as soon as possible.
1791  *
1792  * \param ctx the context to operate on, or NULL for the default context
1793  * \returns 0 if the lock was obtained successfully
1794  * \returns 1 if the lock was not obtained (i.e. another thread holds the lock)
1795  * \ref libusb_mtasync
1796  */
libusb_try_lock_events(libusb_context * ctx)1797 int API_EXPORTED libusb_try_lock_events(libusb_context *ctx)
1798 {
1799 	int r;
1800 	unsigned int ru;
1801 
1802 	ctx = usbi_get_context(ctx);
1803 
1804 	/* is someone else waiting to close a device? if so, don't let this thread
1805 	 * start event handling */
1806 	usbi_mutex_lock(&ctx->event_data_lock);
1807 	ru = ctx->device_close;
1808 	usbi_mutex_unlock(&ctx->event_data_lock);
1809 	if (ru) {
1810 		usbi_dbg(ctx, "someone else is closing a device");
1811 		return 1;
1812 	}
1813 
1814 	r = usbi_mutex_trylock(&ctx->events_lock);
1815 	if (!r)
1816 		return 1;
1817 
1818 	ctx->event_handler_active = 1;
1819 	return 0;
1820 }
1821 
1822 /** \ingroup libusb_poll
1823  * Acquire the event handling lock, blocking until successful acquisition if
1824  * it is contended. This lock is used to ensure that only one thread is
1825  * monitoring libusb event sources at any one time.
1826  *
1827  * You only need to use this lock if you are developing an application
1828  * which calls poll() or select() on libusb's file descriptors directly.
1829  * If you stick to libusb's event handling loop functions (e.g.
1830  * libusb_handle_events()) then you do not need to be concerned with this
1831  * locking.
1832  *
1833  * While holding this lock, you are trusted to actually be handling events.
1834  * If you are no longer handling events, you must call libusb_unlock_events()
1835  * as soon as possible.
1836  *
1837  * \param ctx the context to operate on, or NULL for the default context
1838  * \ref libusb_mtasync
1839  */
libusb_lock_events(libusb_context * ctx)1840 void API_EXPORTED libusb_lock_events(libusb_context *ctx)
1841 {
1842 	ctx = usbi_get_context(ctx);
1843 	usbi_mutex_lock(&ctx->events_lock);
1844 	ctx->event_handler_active = 1;
1845 }
1846 
1847 /** \ingroup libusb_poll
1848  * Release the lock previously acquired with libusb_try_lock_events() or
1849  * libusb_lock_events(). Releasing this lock will wake up any threads blocked
1850  * on libusb_wait_for_event().
1851  *
1852  * \param ctx the context to operate on, or NULL for the default context
1853  * \ref libusb_mtasync
1854  */
libusb_unlock_events(libusb_context * ctx)1855 void API_EXPORTED libusb_unlock_events(libusb_context *ctx)
1856 {
1857 	ctx = usbi_get_context(ctx);
1858 	ctx->event_handler_active = 0;
1859 	usbi_mutex_unlock(&ctx->events_lock);
1860 
1861 	/* FIXME: perhaps we should be a bit more efficient by not broadcasting
1862 	 * the availability of the events lock when we are modifying pollfds
1863 	 * (check ctx->device_close)? */
1864 	usbi_mutex_lock(&ctx->event_waiters_lock);
1865 	usbi_cond_broadcast(&ctx->event_waiters_cond);
1866 	usbi_mutex_unlock(&ctx->event_waiters_lock);
1867 }
1868 
1869 /** \ingroup libusb_poll
1870  * Determine if it is still OK for this thread to be doing event handling.
1871  *
1872  * Sometimes, libusb needs to temporarily pause all event handlers, and this
1873  * is the function you should use before polling file descriptors to see if
1874  * this is the case.
1875  *
1876  * If this function instructs your thread to give up the events lock, you
1877  * should just continue the usual logic that is documented in \ref libusb_mtasync.
1878  * On the next iteration, your thread will fail to obtain the events lock,
1879  * and will hence become an event waiter.
1880  *
1881  * This function should be called while the events lock is held: you don't
1882  * need to worry about the results of this function if your thread is not
1883  * the current event handler.
1884  *
1885  * \param ctx the context to operate on, or NULL for the default context
1886  * \returns 1 if event handling can start or continue
1887  * \returns 0 if this thread must give up the events lock
1888  * \ref fullstory "Multi-threaded I/O: the full story"
1889  */
libusb_event_handling_ok(libusb_context * ctx)1890 int API_EXPORTED libusb_event_handling_ok(libusb_context *ctx)
1891 {
1892 	unsigned int r;
1893 
1894 	ctx = usbi_get_context(ctx);
1895 
1896 	/* is someone else waiting to close a device? if so, don't let this thread
1897 	 * continue event handling */
1898 	usbi_mutex_lock(&ctx->event_data_lock);
1899 	r = ctx->device_close;
1900 	usbi_mutex_unlock(&ctx->event_data_lock);
1901 	if (r) {
1902 		usbi_dbg(ctx, "someone else is closing a device");
1903 		return 0;
1904 	}
1905 
1906 	return 1;
1907 }
1908 
1909 
1910 /** \ingroup libusb_poll
1911  * Determine if an active thread is handling events (i.e. if anyone is holding
1912  * the event handling lock).
1913  *
1914  * \param ctx the context to operate on, or NULL for the default context
1915  * \returns 1 if a thread is handling events
1916  * \returns 0 if there are no threads currently handling events
1917  * \ref libusb_mtasync
1918  */
libusb_event_handler_active(libusb_context * ctx)1919 int API_EXPORTED libusb_event_handler_active(libusb_context *ctx)
1920 {
1921 	unsigned int r;
1922 
1923 	ctx = usbi_get_context(ctx);
1924 
1925 	/* is someone else waiting to close a device? if so, don't let this thread
1926 	 * start event handling -- indicate that event handling is happening */
1927 	usbi_mutex_lock(&ctx->event_data_lock);
1928 	r = ctx->device_close;
1929 	usbi_mutex_unlock(&ctx->event_data_lock);
1930 	if (r) {
1931 		usbi_dbg(ctx, "someone else is closing a device");
1932 		return 1;
1933 	}
1934 
1935 	return ctx->event_handler_active;
1936 }
1937 
1938 /** \ingroup libusb_poll
1939  * Interrupt any active thread that is handling events. This is mainly useful
1940  * for interrupting a dedicated event handling thread when an application
1941  * wishes to call libusb_exit().
1942  *
1943  * Since version 1.0.21, \ref LIBUSB_API_VERSION >= 0x01000105
1944  *
1945  * \param ctx the context to operate on, or NULL for the default context
1946  * \ref libusb_mtasync
1947  */
libusb_interrupt_event_handler(libusb_context * ctx)1948 void API_EXPORTED libusb_interrupt_event_handler(libusb_context *ctx)
1949 {
1950 	unsigned int event_flags;
1951 
1952 	usbi_dbg(ctx, " ");
1953 
1954 	ctx = usbi_get_context(ctx);
1955 	usbi_mutex_lock(&ctx->event_data_lock);
1956 
1957 	event_flags = ctx->event_flags;
1958 	ctx->event_flags |= USBI_EVENT_USER_INTERRUPT;
1959 	if (!event_flags)
1960 		usbi_signal_event(&ctx->event);
1961 
1962 	usbi_mutex_unlock(&ctx->event_data_lock);
1963 }
1964 
1965 /** \ingroup libusb_poll
1966  * Acquire the event waiters lock. This lock is designed to be obtained under
1967  * the situation where you want to be aware when events are completed, but
1968  * some other thread is event handling so calling libusb_handle_events() is not
1969  * allowed.
1970  *
1971  * You then obtain this lock, re-check that another thread is still handling
1972  * events, then call libusb_wait_for_event().
1973  *
1974  * You only need to use this lock if you are developing an application
1975  * which calls poll() or select() on libusb's file descriptors directly,
1976  * <b>and</b> may potentially be handling events from 2 threads simultaneously.
1977  * If you stick to libusb's event handling loop functions (e.g.
1978  * libusb_handle_events()) then you do not need to be concerned with this
1979  * locking.
1980  *
1981  * \param ctx the context to operate on, or NULL for the default context
1982  * \ref libusb_mtasync
1983  */
libusb_lock_event_waiters(libusb_context * ctx)1984 void API_EXPORTED libusb_lock_event_waiters(libusb_context *ctx)
1985 {
1986 	ctx = usbi_get_context(ctx);
1987 	usbi_mutex_lock(&ctx->event_waiters_lock);
1988 }
1989 
1990 /** \ingroup libusb_poll
1991  * Release the event waiters lock.
1992  * \param ctx the context to operate on, or NULL for the default context
1993  * \ref libusb_mtasync
1994  */
libusb_unlock_event_waiters(libusb_context * ctx)1995 void API_EXPORTED libusb_unlock_event_waiters(libusb_context *ctx)
1996 {
1997 	ctx = usbi_get_context(ctx);
1998 	usbi_mutex_unlock(&ctx->event_waiters_lock);
1999 }
2000 
2001 /** \ingroup libusb_poll
2002  * Wait for another thread to signal completion of an event. Must be called
2003  * with the event waiters lock held, see libusb_lock_event_waiters().
2004  *
2005  * This function will block until any of the following conditions are met:
2006  * -# The timeout expires
2007  * -# A transfer completes
2008  * -# A thread releases the event handling lock through libusb_unlock_events()
2009  *
2010  * Condition 1 is obvious. Condition 2 unblocks your thread <em>after</em>
2011  * the callback for the transfer has completed. Condition 3 is important
2012  * because it means that the thread that was previously handling events is no
2013  * longer doing so, so if any events are to complete, another thread needs to
2014  * step up and start event handling.
2015  *
2016  * This function releases the event waiters lock before putting your thread
2017  * to sleep, and reacquires the lock as it is being woken up.
2018  *
2019  * \param ctx the context to operate on, or NULL for the default context
2020  * \param tv maximum timeout for this blocking function. A NULL value
2021  * indicates unlimited timeout.
2022  * \returns 0 after a transfer completes or another thread stops event handling
2023  * \returns 1 if the timeout expired
2024  * \returns \ref LIBUSB_ERROR_INVALID_PARAM if timeval is invalid
2025  * \ref libusb_mtasync
2026  */
libusb_wait_for_event(libusb_context * ctx,struct timeval * tv)2027 int API_EXPORTED libusb_wait_for_event(libusb_context *ctx, struct timeval *tv)
2028 {
2029 	int r;
2030 
2031 	ctx = usbi_get_context(ctx);
2032 	if (!tv) {
2033 		usbi_cond_wait(&ctx->event_waiters_cond, &ctx->event_waiters_lock);
2034 		return 0;
2035 	}
2036 
2037 	if (!TIMEVAL_IS_VALID(tv))
2038 		return LIBUSB_ERROR_INVALID_PARAM;
2039 
2040 	r = usbi_cond_timedwait(&ctx->event_waiters_cond,
2041 		&ctx->event_waiters_lock, tv);
2042 	if (r < 0)
2043 		return r == LIBUSB_ERROR_TIMEOUT;
2044 
2045 	return 0;
2046 }
2047 
2048 /* NB: flying_transfers_lock must be held when calling this */
handle_timeout(struct usbi_transfer * itransfer)2049 static void handle_timeout(struct usbi_transfer *itransfer)
2050 {
2051 	struct libusb_transfer *transfer =
2052 		USBI_TRANSFER_TO_LIBUSB_TRANSFER(itransfer);
2053 	int r;
2054 
2055 	itransfer->timeout_flags |= USBI_TRANSFER_TIMEOUT_HANDLED;
2056 	r = libusb_cancel_transfer(transfer);
2057 	if (r == LIBUSB_SUCCESS)
2058 		itransfer->timeout_flags |= USBI_TRANSFER_TIMED_OUT;
2059 	else
2060 		usbi_warn(TRANSFER_CTX(transfer),
2061 			"async cancel failed %d", r);
2062 }
2063 
2064 /* NB: flying_transfers_lock must be held when calling this */
handle_timeouts_locked(struct libusb_context * ctx)2065 static void handle_timeouts_locked(struct libusb_context *ctx)
2066 {
2067 	struct timespec systime;
2068 	struct usbi_transfer *itransfer;
2069 
2070 	if (list_empty(&ctx->flying_transfers))
2071 		return;
2072 
2073 	/* get current time */
2074 	usbi_get_monotonic_time(&systime);
2075 
2076 	/* iterate through flying transfers list, finding all transfers that
2077 	 * have expired timeouts */
2078 	for_each_transfer(ctx, itransfer) {
2079 		struct timespec *cur_ts = &itransfer->timeout;
2080 
2081 		/* if we've reached transfers of infinite timeout, we're all done */
2082 		if (!TIMESPEC_IS_SET(cur_ts))
2083 			return;
2084 
2085 		/* ignore timeouts we've already handled */
2086 		if (itransfer->timeout_flags & (USBI_TRANSFER_TIMEOUT_HANDLED | USBI_TRANSFER_OS_HANDLES_TIMEOUT))
2087 			continue;
2088 
2089 		/* if transfer has non-expired timeout, nothing more to do */
2090 		if (TIMESPEC_CMP(cur_ts, &systime, >))
2091 			return;
2092 
2093 		/* otherwise, we've got an expired timeout to handle */
2094 		handle_timeout(itransfer);
2095 	}
2096 }
2097 
handle_timeouts(struct libusb_context * ctx)2098 static void handle_timeouts(struct libusb_context *ctx)
2099 {
2100 	ctx = usbi_get_context(ctx);
2101 	usbi_mutex_lock(&ctx->flying_transfers_lock);
2102 	handle_timeouts_locked(ctx);
2103 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
2104 }
2105 
handle_event_trigger(struct libusb_context * ctx)2106 static int handle_event_trigger(struct libusb_context *ctx)
2107 {
2108 	struct list_head hotplug_msgs;
2109 	int hotplug_event = 0;
2110 	int r = 0;
2111 
2112 	usbi_dbg(ctx, "event triggered");
2113 
2114 	list_init(&hotplug_msgs);
2115 
2116 	/* take the the event data lock while processing events */
2117 	usbi_mutex_lock(&ctx->event_data_lock);
2118 
2119 	/* check if someone modified the event sources */
2120 	if (ctx->event_flags & USBI_EVENT_EVENT_SOURCES_MODIFIED)
2121 		usbi_dbg(ctx, "someone updated the event sources");
2122 
2123 	if (ctx->event_flags & USBI_EVENT_USER_INTERRUPT) {
2124 		usbi_dbg(ctx, "someone purposefully interrupted");
2125 		ctx->event_flags &= ~USBI_EVENT_USER_INTERRUPT;
2126 	}
2127 
2128 	if (ctx->event_flags & USBI_EVENT_HOTPLUG_CB_DEREGISTERED) {
2129 		usbi_dbg(ctx, "someone unregistered a hotplug cb");
2130 		ctx->event_flags &= ~USBI_EVENT_HOTPLUG_CB_DEREGISTERED;
2131 		hotplug_event = 1;
2132 	}
2133 
2134 	/* check if someone is closing a device */
2135 	if (ctx->event_flags & USBI_EVENT_DEVICE_CLOSE)
2136 		usbi_dbg(ctx, "someone is closing a device");
2137 
2138 	/* check for any pending hotplug messages */
2139 	if (ctx->event_flags & USBI_EVENT_HOTPLUG_MSG_PENDING) {
2140 		usbi_dbg(ctx, "hotplug message received");
2141 		ctx->event_flags &= ~USBI_EVENT_HOTPLUG_MSG_PENDING;
2142 		hotplug_event = 1;
2143 		assert(!list_empty(&ctx->hotplug_msgs));
2144 		list_cut(&hotplug_msgs, &ctx->hotplug_msgs);
2145 	}
2146 
2147 	/* complete any pending transfers */
2148 	if (ctx->event_flags & USBI_EVENT_TRANSFER_COMPLETED) {
2149 		struct usbi_transfer *itransfer, *tmp;
2150 		struct list_head completed_transfers;
2151 
2152 		assert(!list_empty(&ctx->completed_transfers));
2153 		list_cut(&completed_transfers, &ctx->completed_transfers);
2154 		usbi_mutex_unlock(&ctx->event_data_lock);
2155 
2156 		__for_each_completed_transfer_safe(&completed_transfers, itransfer, tmp) {
2157 			list_del(&itransfer->completed_list);
2158 			r = usbi_backend.handle_transfer_completion(itransfer);
2159 			if (r) {
2160 				usbi_err(ctx, "backend handle_transfer_completion failed with error %d", r);
2161 				break;
2162 			}
2163 		}
2164 
2165 		usbi_mutex_lock(&ctx->event_data_lock);
2166 		if (!list_empty(&completed_transfers)) {
2167 			/* an error occurred, put the remaining transfers back on the list */
2168 			list_splice_front(&completed_transfers, &ctx->completed_transfers);
2169 		} else if (list_empty(&ctx->completed_transfers)) {
2170 			ctx->event_flags &= ~USBI_EVENT_TRANSFER_COMPLETED;
2171 		}
2172 	}
2173 
2174 	/* if no further pending events, clear the event */
2175 	if (!ctx->event_flags)
2176 		usbi_clear_event(&ctx->event);
2177 
2178 	usbi_mutex_unlock(&ctx->event_data_lock);
2179 
2180 	/* process the hotplug events, if any */
2181 	if (hotplug_event)
2182 		usbi_hotplug_process(ctx, &hotplug_msgs);
2183 
2184 	return r;
2185 }
2186 
2187 #ifdef HAVE_OS_TIMER
handle_timer_trigger(struct libusb_context * ctx)2188 static int handle_timer_trigger(struct libusb_context *ctx)
2189 {
2190 	int r;
2191 
2192 	usbi_mutex_lock(&ctx->flying_transfers_lock);
2193 
2194 	/* process the timeout that just happened */
2195 	handle_timeouts_locked(ctx);
2196 
2197 	/* arm for next timeout */
2198 	r = arm_timer_for_next_timeout(ctx);
2199 
2200 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
2201 
2202 	return r;
2203 }
2204 #endif
2205 
2206 /* do the actual event handling. assumes that no other thread is concurrently
2207  * doing the same thing. */
handle_events(struct libusb_context * ctx,struct timeval * tv)2208 static int handle_events(struct libusb_context *ctx, struct timeval *tv)
2209 {
2210 	struct usbi_reported_events reported_events;
2211 	int r, timeout_ms;
2212 
2213 	/* prevent attempts to recursively handle events (e.g. calling into
2214 	 * libusb_handle_events() from within a hotplug or transfer callback) */
2215 	if (usbi_handling_events(ctx))
2216 		return LIBUSB_ERROR_BUSY;
2217 
2218 	/* only reallocate the event source data when the list of event sources has
2219 	 * been modified since the last handle_events(), otherwise reuse them to
2220 	 * save the additional overhead */
2221 	usbi_mutex_lock(&ctx->event_data_lock);
2222 	if (ctx->event_flags & USBI_EVENT_EVENT_SOURCES_MODIFIED) {
2223 		usbi_dbg(ctx, "event sources modified, reallocating event data");
2224 
2225 		/* free anything removed since we last ran */
2226 		cleanup_removed_event_sources(ctx);
2227 
2228 		r = usbi_alloc_event_data(ctx);
2229 		if (r) {
2230 			usbi_mutex_unlock(&ctx->event_data_lock);
2231 			return r;
2232 		}
2233 
2234 		/* reset the flag now that we have the updated list */
2235 		ctx->event_flags &= ~USBI_EVENT_EVENT_SOURCES_MODIFIED;
2236 
2237 		/* if no further pending events, clear the event so that we do
2238 		 * not immediately return from the wait function */
2239 		if (!ctx->event_flags)
2240 			usbi_clear_event(&ctx->event);
2241 	}
2242 	usbi_mutex_unlock(&ctx->event_data_lock);
2243 
2244 	timeout_ms = (int)(tv->tv_sec * 1000) + (tv->tv_usec / 1000);
2245 
2246 	/* round up to next millisecond */
2247 	if (tv->tv_usec % 1000)
2248 		timeout_ms++;
2249 
2250 	reported_events.event_bits = 0;
2251 
2252 	usbi_start_event_handling(ctx);
2253 
2254 	r = usbi_wait_for_events(ctx, &reported_events, timeout_ms);
2255 	if (r != LIBUSB_SUCCESS) {
2256 		if (r == LIBUSB_ERROR_TIMEOUT) {
2257 			handle_timeouts(ctx);
2258 			r = LIBUSB_SUCCESS;
2259 		}
2260 		goto done;
2261 	}
2262 
2263 	if (reported_events.event_triggered) {
2264 		r = handle_event_trigger(ctx);
2265 		if (r) {
2266 			/* return error code */
2267 			goto done;
2268 		}
2269 	}
2270 
2271 #ifdef HAVE_OS_TIMER
2272 	if (reported_events.timer_triggered) {
2273 		r = handle_timer_trigger(ctx);
2274 		if (r) {
2275 			/* return error code */
2276 			goto done;
2277 		}
2278 	}
2279 #endif
2280 
2281 	if (!reported_events.num_ready)
2282 		goto done;
2283 
2284 	r = usbi_backend.handle_events(ctx, reported_events.event_data,
2285 		reported_events.event_data_count, reported_events.num_ready);
2286 	if (r)
2287 		usbi_err(ctx, "backend handle_events failed with error %d", r);
2288 
2289 done:
2290 	usbi_end_event_handling(ctx);
2291 	return r;
2292 }
2293 
2294 /* returns the smallest of:
2295  *  1. timeout of next URB
2296  *  2. user-supplied timeout
2297  * returns 1 if there is an already-expired timeout, otherwise returns 0
2298  * and populates out
2299  */
get_next_timeout(libusb_context * ctx,struct timeval * tv,struct timeval * out)2300 static int get_next_timeout(libusb_context *ctx, struct timeval *tv,
2301 	struct timeval *out)
2302 {
2303 	struct timeval timeout;
2304 	int r = libusb_get_next_timeout(ctx, &timeout);
2305 	if (r) {
2306 		/* timeout already expired? */
2307 		if (!timerisset(&timeout))
2308 			return 1;
2309 
2310 		/* choose the smallest of next URB timeout or user specified timeout */
2311 		if (timercmp(&timeout, tv, <))
2312 			*out = timeout;
2313 		else
2314 			*out = *tv;
2315 	} else {
2316 		*out = *tv;
2317 	}
2318 	return 0;
2319 }
2320 
2321 /** \ingroup libusb_poll
2322  * Handle any pending events.
2323  *
2324  * libusb determines "pending events" by checking if any timeouts have expired
2325  * and by checking the set of file descriptors for activity.
2326  *
2327  * If a zero timeval is passed, this function will handle any already-pending
2328  * events and then immediately return in non-blocking style.
2329  *
2330  * If a non-zero timeval is passed and no events are currently pending, this
2331  * function will block waiting for events to handle up until the specified
2332  * timeout. If an event arrives or a signal is raised, this function will
2333  * return early.
2334  *
2335  * If the parameter completed is not NULL then <em>after obtaining the event
2336  * handling lock</em> this function will return immediately if the integer
2337  * pointed to is not 0. This allows for race free waiting for the completion
2338  * of a specific transfer.
2339  *
2340  * \param ctx the context to operate on, or NULL for the default context
2341  * \param tv the maximum time to block waiting for events, or an all zero
2342  * timeval struct for non-blocking mode
2343  * \param completed pointer to completion integer to check, or NULL
2344  * \returns 0 on success
2345  * \returns \ref LIBUSB_ERROR_INVALID_PARAM if timeval is invalid
2346  * \returns another LIBUSB_ERROR code on other failure
2347  * \ref libusb_mtasync
2348  */
libusb_handle_events_timeout_completed(libusb_context * ctx,struct timeval * tv,int * completed)2349 int API_EXPORTED libusb_handle_events_timeout_completed(libusb_context *ctx,
2350 	struct timeval *tv, int *completed)
2351 {
2352 	int r;
2353 	struct timeval poll_timeout;
2354 
2355 	if (!TIMEVAL_IS_VALID(tv))
2356 		return LIBUSB_ERROR_INVALID_PARAM;
2357 
2358 	ctx = usbi_get_context(ctx);
2359 	r = get_next_timeout(ctx, tv, &poll_timeout);
2360 	if (r) {
2361 		/* timeout already expired */
2362 		handle_timeouts(ctx);
2363 		return 0;
2364 	}
2365 
2366 retry:
2367 	if (libusb_try_lock_events(ctx) == 0) {
2368 		if (completed == NULL || !*completed) {
2369 			/* we obtained the event lock: do our own event handling */
2370 			usbi_dbg(ctx, "doing our own event handling");
2371 			r = handle_events(ctx, &poll_timeout);
2372 		}
2373 		libusb_unlock_events(ctx);
2374 		return r;
2375 	}
2376 
2377 	/* another thread is doing event handling. wait for thread events that
2378 	 * notify event completion. */
2379 	libusb_lock_event_waiters(ctx);
2380 
2381 	if (completed && *completed)
2382 		goto already_done;
2383 
2384 	if (!libusb_event_handler_active(ctx)) {
2385 		/* we hit a race: whoever was event handling earlier finished in the
2386 		 * time it took us to reach this point. try the cycle again. */
2387 		libusb_unlock_event_waiters(ctx);
2388 		usbi_dbg(ctx, "event handler was active but went away, retrying");
2389 		goto retry;
2390 	}
2391 
2392 	usbi_dbg(ctx, "another thread is doing event handling");
2393 	r = libusb_wait_for_event(ctx, &poll_timeout);
2394 
2395 already_done:
2396 	libusb_unlock_event_waiters(ctx);
2397 
2398 	if (r < 0)
2399 		return r;
2400 	else if (r == 1)
2401 		handle_timeouts(ctx);
2402 	return 0;
2403 }
2404 
2405 /** \ingroup libusb_poll
2406  * Handle any pending events
2407  *
2408  * Like libusb_handle_events_timeout_completed(), but without the completed
2409  * parameter, calling this function is equivalent to calling
2410  * libusb_handle_events_timeout_completed() with a NULL completed parameter.
2411  *
2412  * This function is kept primarily for backwards compatibility.
2413  * All new code should call libusb_handle_events_completed() or
2414  * libusb_handle_events_timeout_completed() to avoid race conditions.
2415  *
2416  * \param ctx the context to operate on, or NULL for the default context
2417  * \param tv the maximum time to block waiting for events, or an all zero
2418  * timeval struct for non-blocking mode
2419  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2420  */
libusb_handle_events_timeout(libusb_context * ctx,struct timeval * tv)2421 int API_EXPORTED libusb_handle_events_timeout(libusb_context *ctx,
2422 	struct timeval *tv)
2423 {
2424 	return libusb_handle_events_timeout_completed(ctx, tv, NULL);
2425 }
2426 
2427 /** \ingroup libusb_poll
2428  * Handle any pending events in blocking mode. There is currently a timeout
2429  * hard-coded at 60 seconds but we plan to make it unlimited in future. For
2430  * finer control over whether this function is blocking or non-blocking, or
2431  * for control over the timeout, use libusb_handle_events_timeout_completed()
2432  * instead.
2433  *
2434  * This function is kept primarily for backwards compatibility.
2435  * All new code should call libusb_handle_events_completed() or
2436  * libusb_handle_events_timeout_completed() to avoid race conditions.
2437  *
2438  * \param ctx the context to operate on, or NULL for the default context
2439  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2440  */
libusb_handle_events(libusb_context * ctx)2441 int API_EXPORTED libusb_handle_events(libusb_context *ctx)
2442 {
2443 	struct timeval tv;
2444 	tv.tv_sec = 60;
2445 	tv.tv_usec = 0;
2446 	return libusb_handle_events_timeout_completed(ctx, &tv, NULL);
2447 }
2448 
2449 /** \ingroup libusb_poll
2450  * Handle any pending events in blocking mode.
2451  *
2452  * Like libusb_handle_events(), with the addition of a completed parameter
2453  * to allow for race free waiting for the completion of a specific transfer.
2454  *
2455  * See libusb_handle_events_timeout_completed() for details on the completed
2456  * parameter.
2457  *
2458  * \param ctx the context to operate on, or NULL for the default context
2459  * \param completed pointer to completion integer to check, or NULL
2460  * \returns 0 on success, or a LIBUSB_ERROR code on failure
2461  * \ref libusb_mtasync
2462  */
libusb_handle_events_completed(libusb_context * ctx,int * completed)2463 int API_EXPORTED libusb_handle_events_completed(libusb_context *ctx,
2464 	int *completed)
2465 {
2466 	struct timeval tv;
2467 	tv.tv_sec = 60;
2468 	tv.tv_usec = 0;
2469 	return libusb_handle_events_timeout_completed(ctx, &tv, completed);
2470 }
2471 
2472 /** \ingroup libusb_poll
2473  * Handle any pending events by polling file descriptors, without checking if
2474  * any other threads are already doing so. Must be called with the event lock
2475  * held, see libusb_lock_events().
2476  *
2477  * This function is designed to be called under the situation where you have
2478  * taken the event lock and are calling poll()/select() directly on libusb's
2479  * file descriptors (as opposed to using libusb_handle_events() or similar).
2480  * You detect events on libusb's descriptors, so you then call this function
2481  * with a zero timeout value (while still holding the event lock).
2482  *
2483  * \param ctx the context to operate on, or NULL for the default context
2484  * \param tv the maximum time to block waiting for events, or zero for
2485  * non-blocking mode
2486  * \returns 0 on success
2487  * \returns \ref LIBUSB_ERROR_INVALID_PARAM if timeval is invalid
2488  * \returns another LIBUSB_ERROR code on other failure
2489  * \ref libusb_mtasync
2490  */
libusb_handle_events_locked(libusb_context * ctx,struct timeval * tv)2491 int API_EXPORTED libusb_handle_events_locked(libusb_context *ctx,
2492 	struct timeval *tv)
2493 {
2494 	int r;
2495 	struct timeval poll_timeout;
2496 
2497 	if (!TIMEVAL_IS_VALID(tv))
2498 		return LIBUSB_ERROR_INVALID_PARAM;
2499 
2500 	ctx = usbi_get_context(ctx);
2501 	r = get_next_timeout(ctx, tv, &poll_timeout);
2502 	if (r) {
2503 		/* timeout already expired */
2504 		handle_timeouts(ctx);
2505 		return 0;
2506 	}
2507 
2508 	return handle_events(ctx, &poll_timeout);
2509 }
2510 
2511 /** \ingroup libusb_poll
2512  * Determines whether your application must apply special timing considerations
2513  * when monitoring libusb's file descriptors.
2514  *
2515  * This function is only useful for applications which retrieve and poll
2516  * libusb's file descriptors in their own main loop (\ref libusb_pollmain).
2517  *
2518  * Ordinarily, libusb's event handler needs to be called into at specific
2519  * moments in time (in addition to times when there is activity on the file
2520  * descriptor set). The usual approach is to use libusb_get_next_timeout()
2521  * to learn about when the next timeout occurs, and to adjust your
2522  * poll()/select() timeout accordingly so that you can make a call into the
2523  * library at that time.
2524  *
2525  * Some platforms supported by libusb do not come with this baggage - any
2526  * events relevant to timing will be represented by activity on the file
2527  * descriptor set, and libusb_get_next_timeout() will always return 0.
2528  * This function allows you to detect whether you are running on such a
2529  * platform.
2530  *
2531  * Since v1.0.5.
2532  *
2533  * \param ctx the context to operate on, or NULL for the default context
2534  * \returns 0 if you must call into libusb at times determined by
2535  * libusb_get_next_timeout(), or 1 if all timeout events are handled internally
2536  * or through regular activity on the file descriptors.
2537  * \ref libusb_pollmain "Polling libusb file descriptors for event handling"
2538  */
libusb_pollfds_handle_timeouts(libusb_context * ctx)2539 int API_EXPORTED libusb_pollfds_handle_timeouts(libusb_context *ctx)
2540 {
2541 	ctx = usbi_get_context(ctx);
2542 	return usbi_using_timer(ctx);
2543 }
2544 
2545 /** \ingroup libusb_poll
2546  * Determine the next internal timeout that libusb needs to handle. You only
2547  * need to use this function if you are calling poll() or select() or similar
2548  * on libusb's file descriptors yourself - you do not need to use it if you
2549  * are calling libusb_handle_events() or a variant directly.
2550  *
2551  * You should call this function in your main loop in order to determine how
2552  * long to wait for select() or poll() to return results. libusb needs to be
2553  * called into at this timeout, so you should use it as an upper bound on
2554  * your select() or poll() call.
2555  *
2556  * When the timeout has expired, call into libusb_handle_events_timeout()
2557  * (perhaps in non-blocking mode) so that libusb can handle the timeout.
2558  *
2559  * This function may return 1 (success) and an all-zero timeval. If this is
2560  * the case, it indicates that libusb has a timeout that has already expired
2561  * so you should call libusb_handle_events_timeout() or similar immediately.
2562  * A return code of 0 indicates that there are no pending timeouts.
2563  *
2564  * On some platforms, this function will always returns 0 (no pending
2565  * timeouts). See \ref polltime.
2566  *
2567  * \param ctx the context to operate on, or NULL for the default context
2568  * \param tv output location for a relative time against the current
2569  * clock in which libusb must be called into in order to process timeout events
2570  * \returns 0 if there are no pending timeouts, 1 if a timeout was returned,
2571  * or \ref LIBUSB_ERROR_OTHER on failure
2572  */
libusb_get_next_timeout(libusb_context * ctx,struct timeval * tv)2573 int API_EXPORTED libusb_get_next_timeout(libusb_context *ctx,
2574 	struct timeval *tv)
2575 {
2576 	struct usbi_transfer *itransfer;
2577 	struct timespec systime;
2578 	struct timespec next_timeout = { 0, 0 };
2579 
2580 	ctx = usbi_get_context(ctx);
2581 	if (usbi_using_timer(ctx))
2582 		return 0;
2583 
2584 	usbi_mutex_lock(&ctx->flying_transfers_lock);
2585 	if (list_empty(&ctx->flying_transfers)) {
2586 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
2587 		usbi_dbg(ctx, "no URBs, no timeout!");
2588 		return 0;
2589 	}
2590 
2591 	/* find next transfer which hasn't already been processed as timed out */
2592 	for_each_transfer(ctx, itransfer) {
2593 		if (itransfer->timeout_flags & (USBI_TRANSFER_TIMEOUT_HANDLED | USBI_TRANSFER_OS_HANDLES_TIMEOUT))
2594 			continue;
2595 
2596 		/* if we've reached transfers of infinite timeout, we're done looking */
2597 		if (!TIMESPEC_IS_SET(&itransfer->timeout))
2598 			break;
2599 
2600 		next_timeout = itransfer->timeout;
2601 		break;
2602 	}
2603 	usbi_mutex_unlock(&ctx->flying_transfers_lock);
2604 
2605 	if (!TIMESPEC_IS_SET(&next_timeout)) {
2606 		usbi_dbg(ctx, "no URB with timeout or all handled by OS; no timeout!");
2607 		return 0;
2608 	}
2609 
2610 	usbi_get_monotonic_time(&systime);
2611 
2612 	if (!TIMESPEC_CMP(&systime, &next_timeout, <)) {
2613 		usbi_dbg(ctx, "first timeout already expired");
2614 		timerclear(tv);
2615 	} else {
2616 		TIMESPEC_SUB(&next_timeout, &systime, &next_timeout);
2617 		TIMESPEC_TO_TIMEVAL(tv, &next_timeout);
2618 		usbi_dbg(ctx, "next timeout in %ld.%06lds", (long)tv->tv_sec, (long)tv->tv_usec);
2619 	}
2620 
2621 	return 1;
2622 }
2623 
2624 /** \ingroup libusb_poll
2625  * Register notification functions for file descriptor additions/removals.
2626  * These functions will be invoked for every new or removed file descriptor
2627  * that libusb uses as an event source.
2628  *
2629  * To remove notifiers, pass NULL values for the function pointers.
2630  *
2631  * Note that file descriptors may have been added even before you register
2632  * these notifiers (e.g. at libusb_init_context() time).
2633  *
2634  * Additionally, note that the removal notifier may be called during
2635  * libusb_exit() (e.g. when it is closing file descriptors that were opened
2636  * and added to the poll set at libusb_init_context() time). If you don't want this,
2637  * remove the notifiers immediately before calling libusb_exit().
2638  *
2639  * \param ctx the context to operate on, or NULL for the default context
2640  * \param added_cb pointer to function for addition notifications
2641  * \param removed_cb pointer to function for removal notifications
2642  * \param user_data User data to be passed back to callbacks (useful for
2643  * passing context information)
2644  */
libusb_set_pollfd_notifiers(libusb_context * ctx,libusb_pollfd_added_cb added_cb,libusb_pollfd_removed_cb removed_cb,void * user_data)2645 void API_EXPORTED libusb_set_pollfd_notifiers(libusb_context *ctx,
2646 	libusb_pollfd_added_cb added_cb, libusb_pollfd_removed_cb removed_cb,
2647 	void *user_data)
2648 {
2649 #if !defined(PLATFORM_WINDOWS)
2650 	ctx = usbi_get_context(ctx);
2651 	ctx->fd_added_cb = added_cb;
2652 	ctx->fd_removed_cb = removed_cb;
2653 	ctx->fd_cb_user_data = user_data;
2654 #else
2655 	usbi_err(ctx, "external polling of libusb's internal event sources " \
2656 		"is not yet supported on Windows");
2657 	UNUSED(added_cb);
2658 	UNUSED(removed_cb);
2659 	UNUSED(user_data);
2660 #endif
2661 }
2662 
2663 /*
2664  * Interrupt the iteration of the event handling thread, so that it picks
2665  * up the event source change. Callers of this function must hold the event_data_lock.
2666  */
usbi_event_source_notification(struct libusb_context * ctx)2667 static void usbi_event_source_notification(struct libusb_context *ctx)
2668 {
2669 	unsigned int event_flags;
2670 
2671 	/* Record that there is a new poll fd.
2672 	 * Only signal an event if there are no prior pending events. */
2673 	event_flags = ctx->event_flags;
2674 	ctx->event_flags |= USBI_EVENT_EVENT_SOURCES_MODIFIED;
2675 	if (!event_flags)
2676 		usbi_signal_event(&ctx->event);
2677 }
2678 
2679 /* Add an event source to the list of event sources to be monitored.
2680  * poll_events should be specified as a bitmask of events passed to poll(), e.g.
2681  * POLLIN and/or POLLOUT. */
usbi_add_event_source(struct libusb_context * ctx,usbi_os_handle_t os_handle,short poll_events)2682 int usbi_add_event_source(struct libusb_context *ctx, usbi_os_handle_t os_handle, short poll_events)
2683 {
2684 	struct usbi_event_source *ievent_source = malloc(sizeof(*ievent_source));
2685 
2686 	if (!ievent_source)
2687 		return LIBUSB_ERROR_NO_MEM;
2688 
2689 	usbi_dbg(ctx, "add " USBI_OS_HANDLE_FORMAT_STRING " events %d", os_handle, poll_events);
2690 	ievent_source->data.os_handle = os_handle;
2691 	ievent_source->data.poll_events = poll_events;
2692 	usbi_mutex_lock(&ctx->event_data_lock);
2693 	list_add_tail(&ievent_source->list, &ctx->event_sources);
2694 	usbi_event_source_notification(ctx);
2695 	usbi_mutex_unlock(&ctx->event_data_lock);
2696 
2697 #if !defined(PLATFORM_WINDOWS)
2698 	if (ctx->fd_added_cb)
2699 		ctx->fd_added_cb(os_handle, poll_events, ctx->fd_cb_user_data);
2700 #endif
2701 
2702 	return 0;
2703 }
2704 
2705 /* Remove an event source from the list of event sources to be monitored. */
usbi_remove_event_source(struct libusb_context * ctx,usbi_os_handle_t os_handle)2706 void usbi_remove_event_source(struct libusb_context *ctx, usbi_os_handle_t os_handle)
2707 {
2708 	struct usbi_event_source *ievent_source;
2709 	int found = 0;
2710 
2711 	usbi_dbg(ctx, "remove " USBI_OS_HANDLE_FORMAT_STRING, os_handle);
2712 	usbi_mutex_lock(&ctx->event_data_lock);
2713 	for_each_event_source(ctx, ievent_source) {
2714 		if (ievent_source->data.os_handle == os_handle) {
2715 			found = 1;
2716 			break;
2717 		}
2718 	}
2719 
2720 	if (!found) {
2721 		usbi_dbg(ctx, "couldn't find " USBI_OS_HANDLE_FORMAT_STRING " to remove", os_handle);
2722 		usbi_mutex_unlock(&ctx->event_data_lock);
2723 		return;
2724 	}
2725 
2726 	list_del(&ievent_source->list);
2727 	list_add_tail(&ievent_source->list, &ctx->removed_event_sources);
2728 	usbi_event_source_notification(ctx);
2729 	usbi_mutex_unlock(&ctx->event_data_lock);
2730 
2731 #if !defined(PLATFORM_WINDOWS)
2732 	if (ctx->fd_removed_cb)
2733 		ctx->fd_removed_cb(os_handle, ctx->fd_cb_user_data);
2734 #endif
2735 }
2736 
2737 /** \ingroup libusb_poll
2738  * Retrieve a list of file descriptors that should be polled by your main loop
2739  * as libusb event sources.
2740  *
2741  * The returned list is NULL-terminated and should be freed with libusb_free_pollfds()
2742  * when done. The actual list contents must not be touched.
2743  *
2744  * As file descriptors are a Unix-specific concept, this function is not
2745  * available on Windows and will always return NULL.
2746  *
2747  * \param ctx the context to operate on, or NULL for the default context
2748  * \returns a NULL-terminated list of libusb_pollfd structures
2749  * \returns NULL on error
2750  * \returns NULL on platforms where the functionality is not available
2751  */
2752 DEFAULT_VISIBILITY
libusb_get_pollfds(libusb_context * ctx)2753 const struct libusb_pollfd ** LIBUSB_CALL libusb_get_pollfds(
2754 	libusb_context *ctx)
2755 {
2756 #if !defined(PLATFORM_WINDOWS)
2757 	struct libusb_pollfd **ret = NULL;
2758 	struct usbi_event_source *ievent_source;
2759 	size_t i;
2760 
2761 	static_assert(sizeof(struct usbi_event_source_data) == sizeof(struct libusb_pollfd),
2762 		      "mismatch between usbi_event_source_data and libusb_pollfd sizes");
2763 
2764 	ctx = usbi_get_context(ctx);
2765 
2766 	usbi_mutex_lock(&ctx->event_data_lock);
2767 
2768 	i = 0;
2769 	for_each_event_source(ctx, ievent_source)
2770 		i++;
2771 
2772 	ret = calloc(i + 1, sizeof(struct libusb_pollfd *));
2773 	if (!ret)
2774 		goto out;
2775 
2776 	i = 0;
2777 	for_each_event_source(ctx, ievent_source)
2778 		ret[i++] = (struct libusb_pollfd *)ievent_source;
2779 
2780 out:
2781 	usbi_mutex_unlock(&ctx->event_data_lock);
2782 	return (const struct libusb_pollfd **)ret;
2783 #else
2784 	usbi_err(ctx, "external polling of libusb's internal event sources " \
2785 		"is not yet supported on Windows");
2786 	return NULL;
2787 #endif
2788 }
2789 
2790 /** \ingroup libusb_poll
2791  * Free a list of libusb_pollfd structures. This should be called for all
2792  * pollfd lists allocated with libusb_get_pollfds().
2793  *
2794  * Since version 1.0.20, \ref LIBUSB_API_VERSION >= 0x01000104
2795  *
2796  * It is legal to call this function with a NULL pollfd list. In this case,
2797  * the function will simply do nothing.
2798  *
2799  * \param pollfds the list of libusb_pollfd structures to free
2800  */
libusb_free_pollfds(const struct libusb_pollfd ** pollfds)2801 void API_EXPORTED libusb_free_pollfds(const struct libusb_pollfd **pollfds)
2802 {
2803 #if !defined(PLATFORM_WINDOWS)
2804 	free((void *)pollfds);
2805 #else
2806 	UNUSED(pollfds);
2807 #endif
2808 }
2809 
2810 /* Backends may call this from handle_events to report disconnection of a
2811  * device. This function ensures transfers get cancelled appropriately.
2812  * Callers of this function must hold the events_lock.
2813  */
usbi_handle_disconnect(struct libusb_device_handle * dev_handle)2814 void usbi_handle_disconnect(struct libusb_device_handle *dev_handle)
2815 {
2816 	struct libusb_context *ctx = HANDLE_CTX(dev_handle);
2817 	struct usbi_transfer *cur;
2818 	struct usbi_transfer *to_cancel;
2819 
2820 	usbi_dbg(ctx, "device %d.%d",
2821 		dev_handle->dev->bus_number, dev_handle->dev->device_address);
2822 
2823 	/* terminate all pending transfers with the LIBUSB_TRANSFER_NO_DEVICE
2824 	 * status code.
2825 	 *
2826 	 * when we find a transfer for this device on the list, there are two
2827 	 * possible scenarios:
2828 	 * 1. the transfer is currently in-flight, in which case we terminate the
2829 	 *    transfer here
2830 	 * 2. the transfer has been added to the flying transfer list by
2831 	 *    libusb_submit_transfer, has failed to submit and
2832 	 *    libusb_submit_transfer is waiting for us to release the
2833 	 *    flying_transfers_lock to remove it, so we ignore it
2834 	 */
2835 
2836 	while (1) {
2837 		to_cancel = NULL;
2838 		usbi_mutex_lock(&ctx->flying_transfers_lock);
2839 		for_each_transfer(ctx, cur) {
2840 			struct libusb_transfer *cur_transfer = USBI_TRANSFER_TO_LIBUSB_TRANSFER(cur);
2841 			if (cur_transfer->dev_handle == dev_handle) {
2842 				usbi_mutex_lock(&cur->lock);
2843 				if (cur->state_flags & USBI_TRANSFER_IN_FLIGHT)
2844 					to_cancel = cur;
2845 				usbi_mutex_unlock(&cur->lock);
2846 
2847 				if (to_cancel)
2848 					break;
2849 			}
2850 		}
2851 		usbi_mutex_unlock(&ctx->flying_transfers_lock);
2852 
2853 		if (!to_cancel)
2854 			break;
2855 
2856 		struct libusb_transfer *transfer_to_cancel = USBI_TRANSFER_TO_LIBUSB_TRANSFER(to_cancel);
2857 		usbi_dbg(ctx, "cancelling transfer %p from disconnect",
2858 			 (void *) transfer_to_cancel);
2859 
2860 		usbi_mutex_lock(&to_cancel->lock);
2861 		usbi_backend.clear_transfer_priv(to_cancel);
2862 		usbi_mutex_unlock(&to_cancel->lock);
2863 		usbi_handle_transfer_completion(to_cancel, LIBUSB_TRANSFER_NO_DEVICE);
2864 	}
2865 }
2866