1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2002 Richard Henderson
4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5 * Copyright (C) 2023 Luis Chamberlain <[email protected]>
6 */
7
8 #define INCLUDE_VERMAGIC
9
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67
68 /*
69 * Mutex protects:
70 * 1) List of modules (also safely readable with preempt_disable),
71 * 2) module_use links,
72 * 3) mod_tree.addr_min/mod_tree.addr_max.
73 * (delete and add uses RCU list operations).
74 */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 .addr_min = -1UL,
85 };
86
87 struct symsearch {
88 const struct kernel_symbol *start, *stop;
89 const u32 *crcs;
90 enum mod_license license;
91 };
92
93 /*
94 * Bounds of module memory, for speeding up __module_address.
95 * Protected by module_mutex.
96 */
__mod_update_bounds(enum mod_mem_type type __maybe_unused,void * base,unsigned int size,struct mod_tree_root * tree)97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 unsigned int size, struct mod_tree_root *tree)
99 {
100 unsigned long min = (unsigned long)base;
101 unsigned long max = min + size;
102
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 if (mod_mem_type_is_core_data(type)) {
105 if (min < tree->data_addr_min)
106 tree->data_addr_min = min;
107 if (max > tree->data_addr_max)
108 tree->data_addr_max = max;
109 return;
110 }
111 #endif
112 if (min < tree->addr_min)
113 tree->addr_min = min;
114 if (max > tree->addr_max)
115 tree->addr_max = max;
116 }
117
mod_update_bounds(struct module * mod)118 static void mod_update_bounds(struct module *mod)
119 {
120 for_each_mod_mem_type(type) {
121 struct module_memory *mod_mem = &mod->mem[type];
122
123 if (mod_mem->size)
124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 }
126 }
127
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136
register_module_notifier(struct notifier_block * nb)137 int register_module_notifier(struct notifier_block *nb)
138 {
139 return blocking_notifier_chain_register(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(register_module_notifier);
142
unregister_module_notifier(struct notifier_block * nb)143 int unregister_module_notifier(struct notifier_block *nb)
144 {
145 return blocking_notifier_chain_unregister(&module_notify_list, nb);
146 }
147 EXPORT_SYMBOL(unregister_module_notifier);
148
149 /*
150 * We require a truly strong try_module_get(): 0 means success.
151 * Otherwise an error is returned due to ongoing or failed
152 * initialization etc.
153 */
strong_try_module_get(struct module * mod)154 static inline int strong_try_module_get(struct module *mod)
155 {
156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 if (mod && mod->state == MODULE_STATE_COMING)
158 return -EBUSY;
159 if (try_module_get(mod))
160 return 0;
161 else
162 return -ENOENT;
163 }
164
add_taint_module(struct module * mod,unsigned flag,enum lockdep_ok lockdep_ok)165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 enum lockdep_ok lockdep_ok)
167 {
168 add_taint(flag, lockdep_ok);
169 set_bit(flag, &mod->taints);
170 }
171
172 /*
173 * A thread that wants to hold a reference to a module only while it
174 * is running can call this to safely exit.
175 */
__module_put_and_kthread_exit(struct module * mod,long code)176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
177 {
178 module_put(mod);
179 kthread_exit(code);
180 }
181 EXPORT_SYMBOL(__module_put_and_kthread_exit);
182
183 /* Find a module section: 0 means not found. */
find_sec(const struct load_info * info,const char * name)184 static unsigned int find_sec(const struct load_info *info, const char *name)
185 {
186 unsigned int i;
187
188 for (i = 1; i < info->hdr->e_shnum; i++) {
189 Elf_Shdr *shdr = &info->sechdrs[i];
190 /* Alloc bit cleared means "ignore it." */
191 if ((shdr->sh_flags & SHF_ALLOC)
192 && strcmp(info->secstrings + shdr->sh_name, name) == 0)
193 return i;
194 }
195 return 0;
196 }
197
198 /**
199 * find_any_unique_sec() - Find a unique section index by name
200 * @info: Load info for the module to scan
201 * @name: Name of the section we're looking for
202 *
203 * Locates a unique section by name. Ignores SHF_ALLOC.
204 *
205 * Return: Section index if found uniquely, zero if absent, negative count
206 * of total instances if multiple were found.
207 */
find_any_unique_sec(const struct load_info * info,const char * name)208 static int find_any_unique_sec(const struct load_info *info, const char *name)
209 {
210 unsigned int idx;
211 unsigned int count = 0;
212 int i;
213
214 for (i = 1; i < info->hdr->e_shnum; i++) {
215 if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
216 name) == 0) {
217 count++;
218 idx = i;
219 }
220 }
221 if (count == 1) {
222 return idx;
223 } else if (count == 0) {
224 return 0;
225 } else {
226 return -count;
227 }
228 }
229
230 /* Find a module section, or NULL. */
section_addr(const struct load_info * info,const char * name)231 static void *section_addr(const struct load_info *info, const char *name)
232 {
233 /* Section 0 has sh_addr 0. */
234 return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
235 }
236
237 /* Find a module section, or NULL. Fill in number of "objects" in section. */
section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)238 static void *section_objs(const struct load_info *info,
239 const char *name,
240 size_t object_size,
241 unsigned int *num)
242 {
243 unsigned int sec = find_sec(info, name);
244
245 /* Section 0 has sh_addr 0 and sh_size 0. */
246 *num = info->sechdrs[sec].sh_size / object_size;
247 return (void *)info->sechdrs[sec].sh_addr;
248 }
249
250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
find_any_sec(const struct load_info * info,const char * name)251 static unsigned int find_any_sec(const struct load_info *info, const char *name)
252 {
253 unsigned int i;
254
255 for (i = 1; i < info->hdr->e_shnum; i++) {
256 Elf_Shdr *shdr = &info->sechdrs[i];
257 if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
258 return i;
259 }
260 return 0;
261 }
262
263 /*
264 * Find a module section, or NULL. Fill in number of "objects" in section.
265 * Ignores SHF_ALLOC flag.
266 */
any_section_objs(const struct load_info * info,const char * name,size_t object_size,unsigned int * num)267 static __maybe_unused void *any_section_objs(const struct load_info *info,
268 const char *name,
269 size_t object_size,
270 unsigned int *num)
271 {
272 unsigned int sec = find_any_sec(info, name);
273
274 /* Section 0 has sh_addr 0 and sh_size 0. */
275 *num = info->sechdrs[sec].sh_size / object_size;
276 return (void *)info->sechdrs[sec].sh_addr;
277 }
278
279 #ifndef CONFIG_MODVERSIONS
280 #define symversion(base, idx) NULL
281 #else
282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
283 #endif
284
kernel_symbol_name(const struct kernel_symbol * sym)285 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
286 {
287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
288 return offset_to_ptr(&sym->name_offset);
289 #else
290 return sym->name;
291 #endif
292 }
293
kernel_symbol_namespace(const struct kernel_symbol * sym)294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
295 {
296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
297 if (!sym->namespace_offset)
298 return NULL;
299 return offset_to_ptr(&sym->namespace_offset);
300 #else
301 return sym->namespace;
302 #endif
303 }
304
cmp_name(const void * name,const void * sym)305 int cmp_name(const void *name, const void *sym)
306 {
307 return strcmp(name, kernel_symbol_name(sym));
308 }
309
find_exported_symbol_in_section(const struct symsearch * syms,struct module * owner,struct find_symbol_arg * fsa)310 static bool find_exported_symbol_in_section(const struct symsearch *syms,
311 struct module *owner,
312 struct find_symbol_arg *fsa)
313 {
314 struct kernel_symbol *sym;
315
316 if (!fsa->gplok && syms->license == GPL_ONLY)
317 return false;
318
319 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
320 sizeof(struct kernel_symbol), cmp_name);
321 if (!sym)
322 return false;
323
324 fsa->owner = owner;
325 fsa->crc = symversion(syms->crcs, sym - syms->start);
326 fsa->sym = sym;
327 fsa->license = syms->license;
328
329 return true;
330 }
331
332 /*
333 * Find an exported symbol and return it, along with, (optional) crc and
334 * (optional) module which owns it. Needs preempt disabled or module_mutex.
335 */
find_symbol(struct find_symbol_arg * fsa)336 bool find_symbol(struct find_symbol_arg *fsa)
337 {
338 static const struct symsearch arr[] = {
339 { __start___ksymtab, __stop___ksymtab, __start___kcrctab,
340 NOT_GPL_ONLY },
341 { __start___ksymtab_gpl, __stop___ksymtab_gpl,
342 __start___kcrctab_gpl,
343 GPL_ONLY },
344 };
345 struct module *mod;
346 unsigned int i;
347
348 module_assert_mutex_or_preempt();
349
350 for (i = 0; i < ARRAY_SIZE(arr); i++)
351 if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
352 return true;
353
354 list_for_each_entry_rcu(mod, &modules, list,
355 lockdep_is_held(&module_mutex)) {
356 struct symsearch arr[] = {
357 { mod->syms, mod->syms + mod->num_syms, mod->crcs,
358 NOT_GPL_ONLY },
359 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
360 mod->gpl_crcs,
361 GPL_ONLY },
362 };
363
364 if (mod->state == MODULE_STATE_UNFORMED)
365 continue;
366
367 for (i = 0; i < ARRAY_SIZE(arr); i++)
368 if (find_exported_symbol_in_section(&arr[i], mod, fsa))
369 return true;
370 }
371
372 pr_debug("Failed to find symbol %s\n", fsa->name);
373 return false;
374 }
375
376 /*
377 * Search for module by name: must hold module_mutex (or preempt disabled
378 * for read-only access).
379 */
find_module_all(const char * name,size_t len,bool even_unformed)380 struct module *find_module_all(const char *name, size_t len,
381 bool even_unformed)
382 {
383 struct module *mod;
384
385 module_assert_mutex_or_preempt();
386
387 list_for_each_entry_rcu(mod, &modules, list,
388 lockdep_is_held(&module_mutex)) {
389 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
390 continue;
391 if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
392 return mod;
393 }
394 return NULL;
395 }
396
find_module(const char * name)397 struct module *find_module(const char *name)
398 {
399 return find_module_all(name, strlen(name), false);
400 }
401
402 #ifdef CONFIG_SMP
403
mod_percpu(struct module * mod)404 static inline void __percpu *mod_percpu(struct module *mod)
405 {
406 return mod->percpu;
407 }
408
percpu_modalloc(struct module * mod,struct load_info * info)409 static int percpu_modalloc(struct module *mod, struct load_info *info)
410 {
411 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
412 unsigned long align = pcpusec->sh_addralign;
413
414 if (!pcpusec->sh_size)
415 return 0;
416
417 if (align > PAGE_SIZE) {
418 pr_warn("%s: per-cpu alignment %li > %li\n",
419 mod->name, align, PAGE_SIZE);
420 align = PAGE_SIZE;
421 }
422
423 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
424 if (!mod->percpu) {
425 pr_warn("%s: Could not allocate %lu bytes percpu data\n",
426 mod->name, (unsigned long)pcpusec->sh_size);
427 return -ENOMEM;
428 }
429 mod->percpu_size = pcpusec->sh_size;
430 return 0;
431 }
432
percpu_modfree(struct module * mod)433 static void percpu_modfree(struct module *mod)
434 {
435 free_percpu(mod->percpu);
436 }
437
find_pcpusec(struct load_info * info)438 static unsigned int find_pcpusec(struct load_info *info)
439 {
440 return find_sec(info, ".data..percpu");
441 }
442
percpu_modcopy(struct module * mod,const void * from,unsigned long size)443 static void percpu_modcopy(struct module *mod,
444 const void *from, unsigned long size)
445 {
446 int cpu;
447
448 for_each_possible_cpu(cpu)
449 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
450 }
451
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)452 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
453 {
454 struct module *mod;
455 unsigned int cpu;
456
457 preempt_disable();
458
459 list_for_each_entry_rcu(mod, &modules, list) {
460 if (mod->state == MODULE_STATE_UNFORMED)
461 continue;
462 if (!mod->percpu_size)
463 continue;
464 for_each_possible_cpu(cpu) {
465 void *start = per_cpu_ptr(mod->percpu, cpu);
466 void *va = (void *)addr;
467
468 if (va >= start && va < start + mod->percpu_size) {
469 if (can_addr) {
470 *can_addr = (unsigned long) (va - start);
471 *can_addr += (unsigned long)
472 per_cpu_ptr(mod->percpu,
473 get_boot_cpu_id());
474 }
475 preempt_enable();
476 return true;
477 }
478 }
479 }
480
481 preempt_enable();
482 return false;
483 }
484
485 /**
486 * is_module_percpu_address() - test whether address is from module static percpu
487 * @addr: address to test
488 *
489 * Test whether @addr belongs to module static percpu area.
490 *
491 * Return: %true if @addr is from module static percpu area
492 */
is_module_percpu_address(unsigned long addr)493 bool is_module_percpu_address(unsigned long addr)
494 {
495 return __is_module_percpu_address(addr, NULL);
496 }
497
498 #else /* ... !CONFIG_SMP */
499
mod_percpu(struct module * mod)500 static inline void __percpu *mod_percpu(struct module *mod)
501 {
502 return NULL;
503 }
percpu_modalloc(struct module * mod,struct load_info * info)504 static int percpu_modalloc(struct module *mod, struct load_info *info)
505 {
506 /* UP modules shouldn't have this section: ENOMEM isn't quite right */
507 if (info->sechdrs[info->index.pcpu].sh_size != 0)
508 return -ENOMEM;
509 return 0;
510 }
percpu_modfree(struct module * mod)511 static inline void percpu_modfree(struct module *mod)
512 {
513 }
find_pcpusec(struct load_info * info)514 static unsigned int find_pcpusec(struct load_info *info)
515 {
516 return 0;
517 }
percpu_modcopy(struct module * mod,const void * from,unsigned long size)518 static inline void percpu_modcopy(struct module *mod,
519 const void *from, unsigned long size)
520 {
521 /* pcpusec should be 0, and size of that section should be 0. */
522 BUG_ON(size != 0);
523 }
is_module_percpu_address(unsigned long addr)524 bool is_module_percpu_address(unsigned long addr)
525 {
526 return false;
527 }
528
__is_module_percpu_address(unsigned long addr,unsigned long * can_addr)529 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
530 {
531 return false;
532 }
533
534 #endif /* CONFIG_SMP */
535
536 #define MODINFO_ATTR(field) \
537 static void setup_modinfo_##field(struct module *mod, const char *s) \
538 { \
539 mod->field = kstrdup(s, GFP_KERNEL); \
540 } \
541 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
542 struct module_kobject *mk, char *buffer) \
543 { \
544 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \
545 } \
546 static int modinfo_##field##_exists(struct module *mod) \
547 { \
548 return mod->field != NULL; \
549 } \
550 static void free_modinfo_##field(struct module *mod) \
551 { \
552 kfree(mod->field); \
553 mod->field = NULL; \
554 } \
555 static const struct module_attribute modinfo_##field = { \
556 .attr = { .name = __stringify(field), .mode = 0444 }, \
557 .show = show_modinfo_##field, \
558 .setup = setup_modinfo_##field, \
559 .test = modinfo_##field##_exists, \
560 .free = free_modinfo_##field, \
561 };
562
563 MODINFO_ATTR(version);
564 MODINFO_ATTR(srcversion);
565
566 static struct {
567 char name[MODULE_NAME_LEN + 1];
568 char taints[MODULE_FLAGS_BUF_SIZE];
569 } last_unloaded_module;
570
571 #ifdef CONFIG_MODULE_UNLOAD
572
573 EXPORT_TRACEPOINT_SYMBOL(module_get);
574
575 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
576 #define MODULE_REF_BASE 1
577
578 /* Init the unload section of the module. */
module_unload_init(struct module * mod)579 static int module_unload_init(struct module *mod)
580 {
581 /*
582 * Initialize reference counter to MODULE_REF_BASE.
583 * refcnt == 0 means module is going.
584 */
585 atomic_set(&mod->refcnt, MODULE_REF_BASE);
586
587 INIT_LIST_HEAD(&mod->source_list);
588 INIT_LIST_HEAD(&mod->target_list);
589
590 /* Hold reference count during initialization. */
591 atomic_inc(&mod->refcnt);
592
593 return 0;
594 }
595
596 /* Does a already use b? */
already_uses(struct module * a,struct module * b)597 static int already_uses(struct module *a, struct module *b)
598 {
599 struct module_use *use;
600
601 list_for_each_entry(use, &b->source_list, source_list) {
602 if (use->source == a)
603 return 1;
604 }
605 pr_debug("%s does not use %s!\n", a->name, b->name);
606 return 0;
607 }
608
609 /*
610 * Module a uses b
611 * - we add 'a' as a "source", 'b' as a "target" of module use
612 * - the module_use is added to the list of 'b' sources (so
613 * 'b' can walk the list to see who sourced them), and of 'a'
614 * targets (so 'a' can see what modules it targets).
615 */
add_module_usage(struct module * a,struct module * b)616 static int add_module_usage(struct module *a, struct module *b)
617 {
618 struct module_use *use;
619
620 pr_debug("Allocating new usage for %s.\n", a->name);
621 use = kmalloc(sizeof(*use), GFP_ATOMIC);
622 if (!use)
623 return -ENOMEM;
624
625 use->source = a;
626 use->target = b;
627 list_add(&use->source_list, &b->source_list);
628 list_add(&use->target_list, &a->target_list);
629 return 0;
630 }
631
632 /* Module a uses b: caller needs module_mutex() */
ref_module(struct module * a,struct module * b)633 static int ref_module(struct module *a, struct module *b)
634 {
635 int err;
636
637 if (b == NULL || already_uses(a, b))
638 return 0;
639
640 /* If module isn't available, we fail. */
641 err = strong_try_module_get(b);
642 if (err)
643 return err;
644
645 err = add_module_usage(a, b);
646 if (err) {
647 module_put(b);
648 return err;
649 }
650 return 0;
651 }
652
653 /* Clear the unload stuff of the module. */
module_unload_free(struct module * mod)654 static void module_unload_free(struct module *mod)
655 {
656 struct module_use *use, *tmp;
657
658 mutex_lock(&module_mutex);
659 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
660 struct module *i = use->target;
661 pr_debug("%s unusing %s\n", mod->name, i->name);
662 module_put(i);
663 list_del(&use->source_list);
664 list_del(&use->target_list);
665 kfree(use);
666 }
667 mutex_unlock(&module_mutex);
668 }
669
670 #ifdef CONFIG_MODULE_FORCE_UNLOAD
try_force_unload(unsigned int flags)671 static inline int try_force_unload(unsigned int flags)
672 {
673 int ret = (flags & O_TRUNC);
674 if (ret)
675 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
676 return ret;
677 }
678 #else
try_force_unload(unsigned int flags)679 static inline int try_force_unload(unsigned int flags)
680 {
681 return 0;
682 }
683 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
684
685 /* Try to release refcount of module, 0 means success. */
try_release_module_ref(struct module * mod)686 static int try_release_module_ref(struct module *mod)
687 {
688 int ret;
689
690 /* Try to decrement refcnt which we set at loading */
691 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
692 BUG_ON(ret < 0);
693 if (ret)
694 /* Someone can put this right now, recover with checking */
695 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
696
697 return ret;
698 }
699
try_stop_module(struct module * mod,int flags,int * forced)700 static int try_stop_module(struct module *mod, int flags, int *forced)
701 {
702 /* If it's not unused, quit unless we're forcing. */
703 if (try_release_module_ref(mod) != 0) {
704 *forced = try_force_unload(flags);
705 if (!(*forced))
706 return -EWOULDBLOCK;
707 }
708
709 /* Mark it as dying. */
710 mod->state = MODULE_STATE_GOING;
711
712 return 0;
713 }
714
715 /**
716 * module_refcount() - return the refcount or -1 if unloading
717 * @mod: the module we're checking
718 *
719 * Return:
720 * -1 if the module is in the process of unloading
721 * otherwise the number of references in the kernel to the module
722 */
module_refcount(struct module * mod)723 int module_refcount(struct module *mod)
724 {
725 return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
726 }
727 EXPORT_SYMBOL(module_refcount);
728
729 /* This exists whether we can unload or not */
730 static void free_module(struct module *mod);
731
SYSCALL_DEFINE2(delete_module,const char __user *,name_user,unsigned int,flags)732 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
733 unsigned int, flags)
734 {
735 struct module *mod;
736 char name[MODULE_NAME_LEN];
737 char buf[MODULE_FLAGS_BUF_SIZE];
738 int ret, forced = 0;
739
740 if (!capable(CAP_SYS_MODULE) || modules_disabled)
741 return -EPERM;
742
743 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
744 return -EFAULT;
745 name[MODULE_NAME_LEN-1] = '\0';
746
747 audit_log_kern_module(name);
748
749 if (mutex_lock_interruptible(&module_mutex) != 0)
750 return -EINTR;
751
752 mod = find_module(name);
753 if (!mod) {
754 ret = -ENOENT;
755 goto out;
756 }
757
758 if (!list_empty(&mod->source_list)) {
759 /* Other modules depend on us: get rid of them first. */
760 ret = -EWOULDBLOCK;
761 goto out;
762 }
763
764 /* Doing init or already dying? */
765 if (mod->state != MODULE_STATE_LIVE) {
766 /* FIXME: if (force), slam module count damn the torpedoes */
767 pr_debug("%s already dying\n", mod->name);
768 ret = -EBUSY;
769 goto out;
770 }
771
772 /* If it has an init func, it must have an exit func to unload */
773 if (mod->init && !mod->exit) {
774 forced = try_force_unload(flags);
775 if (!forced) {
776 /* This module can't be removed */
777 ret = -EBUSY;
778 goto out;
779 }
780 }
781
782 ret = try_stop_module(mod, flags, &forced);
783 if (ret != 0)
784 goto out;
785
786 mutex_unlock(&module_mutex);
787 /* Final destruction now no one is using it. */
788 if (mod->exit != NULL)
789 mod->exit();
790 blocking_notifier_call_chain(&module_notify_list,
791 MODULE_STATE_GOING, mod);
792 klp_module_going(mod);
793 ftrace_release_mod(mod);
794
795 async_synchronize_full();
796
797 /* Store the name and taints of the last unloaded module for diagnostic purposes */
798 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
799 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
800
801 free_module(mod);
802 /* someone could wait for the module in add_unformed_module() */
803 wake_up_all(&module_wq);
804 return 0;
805 out:
806 mutex_unlock(&module_mutex);
807 return ret;
808 }
809
__symbol_put(const char * symbol)810 void __symbol_put(const char *symbol)
811 {
812 struct find_symbol_arg fsa = {
813 .name = symbol,
814 .gplok = true,
815 };
816
817 preempt_disable();
818 BUG_ON(!find_symbol(&fsa));
819 module_put(fsa.owner);
820 preempt_enable();
821 }
822 EXPORT_SYMBOL(__symbol_put);
823
824 /* Note this assumes addr is a function, which it currently always is. */
symbol_put_addr(void * addr)825 void symbol_put_addr(void *addr)
826 {
827 struct module *modaddr;
828 unsigned long a = (unsigned long)dereference_function_descriptor(addr);
829
830 if (core_kernel_text(a))
831 return;
832
833 /*
834 * Even though we hold a reference on the module; we still need to
835 * disable preemption in order to safely traverse the data structure.
836 */
837 preempt_disable();
838 modaddr = __module_text_address(a);
839 BUG_ON(!modaddr);
840 module_put(modaddr);
841 preempt_enable();
842 }
843 EXPORT_SYMBOL_GPL(symbol_put_addr);
844
show_refcnt(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)845 static ssize_t show_refcnt(const struct module_attribute *mattr,
846 struct module_kobject *mk, char *buffer)
847 {
848 return sprintf(buffer, "%i\n", module_refcount(mk->mod));
849 }
850
851 static const struct module_attribute modinfo_refcnt =
852 __ATTR(refcnt, 0444, show_refcnt, NULL);
853
__module_get(struct module * module)854 void __module_get(struct module *module)
855 {
856 if (module) {
857 atomic_inc(&module->refcnt);
858 trace_module_get(module, _RET_IP_);
859 }
860 }
861 EXPORT_SYMBOL(__module_get);
862
try_module_get(struct module * module)863 bool try_module_get(struct module *module)
864 {
865 bool ret = true;
866
867 if (module) {
868 /* Note: here, we can fail to get a reference */
869 if (likely(module_is_live(module) &&
870 atomic_inc_not_zero(&module->refcnt) != 0))
871 trace_module_get(module, _RET_IP_);
872 else
873 ret = false;
874 }
875 return ret;
876 }
877 EXPORT_SYMBOL(try_module_get);
878
module_put(struct module * module)879 void module_put(struct module *module)
880 {
881 int ret;
882
883 if (module) {
884 ret = atomic_dec_if_positive(&module->refcnt);
885 WARN_ON(ret < 0); /* Failed to put refcount */
886 trace_module_put(module, _RET_IP_);
887 }
888 }
889 EXPORT_SYMBOL(module_put);
890
891 #else /* !CONFIG_MODULE_UNLOAD */
module_unload_free(struct module * mod)892 static inline void module_unload_free(struct module *mod)
893 {
894 }
895
ref_module(struct module * a,struct module * b)896 static int ref_module(struct module *a, struct module *b)
897 {
898 return strong_try_module_get(b);
899 }
900
module_unload_init(struct module * mod)901 static inline int module_unload_init(struct module *mod)
902 {
903 return 0;
904 }
905 #endif /* CONFIG_MODULE_UNLOAD */
906
module_flags_taint(unsigned long taints,char * buf)907 size_t module_flags_taint(unsigned long taints, char *buf)
908 {
909 size_t l = 0;
910 int i;
911
912 for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
913 if (taint_flags[i].module && test_bit(i, &taints))
914 buf[l++] = taint_flags[i].c_true;
915 }
916
917 return l;
918 }
919
show_initstate(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)920 static ssize_t show_initstate(const struct module_attribute *mattr,
921 struct module_kobject *mk, char *buffer)
922 {
923 const char *state = "unknown";
924
925 switch (mk->mod->state) {
926 case MODULE_STATE_LIVE:
927 state = "live";
928 break;
929 case MODULE_STATE_COMING:
930 state = "coming";
931 break;
932 case MODULE_STATE_GOING:
933 state = "going";
934 break;
935 default:
936 BUG();
937 }
938 return sprintf(buffer, "%s\n", state);
939 }
940
941 static const struct module_attribute modinfo_initstate =
942 __ATTR(initstate, 0444, show_initstate, NULL);
943
store_uevent(const struct module_attribute * mattr,struct module_kobject * mk,const char * buffer,size_t count)944 static ssize_t store_uevent(const struct module_attribute *mattr,
945 struct module_kobject *mk,
946 const char *buffer, size_t count)
947 {
948 int rc;
949
950 rc = kobject_synth_uevent(&mk->kobj, buffer, count);
951 return rc ? rc : count;
952 }
953
954 const struct module_attribute module_uevent =
955 __ATTR(uevent, 0200, NULL, store_uevent);
956
show_coresize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)957 static ssize_t show_coresize(const struct module_attribute *mattr,
958 struct module_kobject *mk, char *buffer)
959 {
960 unsigned int size = mk->mod->mem[MOD_TEXT].size;
961
962 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
963 for_class_mod_mem_type(type, core_data)
964 size += mk->mod->mem[type].size;
965 }
966 return sprintf(buffer, "%u\n", size);
967 }
968
969 static const struct module_attribute modinfo_coresize =
970 __ATTR(coresize, 0444, show_coresize, NULL);
971
972 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
show_datasize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)973 static ssize_t show_datasize(const struct module_attribute *mattr,
974 struct module_kobject *mk, char *buffer)
975 {
976 unsigned int size = 0;
977
978 for_class_mod_mem_type(type, core_data)
979 size += mk->mod->mem[type].size;
980 return sprintf(buffer, "%u\n", size);
981 }
982
983 static const struct module_attribute modinfo_datasize =
984 __ATTR(datasize, 0444, show_datasize, NULL);
985 #endif
986
show_initsize(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)987 static ssize_t show_initsize(const struct module_attribute *mattr,
988 struct module_kobject *mk, char *buffer)
989 {
990 unsigned int size = 0;
991
992 for_class_mod_mem_type(type, init)
993 size += mk->mod->mem[type].size;
994 return sprintf(buffer, "%u\n", size);
995 }
996
997 static const struct module_attribute modinfo_initsize =
998 __ATTR(initsize, 0444, show_initsize, NULL);
999
show_taint(const struct module_attribute * mattr,struct module_kobject * mk,char * buffer)1000 static ssize_t show_taint(const struct module_attribute *mattr,
1001 struct module_kobject *mk, char *buffer)
1002 {
1003 size_t l;
1004
1005 l = module_flags_taint(mk->mod->taints, buffer);
1006 buffer[l++] = '\n';
1007 return l;
1008 }
1009
1010 static const struct module_attribute modinfo_taint =
1011 __ATTR(taint, 0444, show_taint, NULL);
1012
1013 const struct module_attribute *const modinfo_attrs[] = {
1014 &module_uevent,
1015 &modinfo_version,
1016 &modinfo_srcversion,
1017 &modinfo_initstate,
1018 &modinfo_coresize,
1019 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1020 &modinfo_datasize,
1021 #endif
1022 &modinfo_initsize,
1023 &modinfo_taint,
1024 #ifdef CONFIG_MODULE_UNLOAD
1025 &modinfo_refcnt,
1026 #endif
1027 NULL,
1028 };
1029
1030 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1031
1032 static const char vermagic[] = VERMAGIC_STRING;
1033
try_to_force_load(struct module * mod,const char * reason)1034 int try_to_force_load(struct module *mod, const char *reason)
1035 {
1036 #ifdef CONFIG_MODULE_FORCE_LOAD
1037 if (!test_taint(TAINT_FORCED_MODULE))
1038 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1039 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1040 return 0;
1041 #else
1042 return -ENOEXEC;
1043 #endif
1044 }
1045
1046 /* Parse tag=value strings from .modinfo section */
module_next_tag_pair(char * string,unsigned long * secsize)1047 char *module_next_tag_pair(char *string, unsigned long *secsize)
1048 {
1049 /* Skip non-zero chars */
1050 while (string[0]) {
1051 string++;
1052 if ((*secsize)-- <= 1)
1053 return NULL;
1054 }
1055
1056 /* Skip any zero padding. */
1057 while (!string[0]) {
1058 string++;
1059 if ((*secsize)-- <= 1)
1060 return NULL;
1061 }
1062 return string;
1063 }
1064
get_next_modinfo(const struct load_info * info,const char * tag,char * prev)1065 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1066 char *prev)
1067 {
1068 char *p;
1069 unsigned int taglen = strlen(tag);
1070 Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1071 unsigned long size = infosec->sh_size;
1072
1073 /*
1074 * get_modinfo() calls made before rewrite_section_headers()
1075 * must use sh_offset, as sh_addr isn't set!
1076 */
1077 char *modinfo = (char *)info->hdr + infosec->sh_offset;
1078
1079 if (prev) {
1080 size -= prev - modinfo;
1081 modinfo = module_next_tag_pair(prev, &size);
1082 }
1083
1084 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1085 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1086 return p + taglen + 1;
1087 }
1088 return NULL;
1089 }
1090
get_modinfo(const struct load_info * info,const char * tag)1091 static char *get_modinfo(const struct load_info *info, const char *tag)
1092 {
1093 return get_next_modinfo(info, tag, NULL);
1094 }
1095
verify_namespace_is_imported(const struct load_info * info,const struct kernel_symbol * sym,struct module * mod)1096 static int verify_namespace_is_imported(const struct load_info *info,
1097 const struct kernel_symbol *sym,
1098 struct module *mod)
1099 {
1100 const char *namespace;
1101 char *imported_namespace;
1102
1103 namespace = kernel_symbol_namespace(sym);
1104 if (namespace && namespace[0]) {
1105 for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1106 if (strcmp(namespace, imported_namespace) == 0)
1107 return 0;
1108 }
1109 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1110 pr_warn(
1111 #else
1112 pr_err(
1113 #endif
1114 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1115 mod->name, kernel_symbol_name(sym), namespace);
1116 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1117 return -EINVAL;
1118 #endif
1119 }
1120 return 0;
1121 }
1122
inherit_taint(struct module * mod,struct module * owner,const char * name)1123 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1124 {
1125 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1126 return true;
1127
1128 if (mod->using_gplonly_symbols) {
1129 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1130 mod->name, name, owner->name);
1131 return false;
1132 }
1133
1134 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1135 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1136 mod->name, name, owner->name);
1137 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1138 }
1139 return true;
1140 }
1141
1142 /* Resolve a symbol for this module. I.e. if we find one, record usage. */
resolve_symbol(struct module * mod,const struct load_info * info,const char * name,char ownername[])1143 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1144 const struct load_info *info,
1145 const char *name,
1146 char ownername[])
1147 {
1148 struct find_symbol_arg fsa = {
1149 .name = name,
1150 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1151 .warn = true,
1152 };
1153 int err;
1154
1155 /*
1156 * The module_mutex should not be a heavily contended lock;
1157 * if we get the occasional sleep here, we'll go an extra iteration
1158 * in the wait_event_interruptible(), which is harmless.
1159 */
1160 sched_annotate_sleep();
1161 mutex_lock(&module_mutex);
1162 if (!find_symbol(&fsa))
1163 goto unlock;
1164
1165 if (fsa.license == GPL_ONLY)
1166 mod->using_gplonly_symbols = true;
1167
1168 if (!inherit_taint(mod, fsa.owner, name)) {
1169 fsa.sym = NULL;
1170 goto getname;
1171 }
1172
1173 if (!check_version(info, name, mod, fsa.crc)) {
1174 fsa.sym = ERR_PTR(-EINVAL);
1175 goto getname;
1176 }
1177
1178 err = verify_namespace_is_imported(info, fsa.sym, mod);
1179 if (err) {
1180 fsa.sym = ERR_PTR(err);
1181 goto getname;
1182 }
1183
1184 err = ref_module(mod, fsa.owner);
1185 if (err) {
1186 fsa.sym = ERR_PTR(err);
1187 goto getname;
1188 }
1189
1190 getname:
1191 /* We must make copy under the lock if we failed to get ref. */
1192 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1193 unlock:
1194 mutex_unlock(&module_mutex);
1195 return fsa.sym;
1196 }
1197
1198 static const struct kernel_symbol *
resolve_symbol_wait(struct module * mod,const struct load_info * info,const char * name)1199 resolve_symbol_wait(struct module *mod,
1200 const struct load_info *info,
1201 const char *name)
1202 {
1203 const struct kernel_symbol *ksym;
1204 char owner[MODULE_NAME_LEN];
1205
1206 if (wait_event_interruptible_timeout(module_wq,
1207 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1208 || PTR_ERR(ksym) != -EBUSY,
1209 30 * HZ) <= 0) {
1210 pr_warn("%s: gave up waiting for init of module %s.\n",
1211 mod->name, owner);
1212 }
1213 return ksym;
1214 }
1215
module_arch_cleanup(struct module * mod)1216 void __weak module_arch_cleanup(struct module *mod)
1217 {
1218 }
1219
module_arch_freeing_init(struct module * mod)1220 void __weak module_arch_freeing_init(struct module *mod)
1221 {
1222 }
1223
__module_writable_address(struct module * mod,void * loc)1224 void *__module_writable_address(struct module *mod, void *loc)
1225 {
1226 for_class_mod_mem_type(type, text) {
1227 struct module_memory *mem = &mod->mem[type];
1228
1229 if (loc >= mem->base && loc < mem->base + mem->size)
1230 return loc + (mem->rw_copy - mem->base);
1231 }
1232
1233 return loc;
1234 }
1235
module_memory_alloc(struct module * mod,enum mod_mem_type type)1236 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1237 {
1238 unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1239 enum execmem_type execmem_type;
1240 void *ptr;
1241
1242 mod->mem[type].size = size;
1243
1244 if (mod_mem_type_is_data(type))
1245 execmem_type = EXECMEM_MODULE_DATA;
1246 else
1247 execmem_type = EXECMEM_MODULE_TEXT;
1248
1249 ptr = execmem_alloc(execmem_type, size);
1250 if (!ptr)
1251 return -ENOMEM;
1252
1253 mod->mem[type].base = ptr;
1254
1255 if (execmem_is_rox(execmem_type)) {
1256 ptr = vzalloc(size);
1257
1258 if (!ptr) {
1259 execmem_free(mod->mem[type].base);
1260 return -ENOMEM;
1261 }
1262
1263 mod->mem[type].rw_copy = ptr;
1264 mod->mem[type].is_rox = true;
1265 } else {
1266 mod->mem[type].rw_copy = mod->mem[type].base;
1267 memset(mod->mem[type].base, 0, size);
1268 }
1269
1270 /*
1271 * The pointer to these blocks of memory are stored on the module
1272 * structure and we keep that around so long as the module is
1273 * around. We only free that memory when we unload the module.
1274 * Just mark them as not being a leak then. The .init* ELF
1275 * sections *do* get freed after boot so we *could* treat them
1276 * slightly differently with kmemleak_ignore() and only grey
1277 * them out as they work as typical memory allocations which
1278 * *do* eventually get freed, but let's just keep things simple
1279 * and avoid *any* false positives.
1280 */
1281 kmemleak_not_leak(ptr);
1282
1283 return 0;
1284 }
1285
module_memory_free(struct module * mod,enum mod_mem_type type)1286 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1287 {
1288 struct module_memory *mem = &mod->mem[type];
1289
1290 if (mem->is_rox)
1291 vfree(mem->rw_copy);
1292
1293 execmem_free(mem->base);
1294 }
1295
free_mod_mem(struct module * mod)1296 static void free_mod_mem(struct module *mod)
1297 {
1298 for_each_mod_mem_type(type) {
1299 struct module_memory *mod_mem = &mod->mem[type];
1300
1301 if (type == MOD_DATA)
1302 continue;
1303
1304 /* Free lock-classes; relies on the preceding sync_rcu(). */
1305 lockdep_free_key_range(mod_mem->base, mod_mem->size);
1306 if (mod_mem->size)
1307 module_memory_free(mod, type);
1308 }
1309
1310 /* MOD_DATA hosts mod, so free it at last */
1311 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1312 module_memory_free(mod, MOD_DATA);
1313 }
1314
1315 /* Free a module, remove from lists, etc. */
free_module(struct module * mod)1316 static void free_module(struct module *mod)
1317 {
1318 trace_module_free(mod);
1319
1320 codetag_unload_module(mod);
1321
1322 mod_sysfs_teardown(mod);
1323
1324 /*
1325 * We leave it in list to prevent duplicate loads, but make sure
1326 * that noone uses it while it's being deconstructed.
1327 */
1328 mutex_lock(&module_mutex);
1329 mod->state = MODULE_STATE_UNFORMED;
1330 mutex_unlock(&module_mutex);
1331
1332 /* Arch-specific cleanup. */
1333 module_arch_cleanup(mod);
1334
1335 /* Module unload stuff */
1336 module_unload_free(mod);
1337
1338 /* Free any allocated parameters. */
1339 destroy_params(mod->kp, mod->num_kp);
1340
1341 if (is_livepatch_module(mod))
1342 free_module_elf(mod);
1343
1344 /* Now we can delete it from the lists */
1345 mutex_lock(&module_mutex);
1346 /* Unlink carefully: kallsyms could be walking list. */
1347 list_del_rcu(&mod->list);
1348 mod_tree_remove(mod);
1349 /* Remove this module from bug list, this uses list_del_rcu */
1350 module_bug_cleanup(mod);
1351 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1352 synchronize_rcu();
1353 if (try_add_tainted_module(mod))
1354 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1355 mod->name);
1356 mutex_unlock(&module_mutex);
1357
1358 /* This may be empty, but that's OK */
1359 module_arch_freeing_init(mod);
1360 kfree(mod->args);
1361 percpu_modfree(mod);
1362
1363 free_mod_mem(mod);
1364 }
1365
__symbol_get(const char * symbol)1366 void *__symbol_get(const char *symbol)
1367 {
1368 struct find_symbol_arg fsa = {
1369 .name = symbol,
1370 .gplok = true,
1371 .warn = true,
1372 };
1373
1374 preempt_disable();
1375 if (!find_symbol(&fsa))
1376 goto fail;
1377 if (fsa.license != GPL_ONLY) {
1378 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1379 symbol);
1380 goto fail;
1381 }
1382 if (strong_try_module_get(fsa.owner))
1383 goto fail;
1384 preempt_enable();
1385 return (void *)kernel_symbol_value(fsa.sym);
1386 fail:
1387 preempt_enable();
1388 return NULL;
1389 }
1390 EXPORT_SYMBOL_GPL(__symbol_get);
1391
1392 /*
1393 * Ensure that an exported symbol [global namespace] does not already exist
1394 * in the kernel or in some other module's exported symbol table.
1395 *
1396 * You must hold the module_mutex.
1397 */
verify_exported_symbols(struct module * mod)1398 static int verify_exported_symbols(struct module *mod)
1399 {
1400 unsigned int i;
1401 const struct kernel_symbol *s;
1402 struct {
1403 const struct kernel_symbol *sym;
1404 unsigned int num;
1405 } arr[] = {
1406 { mod->syms, mod->num_syms },
1407 { mod->gpl_syms, mod->num_gpl_syms },
1408 };
1409
1410 for (i = 0; i < ARRAY_SIZE(arr); i++) {
1411 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1412 struct find_symbol_arg fsa = {
1413 .name = kernel_symbol_name(s),
1414 .gplok = true,
1415 };
1416 if (find_symbol(&fsa)) {
1417 pr_err("%s: exports duplicate symbol %s"
1418 " (owned by %s)\n",
1419 mod->name, kernel_symbol_name(s),
1420 module_name(fsa.owner));
1421 return -ENOEXEC;
1422 }
1423 }
1424 }
1425 return 0;
1426 }
1427
ignore_undef_symbol(Elf_Half emachine,const char * name)1428 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1429 {
1430 /*
1431 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1432 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1433 * i386 has a similar problem but may not deserve a fix.
1434 *
1435 * If we ever have to ignore many symbols, consider refactoring the code to
1436 * only warn if referenced by a relocation.
1437 */
1438 if (emachine == EM_386 || emachine == EM_X86_64)
1439 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1440 return false;
1441 }
1442
1443 /* Change all symbols so that st_value encodes the pointer directly. */
simplify_symbols(struct module * mod,const struct load_info * info)1444 static int simplify_symbols(struct module *mod, const struct load_info *info)
1445 {
1446 Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1447 Elf_Sym *sym = (void *)symsec->sh_addr;
1448 unsigned long secbase;
1449 unsigned int i;
1450 int ret = 0;
1451 const struct kernel_symbol *ksym;
1452
1453 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1454 const char *name = info->strtab + sym[i].st_name;
1455
1456 switch (sym[i].st_shndx) {
1457 case SHN_COMMON:
1458 /* Ignore common symbols */
1459 if (!strncmp(name, "__gnu_lto", 9))
1460 break;
1461
1462 /*
1463 * We compiled with -fno-common. These are not
1464 * supposed to happen.
1465 */
1466 pr_debug("Common symbol: %s\n", name);
1467 pr_warn("%s: please compile with -fno-common\n",
1468 mod->name);
1469 ret = -ENOEXEC;
1470 break;
1471
1472 case SHN_ABS:
1473 /* Don't need to do anything */
1474 pr_debug("Absolute symbol: 0x%08lx %s\n",
1475 (long)sym[i].st_value, name);
1476 break;
1477
1478 case SHN_LIVEPATCH:
1479 /* Livepatch symbols are resolved by livepatch */
1480 break;
1481
1482 case SHN_UNDEF:
1483 ksym = resolve_symbol_wait(mod, info, name);
1484 /* Ok if resolved. */
1485 if (ksym && !IS_ERR(ksym)) {
1486 sym[i].st_value = kernel_symbol_value(ksym);
1487 break;
1488 }
1489
1490 /* Ok if weak or ignored. */
1491 if (!ksym &&
1492 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1493 ignore_undef_symbol(info->hdr->e_machine, name)))
1494 break;
1495
1496 ret = PTR_ERR(ksym) ?: -ENOENT;
1497 pr_warn("%s: Unknown symbol %s (err %d)\n",
1498 mod->name, name, ret);
1499 break;
1500
1501 default:
1502 /* Divert to percpu allocation if a percpu var. */
1503 if (sym[i].st_shndx == info->index.pcpu)
1504 secbase = (unsigned long)mod_percpu(mod);
1505 else
1506 secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1507 sym[i].st_value += secbase;
1508 break;
1509 }
1510 }
1511
1512 return ret;
1513 }
1514
apply_relocations(struct module * mod,const struct load_info * info)1515 static int apply_relocations(struct module *mod, const struct load_info *info)
1516 {
1517 unsigned int i;
1518 int err = 0;
1519
1520 /* Now do relocations. */
1521 for (i = 1; i < info->hdr->e_shnum; i++) {
1522 unsigned int infosec = info->sechdrs[i].sh_info;
1523
1524 /* Not a valid relocation section? */
1525 if (infosec >= info->hdr->e_shnum)
1526 continue;
1527
1528 /* Don't bother with non-allocated sections */
1529 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1530 continue;
1531
1532 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1533 err = klp_apply_section_relocs(mod, info->sechdrs,
1534 info->secstrings,
1535 info->strtab,
1536 info->index.sym, i,
1537 NULL);
1538 else if (info->sechdrs[i].sh_type == SHT_REL)
1539 err = apply_relocate(info->sechdrs, info->strtab,
1540 info->index.sym, i, mod);
1541 else if (info->sechdrs[i].sh_type == SHT_RELA)
1542 err = apply_relocate_add(info->sechdrs, info->strtab,
1543 info->index.sym, i, mod);
1544 if (err < 0)
1545 break;
1546 }
1547 return err;
1548 }
1549
1550 /* Additional bytes needed by arch in front of individual sections */
arch_mod_section_prepend(struct module * mod,unsigned int section)1551 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1552 unsigned int section)
1553 {
1554 /* default implementation just returns zero */
1555 return 0;
1556 }
1557
module_get_offset_and_type(struct module * mod,enum mod_mem_type type,Elf_Shdr * sechdr,unsigned int section)1558 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1559 Elf_Shdr *sechdr, unsigned int section)
1560 {
1561 long offset;
1562 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1563
1564 mod->mem[type].size += arch_mod_section_prepend(mod, section);
1565 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1566 mod->mem[type].size = offset + sechdr->sh_size;
1567
1568 WARN_ON_ONCE(offset & mask);
1569 return offset | mask;
1570 }
1571
module_init_layout_section(const char * sname)1572 bool module_init_layout_section(const char *sname)
1573 {
1574 #ifndef CONFIG_MODULE_UNLOAD
1575 if (module_exit_section(sname))
1576 return true;
1577 #endif
1578 return module_init_section(sname);
1579 }
1580
__layout_sections(struct module * mod,struct load_info * info,bool is_init)1581 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1582 {
1583 unsigned int m, i;
1584
1585 static const unsigned long masks[][2] = {
1586 /*
1587 * NOTE: all executable code must be the first section
1588 * in this array; otherwise modify the text_size
1589 * finder in the two loops below
1590 */
1591 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1592 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1593 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1594 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1595 { ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1596 };
1597 static const int core_m_to_mem_type[] = {
1598 MOD_TEXT,
1599 MOD_RODATA,
1600 MOD_RO_AFTER_INIT,
1601 MOD_DATA,
1602 MOD_DATA,
1603 };
1604 static const int init_m_to_mem_type[] = {
1605 MOD_INIT_TEXT,
1606 MOD_INIT_RODATA,
1607 MOD_INVALID,
1608 MOD_INIT_DATA,
1609 MOD_INIT_DATA,
1610 };
1611
1612 for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1613 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1614
1615 for (i = 0; i < info->hdr->e_shnum; ++i) {
1616 Elf_Shdr *s = &info->sechdrs[i];
1617 const char *sname = info->secstrings + s->sh_name;
1618
1619 if ((s->sh_flags & masks[m][0]) != masks[m][0]
1620 || (s->sh_flags & masks[m][1])
1621 || s->sh_entsize != ~0UL
1622 || is_init != module_init_layout_section(sname))
1623 continue;
1624
1625 if (WARN_ON_ONCE(type == MOD_INVALID))
1626 continue;
1627
1628 /*
1629 * Do not allocate codetag memory as we load it into
1630 * preallocated contiguous memory.
1631 */
1632 if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1633 /*
1634 * s->sh_entsize won't be used but populate the
1635 * type field to avoid confusion.
1636 */
1637 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1638 << SH_ENTSIZE_TYPE_SHIFT;
1639 continue;
1640 }
1641
1642 s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1643 pr_debug("\t%s\n", sname);
1644 }
1645 }
1646 }
1647
1648 /*
1649 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1650 * might -- code, read-only data, read-write data, small data. Tally
1651 * sizes, and place the offsets into sh_entsize fields: high bit means it
1652 * belongs in init.
1653 */
layout_sections(struct module * mod,struct load_info * info)1654 static void layout_sections(struct module *mod, struct load_info *info)
1655 {
1656 unsigned int i;
1657
1658 for (i = 0; i < info->hdr->e_shnum; i++)
1659 info->sechdrs[i].sh_entsize = ~0UL;
1660
1661 pr_debug("Core section allocation order for %s:\n", mod->name);
1662 __layout_sections(mod, info, false);
1663
1664 pr_debug("Init section allocation order for %s:\n", mod->name);
1665 __layout_sections(mod, info, true);
1666 }
1667
module_license_taint_check(struct module * mod,const char * license)1668 static void module_license_taint_check(struct module *mod, const char *license)
1669 {
1670 if (!license)
1671 license = "unspecified";
1672
1673 if (!license_is_gpl_compatible(license)) {
1674 if (!test_taint(TAINT_PROPRIETARY_MODULE))
1675 pr_warn("%s: module license '%s' taints kernel.\n",
1676 mod->name, license);
1677 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1678 LOCKDEP_NOW_UNRELIABLE);
1679 }
1680 }
1681
setup_modinfo(struct module * mod,struct load_info * info)1682 static void setup_modinfo(struct module *mod, struct load_info *info)
1683 {
1684 const struct module_attribute *attr;
1685 int i;
1686
1687 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1688 if (attr->setup)
1689 attr->setup(mod, get_modinfo(info, attr->attr.name));
1690 }
1691 }
1692
free_modinfo(struct module * mod)1693 static void free_modinfo(struct module *mod)
1694 {
1695 const struct module_attribute *attr;
1696 int i;
1697
1698 for (i = 0; (attr = modinfo_attrs[i]); i++) {
1699 if (attr->free)
1700 attr->free(mod);
1701 }
1702 }
1703
module_init_section(const char * name)1704 bool __weak module_init_section(const char *name)
1705 {
1706 return strstarts(name, ".init");
1707 }
1708
module_exit_section(const char * name)1709 bool __weak module_exit_section(const char *name)
1710 {
1711 return strstarts(name, ".exit");
1712 }
1713
validate_section_offset(const struct load_info * info,Elf_Shdr * shdr)1714 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1715 {
1716 #if defined(CONFIG_64BIT)
1717 unsigned long long secend;
1718 #else
1719 unsigned long secend;
1720 #endif
1721
1722 /*
1723 * Check for both overflow and offset/size being
1724 * too large.
1725 */
1726 secend = shdr->sh_offset + shdr->sh_size;
1727 if (secend < shdr->sh_offset || secend > info->len)
1728 return -ENOEXEC;
1729
1730 return 0;
1731 }
1732
1733 /**
1734 * elf_validity_ehdr() - Checks an ELF header for module validity
1735 * @info: Load info containing the ELF header to check
1736 *
1737 * Checks whether an ELF header could belong to a valid module. Checks:
1738 *
1739 * * ELF header is within the data the user provided
1740 * * ELF magic is present
1741 * * It is relocatable (not final linked, not core file, etc.)
1742 * * The header's machine type matches what the architecture expects.
1743 * * Optional arch-specific hook for other properties
1744 * - module_elf_check_arch() is currently only used by PPC to check
1745 * ELF ABI version, but may be used by others in the future.
1746 *
1747 * Return: %0 if valid, %-ENOEXEC on failure.
1748 */
elf_validity_ehdr(const struct load_info * info)1749 static int elf_validity_ehdr(const struct load_info *info)
1750 {
1751 if (info->len < sizeof(*(info->hdr))) {
1752 pr_err("Invalid ELF header len %lu\n", info->len);
1753 return -ENOEXEC;
1754 }
1755 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1756 pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1757 return -ENOEXEC;
1758 }
1759 if (info->hdr->e_type != ET_REL) {
1760 pr_err("Invalid ELF header type: %u != %u\n",
1761 info->hdr->e_type, ET_REL);
1762 return -ENOEXEC;
1763 }
1764 if (!elf_check_arch(info->hdr)) {
1765 pr_err("Invalid architecture in ELF header: %u\n",
1766 info->hdr->e_machine);
1767 return -ENOEXEC;
1768 }
1769 if (!module_elf_check_arch(info->hdr)) {
1770 pr_err("Invalid module architecture in ELF header: %u\n",
1771 info->hdr->e_machine);
1772 return -ENOEXEC;
1773 }
1774 return 0;
1775 }
1776
1777 /**
1778 * elf_validity_cache_sechdrs() - Cache section headers if valid
1779 * @info: Load info to compute section headers from
1780 *
1781 * Checks:
1782 *
1783 * * ELF header is valid (see elf_validity_ehdr())
1784 * * Section headers are the size we expect
1785 * * Section array fits in the user provided data
1786 * * Section index 0 is NULL
1787 * * Section contents are inbounds
1788 *
1789 * Then updates @info with a &load_info->sechdrs pointer if valid.
1790 *
1791 * Return: %0 if valid, negative error code if validation failed.
1792 */
elf_validity_cache_sechdrs(struct load_info * info)1793 static int elf_validity_cache_sechdrs(struct load_info *info)
1794 {
1795 Elf_Shdr *sechdrs;
1796 Elf_Shdr *shdr;
1797 int i;
1798 int err;
1799
1800 err = elf_validity_ehdr(info);
1801 if (err < 0)
1802 return err;
1803
1804 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1805 pr_err("Invalid ELF section header size\n");
1806 return -ENOEXEC;
1807 }
1808
1809 /*
1810 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1811 * known and small. So e_shnum * sizeof(Elf_Shdr)
1812 * will not overflow unsigned long on any platform.
1813 */
1814 if (info->hdr->e_shoff >= info->len
1815 || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1816 info->len - info->hdr->e_shoff)) {
1817 pr_err("Invalid ELF section header overflow\n");
1818 return -ENOEXEC;
1819 }
1820
1821 sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1822
1823 /*
1824 * The code assumes that section 0 has a length of zero and
1825 * an addr of zero, so check for it.
1826 */
1827 if (sechdrs[0].sh_type != SHT_NULL
1828 || sechdrs[0].sh_size != 0
1829 || sechdrs[0].sh_addr != 0) {
1830 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1831 sechdrs[0].sh_type);
1832 return -ENOEXEC;
1833 }
1834
1835 /* Validate contents are inbounds */
1836 for (i = 1; i < info->hdr->e_shnum; i++) {
1837 shdr = &sechdrs[i];
1838 switch (shdr->sh_type) {
1839 case SHT_NULL:
1840 case SHT_NOBITS:
1841 /* No contents, offset/size don't mean anything */
1842 continue;
1843 default:
1844 err = validate_section_offset(info, shdr);
1845 if (err < 0) {
1846 pr_err("Invalid ELF section in module (section %u type %u)\n",
1847 i, shdr->sh_type);
1848 return err;
1849 }
1850 }
1851 }
1852
1853 info->sechdrs = sechdrs;
1854
1855 return 0;
1856 }
1857
1858 /**
1859 * elf_validity_cache_secstrings() - Caches section names if valid
1860 * @info: Load info to cache section names from. Must have valid sechdrs.
1861 *
1862 * Specifically checks:
1863 *
1864 * * Section name table index is inbounds of section headers
1865 * * Section name table is not empty
1866 * * Section name table is NUL terminated
1867 * * All section name offsets are inbounds of the section
1868 *
1869 * Then updates @info with a &load_info->secstrings pointer if valid.
1870 *
1871 * Return: %0 if valid, negative error code if validation failed.
1872 */
elf_validity_cache_secstrings(struct load_info * info)1873 static int elf_validity_cache_secstrings(struct load_info *info)
1874 {
1875 Elf_Shdr *strhdr, *shdr;
1876 char *secstrings;
1877 int i;
1878
1879 /*
1880 * Verify if the section name table index is valid.
1881 */
1882 if (info->hdr->e_shstrndx == SHN_UNDEF
1883 || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1884 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1885 info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1886 info->hdr->e_shnum);
1887 return -ENOEXEC;
1888 }
1889
1890 strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1891
1892 /*
1893 * The section name table must be NUL-terminated, as required
1894 * by the spec. This makes strcmp and pr_* calls that access
1895 * strings in the section safe.
1896 */
1897 secstrings = (void *)info->hdr + strhdr->sh_offset;
1898 if (strhdr->sh_size == 0) {
1899 pr_err("empty section name table\n");
1900 return -ENOEXEC;
1901 }
1902 if (secstrings[strhdr->sh_size - 1] != '\0') {
1903 pr_err("ELF Spec violation: section name table isn't null terminated\n");
1904 return -ENOEXEC;
1905 }
1906
1907 for (i = 0; i < info->hdr->e_shnum; i++) {
1908 shdr = &info->sechdrs[i];
1909 /* SHT_NULL means sh_name has an undefined value */
1910 if (shdr->sh_type == SHT_NULL)
1911 continue;
1912 if (shdr->sh_name >= strhdr->sh_size) {
1913 pr_err("Invalid ELF section name in module (section %u type %u)\n",
1914 i, shdr->sh_type);
1915 return -ENOEXEC;
1916 }
1917 }
1918
1919 info->secstrings = secstrings;
1920 return 0;
1921 }
1922
1923 /**
1924 * elf_validity_cache_index_info() - Validate and cache modinfo section
1925 * @info: Load info to populate the modinfo index on.
1926 * Must have &load_info->sechdrs and &load_info->secstrings populated
1927 *
1928 * Checks that if there is a .modinfo section, it is unique.
1929 * Then, it caches its index in &load_info->index.info.
1930 * Finally, it tries to populate the name to improve error messages.
1931 *
1932 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
1933 */
elf_validity_cache_index_info(struct load_info * info)1934 static int elf_validity_cache_index_info(struct load_info *info)
1935 {
1936 int info_idx;
1937
1938 info_idx = find_any_unique_sec(info, ".modinfo");
1939
1940 if (info_idx == 0)
1941 /* Early return, no .modinfo */
1942 return 0;
1943
1944 if (info_idx < 0) {
1945 pr_err("Only one .modinfo section must exist.\n");
1946 return -ENOEXEC;
1947 }
1948
1949 info->index.info = info_idx;
1950 /* Try to find a name early so we can log errors with a module name */
1951 info->name = get_modinfo(info, "name");
1952
1953 return 0;
1954 }
1955
1956 /**
1957 * elf_validity_cache_index_mod() - Validates and caches this_module section
1958 * @info: Load info to cache this_module on.
1959 * Must have &load_info->sechdrs and &load_info->secstrings populated
1960 *
1961 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
1962 * uses to refer to __this_module and let's use rely on THIS_MODULE to point
1963 * to &__this_module properly. The kernel's modpost declares it on each
1964 * modules's *.mod.c file. If the struct module of the kernel changes a full
1965 * kernel rebuild is required.
1966 *
1967 * We have a few expectations for this special section, this function
1968 * validates all this for us:
1969 *
1970 * * The section has contents
1971 * * The section is unique
1972 * * We expect the kernel to always have to allocate it: SHF_ALLOC
1973 * * The section size must match the kernel's run time's struct module
1974 * size
1975 *
1976 * If all checks pass, the index will be cached in &load_info->index.mod
1977 *
1978 * Return: %0 on validation success, %-ENOEXEC on failure
1979 */
elf_validity_cache_index_mod(struct load_info * info)1980 static int elf_validity_cache_index_mod(struct load_info *info)
1981 {
1982 Elf_Shdr *shdr;
1983 int mod_idx;
1984
1985 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
1986 if (mod_idx <= 0) {
1987 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
1988 info->name ?: "(missing .modinfo section or name field)");
1989 return -ENOEXEC;
1990 }
1991
1992 shdr = &info->sechdrs[mod_idx];
1993
1994 if (shdr->sh_type == SHT_NOBITS) {
1995 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
1996 info->name ?: "(missing .modinfo section or name field)");
1997 return -ENOEXEC;
1998 }
1999
2000 if (!(shdr->sh_flags & SHF_ALLOC)) {
2001 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
2002 info->name ?: "(missing .modinfo section or name field)");
2003 return -ENOEXEC;
2004 }
2005
2006 if (shdr->sh_size != sizeof(struct module)) {
2007 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2008 info->name ?: "(missing .modinfo section or name field)");
2009 return -ENOEXEC;
2010 }
2011
2012 info->index.mod = mod_idx;
2013
2014 return 0;
2015 }
2016
2017 /**
2018 * elf_validity_cache_index_sym() - Validate and cache symtab index
2019 * @info: Load info to cache symtab index in.
2020 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2021 *
2022 * Checks that there is exactly one symbol table, then caches its index in
2023 * &load_info->index.sym.
2024 *
2025 * Return: %0 if valid, %-ENOEXEC on failure.
2026 */
elf_validity_cache_index_sym(struct load_info * info)2027 static int elf_validity_cache_index_sym(struct load_info *info)
2028 {
2029 unsigned int sym_idx;
2030 unsigned int num_sym_secs = 0;
2031 int i;
2032
2033 for (i = 1; i < info->hdr->e_shnum; i++) {
2034 if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2035 num_sym_secs++;
2036 sym_idx = i;
2037 }
2038 }
2039
2040 if (num_sym_secs != 1) {
2041 pr_warn("%s: module has no symbols (stripped?)\n",
2042 info->name ?: "(missing .modinfo section or name field)");
2043 return -ENOEXEC;
2044 }
2045
2046 info->index.sym = sym_idx;
2047
2048 return 0;
2049 }
2050
2051 /**
2052 * elf_validity_cache_index_str() - Validate and cache strtab index
2053 * @info: Load info to cache strtab index in.
2054 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2055 * Must have &load_info->index.sym populated.
2056 *
2057 * Looks at the symbol table's associated string table, makes sure it is
2058 * in-bounds, and caches it.
2059 *
2060 * Return: %0 if valid, %-ENOEXEC on failure.
2061 */
elf_validity_cache_index_str(struct load_info * info)2062 static int elf_validity_cache_index_str(struct load_info *info)
2063 {
2064 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2065
2066 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2067 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2068 str_idx, str_idx, info->hdr->e_shnum);
2069 return -ENOEXEC;
2070 }
2071
2072 info->index.str = str_idx;
2073 return 0;
2074 }
2075
2076 /**
2077 * elf_validity_cache_index_versions() - Validate and cache version indices
2078 * @info: Load info to cache version indices in.
2079 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2080 * @flags: Load flags, relevant to suppress version loading, see
2081 * uapi/linux/module.h
2082 *
2083 * If we're ignoring modversions based on @flags, zero all version indices
2084 * and return validity. Othewrise check:
2085 *
2086 * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2087 * * There is a name present for every crc
2088 *
2089 * Then populate:
2090 *
2091 * * &load_info->index.vers
2092 * * &load_info->index.vers_ext_crc
2093 * * &load_info->index.vers_ext_names
2094 *
2095 * if present.
2096 *
2097 * Return: %0 if valid, %-ENOEXEC on failure.
2098 */
elf_validity_cache_index_versions(struct load_info * info,int flags)2099 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2100 {
2101 unsigned int vers_ext_crc;
2102 unsigned int vers_ext_name;
2103 size_t crc_count;
2104 size_t remaining_len;
2105 size_t name_size;
2106 char *name;
2107
2108 /* If modversions were suppressed, pretend we didn't find any */
2109 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2110 info->index.vers = 0;
2111 info->index.vers_ext_crc = 0;
2112 info->index.vers_ext_name = 0;
2113 return 0;
2114 }
2115
2116 vers_ext_crc = find_sec(info, "__version_ext_crcs");
2117 vers_ext_name = find_sec(info, "__version_ext_names");
2118
2119 /* If we have one field, we must have the other */
2120 if (!!vers_ext_crc != !!vers_ext_name) {
2121 pr_err("extended version crc+name presence does not match");
2122 return -ENOEXEC;
2123 }
2124
2125 /*
2126 * If we have extended version information, we should have the same
2127 * number of entries in every section.
2128 */
2129 if (vers_ext_crc) {
2130 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2131 name = (void *)info->hdr +
2132 info->sechdrs[vers_ext_name].sh_offset;
2133 remaining_len = info->sechdrs[vers_ext_name].sh_size;
2134
2135 while (crc_count--) {
2136 name_size = strnlen(name, remaining_len) + 1;
2137 if (name_size > remaining_len) {
2138 pr_err("more extended version crcs than names");
2139 return -ENOEXEC;
2140 }
2141 remaining_len -= name_size;
2142 name += name_size;
2143 }
2144 }
2145
2146 info->index.vers = find_sec(info, "__versions");
2147 info->index.vers_ext_crc = vers_ext_crc;
2148 info->index.vers_ext_name = vers_ext_name;
2149 return 0;
2150 }
2151
2152 /**
2153 * elf_validity_cache_index() - Resolve, validate, cache section indices
2154 * @info: Load info to read from and update.
2155 * &load_info->sechdrs and &load_info->secstrings must be populated.
2156 * @flags: Load flags, relevant to suppress version loading, see
2157 * uapi/linux/module.h
2158 *
2159 * Populates &load_info->index, validating as it goes.
2160 * See child functions for per-field validation:
2161 *
2162 * * elf_validity_cache_index_info()
2163 * * elf_validity_cache_index_mod()
2164 * * elf_validity_cache_index_sym()
2165 * * elf_validity_cache_index_str()
2166 * * elf_validity_cache_index_versions()
2167 *
2168 * If CONFIG_SMP is enabled, load the percpu section by name with no
2169 * validation.
2170 *
2171 * Return: 0 on success, negative error code if an index failed validation.
2172 */
elf_validity_cache_index(struct load_info * info,int flags)2173 static int elf_validity_cache_index(struct load_info *info, int flags)
2174 {
2175 int err;
2176
2177 err = elf_validity_cache_index_info(info);
2178 if (err < 0)
2179 return err;
2180 err = elf_validity_cache_index_mod(info);
2181 if (err < 0)
2182 return err;
2183 err = elf_validity_cache_index_sym(info);
2184 if (err < 0)
2185 return err;
2186 err = elf_validity_cache_index_str(info);
2187 if (err < 0)
2188 return err;
2189 err = elf_validity_cache_index_versions(info, flags);
2190 if (err < 0)
2191 return err;
2192
2193 info->index.pcpu = find_pcpusec(info);
2194
2195 return 0;
2196 }
2197
2198 /**
2199 * elf_validity_cache_strtab() - Validate and cache symbol string table
2200 * @info: Load info to read from and update.
2201 * Must have &load_info->sechdrs and &load_info->secstrings populated.
2202 * Must have &load_info->index populated.
2203 *
2204 * Checks:
2205 *
2206 * * The string table is not empty.
2207 * * The string table starts and ends with NUL (required by ELF spec).
2208 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2209 * string table.
2210 *
2211 * And caches the pointer as &load_info->strtab in @info.
2212 *
2213 * Return: 0 on success, negative error code if a check failed.
2214 */
elf_validity_cache_strtab(struct load_info * info)2215 static int elf_validity_cache_strtab(struct load_info *info)
2216 {
2217 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2218 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2219 char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2220 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2221 int i;
2222
2223 if (str_shdr->sh_size == 0) {
2224 pr_err("empty symbol string table\n");
2225 return -ENOEXEC;
2226 }
2227 if (strtab[0] != '\0') {
2228 pr_err("symbol string table missing leading NUL\n");
2229 return -ENOEXEC;
2230 }
2231 if (strtab[str_shdr->sh_size - 1] != '\0') {
2232 pr_err("symbol string table isn't NUL terminated\n");
2233 return -ENOEXEC;
2234 }
2235
2236 /*
2237 * Now that we know strtab is correctly structured, check symbol
2238 * starts are inbounds before they're used later.
2239 */
2240 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2241 if (syms[i].st_name >= str_shdr->sh_size) {
2242 pr_err("symbol name out of bounds in string table");
2243 return -ENOEXEC;
2244 }
2245 }
2246
2247 info->strtab = strtab;
2248 return 0;
2249 }
2250
2251 /*
2252 * Check userspace passed ELF module against our expectations, and cache
2253 * useful variables for further processing as we go.
2254 *
2255 * This does basic validity checks against section offsets and sizes, the
2256 * section name string table, and the indices used for it (sh_name).
2257 *
2258 * As a last step, since we're already checking the ELF sections we cache
2259 * useful variables which will be used later for our convenience:
2260 *
2261 * o pointers to section headers
2262 * o cache the modinfo symbol section
2263 * o cache the string symbol section
2264 * o cache the module section
2265 *
2266 * As a last step we set info->mod to the temporary copy of the module in
2267 * info->hdr. The final one will be allocated in move_module(). Any
2268 * modifications we make to our copy of the module will be carried over
2269 * to the final minted module.
2270 */
elf_validity_cache_copy(struct load_info * info,int flags)2271 static int elf_validity_cache_copy(struct load_info *info, int flags)
2272 {
2273 int err;
2274
2275 err = elf_validity_cache_sechdrs(info);
2276 if (err < 0)
2277 return err;
2278 err = elf_validity_cache_secstrings(info);
2279 if (err < 0)
2280 return err;
2281 err = elf_validity_cache_index(info, flags);
2282 if (err < 0)
2283 return err;
2284 err = elf_validity_cache_strtab(info);
2285 if (err < 0)
2286 return err;
2287
2288 /* This is temporary: point mod into copy of data. */
2289 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2290
2291 /*
2292 * If we didn't load the .modinfo 'name' field earlier, fall back to
2293 * on-disk struct mod 'name' field.
2294 */
2295 if (!info->name)
2296 info->name = info->mod->name;
2297
2298 return 0;
2299 }
2300
2301 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2302
copy_chunked_from_user(void * dst,const void __user * usrc,unsigned long len)2303 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2304 {
2305 do {
2306 unsigned long n = min(len, COPY_CHUNK_SIZE);
2307
2308 if (copy_from_user(dst, usrc, n) != 0)
2309 return -EFAULT;
2310 cond_resched();
2311 dst += n;
2312 usrc += n;
2313 len -= n;
2314 } while (len);
2315 return 0;
2316 }
2317
check_modinfo_livepatch(struct module * mod,struct load_info * info)2318 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2319 {
2320 if (!get_modinfo(info, "livepatch"))
2321 /* Nothing more to do */
2322 return 0;
2323
2324 if (set_livepatch_module(mod))
2325 return 0;
2326
2327 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2328 mod->name);
2329 return -ENOEXEC;
2330 }
2331
check_modinfo_retpoline(struct module * mod,struct load_info * info)2332 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2333 {
2334 if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2335 return;
2336
2337 pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2338 mod->name);
2339 }
2340
2341 /* Sets info->hdr and info->len. */
copy_module_from_user(const void __user * umod,unsigned long len,struct load_info * info)2342 static int copy_module_from_user(const void __user *umod, unsigned long len,
2343 struct load_info *info)
2344 {
2345 int err;
2346
2347 info->len = len;
2348 if (info->len < sizeof(*(info->hdr)))
2349 return -ENOEXEC;
2350
2351 err = security_kernel_load_data(LOADING_MODULE, true);
2352 if (err)
2353 return err;
2354
2355 /* Suck in entire file: we'll want most of it. */
2356 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2357 if (!info->hdr)
2358 return -ENOMEM;
2359
2360 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2361 err = -EFAULT;
2362 goto out;
2363 }
2364
2365 err = security_kernel_post_load_data((char *)info->hdr, info->len,
2366 LOADING_MODULE, "init_module");
2367 out:
2368 if (err)
2369 vfree(info->hdr);
2370
2371 return err;
2372 }
2373
free_copy(struct load_info * info,int flags)2374 static void free_copy(struct load_info *info, int flags)
2375 {
2376 if (flags & MODULE_INIT_COMPRESSED_FILE)
2377 module_decompress_cleanup(info);
2378 else
2379 vfree(info->hdr);
2380 }
2381
rewrite_section_headers(struct load_info * info,int flags)2382 static int rewrite_section_headers(struct load_info *info, int flags)
2383 {
2384 unsigned int i;
2385
2386 /* This should always be true, but let's be sure. */
2387 info->sechdrs[0].sh_addr = 0;
2388
2389 for (i = 1; i < info->hdr->e_shnum; i++) {
2390 Elf_Shdr *shdr = &info->sechdrs[i];
2391
2392 /*
2393 * Mark all sections sh_addr with their address in the
2394 * temporary image.
2395 */
2396 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2397
2398 }
2399
2400 /* Track but don't keep modinfo and version sections. */
2401 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2402 info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2403 ~(unsigned long)SHF_ALLOC;
2404 info->sechdrs[info->index.vers_ext_name].sh_flags &=
2405 ~(unsigned long)SHF_ALLOC;
2406 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2407
2408 return 0;
2409 }
2410
2411 static const char *const module_license_offenders[] = {
2412 /* driverloader was caught wrongly pretending to be under GPL */
2413 "driverloader",
2414
2415 /* lve claims to be GPL but upstream won't provide source */
2416 "lve",
2417 };
2418
2419 /*
2420 * These calls taint the kernel depending certain module circumstances */
module_augment_kernel_taints(struct module * mod,struct load_info * info)2421 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2422 {
2423 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2424 size_t i;
2425
2426 if (!get_modinfo(info, "intree")) {
2427 if (!test_taint(TAINT_OOT_MODULE))
2428 pr_warn("%s: loading out-of-tree module taints kernel.\n",
2429 mod->name);
2430 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2431 }
2432
2433 check_modinfo_retpoline(mod, info);
2434
2435 if (get_modinfo(info, "staging")) {
2436 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2437 pr_warn("%s: module is from the staging directory, the quality "
2438 "is unknown, you have been warned.\n", mod->name);
2439 }
2440
2441 if (is_livepatch_module(mod)) {
2442 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2443 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2444 mod->name);
2445 }
2446
2447 module_license_taint_check(mod, get_modinfo(info, "license"));
2448
2449 if (get_modinfo(info, "test")) {
2450 if (!test_taint(TAINT_TEST))
2451 pr_warn("%s: loading test module taints kernel.\n",
2452 mod->name);
2453 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2454 }
2455 #ifdef CONFIG_MODULE_SIG
2456 mod->sig_ok = info->sig_ok;
2457 if (!mod->sig_ok) {
2458 pr_notice_once("%s: module verification failed: signature "
2459 "and/or required key missing - tainting "
2460 "kernel\n", mod->name);
2461 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2462 }
2463 #endif
2464
2465 /*
2466 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2467 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2468 * using GPL-only symbols it needs.
2469 */
2470 if (strcmp(mod->name, "ndiswrapper") == 0)
2471 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2472
2473 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2474 if (strcmp(mod->name, module_license_offenders[i]) == 0)
2475 add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2476 LOCKDEP_NOW_UNRELIABLE);
2477 }
2478
2479 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2480 pr_warn("%s: module license taints kernel.\n", mod->name);
2481
2482 }
2483
check_modinfo(struct module * mod,struct load_info * info,int flags)2484 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2485 {
2486 const char *modmagic = get_modinfo(info, "vermagic");
2487 int err;
2488
2489 if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2490 modmagic = NULL;
2491
2492 /* This is allowed: modprobe --force will invalidate it. */
2493 if (!modmagic) {
2494 err = try_to_force_load(mod, "bad vermagic");
2495 if (err)
2496 return err;
2497 } else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2498 pr_err("%s: version magic '%s' should be '%s'\n",
2499 info->name, modmagic, vermagic);
2500 return -ENOEXEC;
2501 }
2502
2503 err = check_modinfo_livepatch(mod, info);
2504 if (err)
2505 return err;
2506
2507 return 0;
2508 }
2509
find_module_sections(struct module * mod,struct load_info * info)2510 static int find_module_sections(struct module *mod, struct load_info *info)
2511 {
2512 mod->kp = section_objs(info, "__param",
2513 sizeof(*mod->kp), &mod->num_kp);
2514 mod->syms = section_objs(info, "__ksymtab",
2515 sizeof(*mod->syms), &mod->num_syms);
2516 mod->crcs = section_addr(info, "__kcrctab");
2517 mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2518 sizeof(*mod->gpl_syms),
2519 &mod->num_gpl_syms);
2520 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2521
2522 #ifdef CONFIG_CONSTRUCTORS
2523 mod->ctors = section_objs(info, ".ctors",
2524 sizeof(*mod->ctors), &mod->num_ctors);
2525 if (!mod->ctors)
2526 mod->ctors = section_objs(info, ".init_array",
2527 sizeof(*mod->ctors), &mod->num_ctors);
2528 else if (find_sec(info, ".init_array")) {
2529 /*
2530 * This shouldn't happen with same compiler and binutils
2531 * building all parts of the module.
2532 */
2533 pr_warn("%s: has both .ctors and .init_array.\n",
2534 mod->name);
2535 return -EINVAL;
2536 }
2537 #endif
2538
2539 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2540 &mod->noinstr_text_size);
2541
2542 #ifdef CONFIG_TRACEPOINTS
2543 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2544 sizeof(*mod->tracepoints_ptrs),
2545 &mod->num_tracepoints);
2546 #endif
2547 #ifdef CONFIG_TREE_SRCU
2548 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2549 sizeof(*mod->srcu_struct_ptrs),
2550 &mod->num_srcu_structs);
2551 #endif
2552 #ifdef CONFIG_BPF_EVENTS
2553 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2554 sizeof(*mod->bpf_raw_events),
2555 &mod->num_bpf_raw_events);
2556 #endif
2557 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2558 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2559 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2560 &mod->btf_base_data_size);
2561 #endif
2562 #ifdef CONFIG_JUMP_LABEL
2563 mod->jump_entries = section_objs(info, "__jump_table",
2564 sizeof(*mod->jump_entries),
2565 &mod->num_jump_entries);
2566 #endif
2567 #ifdef CONFIG_EVENT_TRACING
2568 mod->trace_events = section_objs(info, "_ftrace_events",
2569 sizeof(*mod->trace_events),
2570 &mod->num_trace_events);
2571 mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2572 sizeof(*mod->trace_evals),
2573 &mod->num_trace_evals);
2574 #endif
2575 #ifdef CONFIG_TRACING
2576 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2577 sizeof(*mod->trace_bprintk_fmt_start),
2578 &mod->num_trace_bprintk_fmt);
2579 #endif
2580 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2581 /* sechdrs[0].sh_size is always zero */
2582 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2583 sizeof(*mod->ftrace_callsites),
2584 &mod->num_ftrace_callsites);
2585 #endif
2586 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2587 mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2588 sizeof(*mod->ei_funcs),
2589 &mod->num_ei_funcs);
2590 #endif
2591 #ifdef CONFIG_KPROBES
2592 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2593 &mod->kprobes_text_size);
2594 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2595 sizeof(unsigned long),
2596 &mod->num_kprobe_blacklist);
2597 #endif
2598 #ifdef CONFIG_PRINTK_INDEX
2599 mod->printk_index_start = section_objs(info, ".printk_index",
2600 sizeof(*mod->printk_index_start),
2601 &mod->printk_index_size);
2602 #endif
2603 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2604 mod->static_call_sites = section_objs(info, ".static_call_sites",
2605 sizeof(*mod->static_call_sites),
2606 &mod->num_static_call_sites);
2607 #endif
2608 #if IS_ENABLED(CONFIG_KUNIT)
2609 mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2610 sizeof(*mod->kunit_suites),
2611 &mod->num_kunit_suites);
2612 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2613 sizeof(*mod->kunit_init_suites),
2614 &mod->num_kunit_init_suites);
2615 #endif
2616
2617 mod->extable = section_objs(info, "__ex_table",
2618 sizeof(*mod->extable), &mod->num_exentries);
2619
2620 if (section_addr(info, "__obsparm"))
2621 pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2622
2623 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2624 mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2625 sizeof(*mod->dyndbg_info.descs),
2626 &mod->dyndbg_info.num_descs);
2627 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2628 sizeof(*mod->dyndbg_info.classes),
2629 &mod->dyndbg_info.num_classes);
2630 #endif
2631
2632 return 0;
2633 }
2634
move_module(struct module * mod,struct load_info * info)2635 static int move_module(struct module *mod, struct load_info *info)
2636 {
2637 int i;
2638 enum mod_mem_type t = 0;
2639 int ret = -ENOMEM;
2640 bool codetag_section_found = false;
2641
2642 for_each_mod_mem_type(type) {
2643 if (!mod->mem[type].size) {
2644 mod->mem[type].base = NULL;
2645 mod->mem[type].rw_copy = NULL;
2646 continue;
2647 }
2648
2649 ret = module_memory_alloc(mod, type);
2650 if (ret) {
2651 t = type;
2652 goto out_err;
2653 }
2654 }
2655
2656 /* Transfer each section which specifies SHF_ALLOC */
2657 pr_debug("Final section addresses for %s:\n", mod->name);
2658 for (i = 0; i < info->hdr->e_shnum; i++) {
2659 void *dest;
2660 Elf_Shdr *shdr = &info->sechdrs[i];
2661 const char *sname;
2662 unsigned long addr;
2663
2664 if (!(shdr->sh_flags & SHF_ALLOC))
2665 continue;
2666
2667 sname = info->secstrings + shdr->sh_name;
2668 /*
2669 * Load codetag sections separately as they might still be used
2670 * after module unload.
2671 */
2672 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2673 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2674 arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2675 if (WARN_ON(!dest)) {
2676 ret = -EINVAL;
2677 goto out_err;
2678 }
2679 if (IS_ERR(dest)) {
2680 ret = PTR_ERR(dest);
2681 goto out_err;
2682 }
2683 addr = (unsigned long)dest;
2684 codetag_section_found = true;
2685 } else {
2686 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2687 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2688
2689 addr = (unsigned long)mod->mem[type].base + offset;
2690 dest = mod->mem[type].rw_copy + offset;
2691 }
2692
2693 if (shdr->sh_type != SHT_NOBITS) {
2694 /*
2695 * Our ELF checker already validated this, but let's
2696 * be pedantic and make the goal clearer. We actually
2697 * end up copying over all modifications made to the
2698 * userspace copy of the entire struct module.
2699 */
2700 if (i == info->index.mod &&
2701 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2702 ret = -ENOEXEC;
2703 goto out_err;
2704 }
2705 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2706 }
2707 /*
2708 * Update the userspace copy's ELF section address to point to
2709 * our newly allocated memory as a pure convenience so that
2710 * users of info can keep taking advantage and using the newly
2711 * minted official memory area.
2712 */
2713 shdr->sh_addr = addr;
2714 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2715 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2716 }
2717
2718 return 0;
2719 out_err:
2720 for (t--; t >= 0; t--)
2721 module_memory_free(mod, t);
2722 if (codetag_section_found)
2723 codetag_free_module_sections(mod);
2724
2725 return ret;
2726 }
2727
check_export_symbol_versions(struct module * mod)2728 static int check_export_symbol_versions(struct module *mod)
2729 {
2730 #ifdef CONFIG_MODVERSIONS
2731 if ((mod->num_syms && !mod->crcs) ||
2732 (mod->num_gpl_syms && !mod->gpl_crcs)) {
2733 return try_to_force_load(mod,
2734 "no versions for exported symbols");
2735 }
2736 #endif
2737 return 0;
2738 }
2739
flush_module_icache(const struct module * mod)2740 static void flush_module_icache(const struct module *mod)
2741 {
2742 /*
2743 * Flush the instruction cache, since we've played with text.
2744 * Do it before processing of module parameters, so the module
2745 * can provide parameter accessor functions of its own.
2746 */
2747 for_each_mod_mem_type(type) {
2748 const struct module_memory *mod_mem = &mod->mem[type];
2749
2750 if (mod_mem->size) {
2751 flush_icache_range((unsigned long)mod_mem->base,
2752 (unsigned long)mod_mem->base + mod_mem->size);
2753 }
2754 }
2755 }
2756
module_elf_check_arch(Elf_Ehdr * hdr)2757 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2758 {
2759 return true;
2760 }
2761
module_frob_arch_sections(Elf_Ehdr * hdr,Elf_Shdr * sechdrs,char * secstrings,struct module * mod)2762 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2763 Elf_Shdr *sechdrs,
2764 char *secstrings,
2765 struct module *mod)
2766 {
2767 return 0;
2768 }
2769
2770 /* module_blacklist is a comma-separated list of module names */
2771 static char *module_blacklist;
blacklisted(const char * module_name)2772 static bool blacklisted(const char *module_name)
2773 {
2774 const char *p;
2775 size_t len;
2776
2777 if (!module_blacklist)
2778 return false;
2779
2780 for (p = module_blacklist; *p; p += len) {
2781 len = strcspn(p, ",");
2782 if (strlen(module_name) == len && !memcmp(module_name, p, len))
2783 return true;
2784 if (p[len] == ',')
2785 len++;
2786 }
2787 return false;
2788 }
2789 core_param(module_blacklist, module_blacklist, charp, 0400);
2790
layout_and_allocate(struct load_info * info,int flags)2791 static struct module *layout_and_allocate(struct load_info *info, int flags)
2792 {
2793 struct module *mod;
2794 unsigned int ndx;
2795 int err;
2796
2797 /* Allow arches to frob section contents and sizes. */
2798 err = module_frob_arch_sections(info->hdr, info->sechdrs,
2799 info->secstrings, info->mod);
2800 if (err < 0)
2801 return ERR_PTR(err);
2802
2803 err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2804 info->secstrings, info->mod);
2805 if (err < 0)
2806 return ERR_PTR(err);
2807
2808 /* We will do a special allocation for per-cpu sections later. */
2809 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2810
2811 /*
2812 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2813 * layout_sections() can put it in the right place.
2814 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2815 */
2816 ndx = find_sec(info, ".data..ro_after_init");
2817 if (ndx)
2818 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2819 /*
2820 * Mark the __jump_table section as ro_after_init as well: these data
2821 * structures are never modified, with the exception of entries that
2822 * refer to code in the __init section, which are annotated as such
2823 * at module load time.
2824 */
2825 ndx = find_sec(info, "__jump_table");
2826 if (ndx)
2827 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2828
2829 /*
2830 * Determine total sizes, and put offsets in sh_entsize. For now
2831 * this is done generically; there doesn't appear to be any
2832 * special cases for the architectures.
2833 */
2834 layout_sections(info->mod, info);
2835 layout_symtab(info->mod, info);
2836
2837 /* Allocate and move to the final place */
2838 err = move_module(info->mod, info);
2839 if (err)
2840 return ERR_PTR(err);
2841
2842 /* Module has been copied to its final place now: return it. */
2843 mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2844 kmemleak_load_module(mod, info);
2845 codetag_module_replaced(info->mod, mod);
2846
2847 return mod;
2848 }
2849
2850 /* mod is no longer valid after this! */
module_deallocate(struct module * mod,struct load_info * info)2851 static void module_deallocate(struct module *mod, struct load_info *info)
2852 {
2853 percpu_modfree(mod);
2854 module_arch_freeing_init(mod);
2855
2856 free_mod_mem(mod);
2857 }
2858
module_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2859 int __weak module_finalize(const Elf_Ehdr *hdr,
2860 const Elf_Shdr *sechdrs,
2861 struct module *me)
2862 {
2863 return 0;
2864 }
2865
module_post_finalize(const Elf_Ehdr * hdr,const Elf_Shdr * sechdrs,struct module * me)2866 int __weak module_post_finalize(const Elf_Ehdr *hdr,
2867 const Elf_Shdr *sechdrs,
2868 struct module *me)
2869 {
2870 return 0;
2871 }
2872
post_relocation(struct module * mod,const struct load_info * info)2873 static int post_relocation(struct module *mod, const struct load_info *info)
2874 {
2875 int ret;
2876
2877 /* Sort exception table now relocations are done. */
2878 sort_extable(mod->extable, mod->extable + mod->num_exentries);
2879
2880 /* Copy relocated percpu area over. */
2881 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2882 info->sechdrs[info->index.pcpu].sh_size);
2883
2884 /* Setup kallsyms-specific fields. */
2885 add_kallsyms(mod, info);
2886
2887 /* Arch-specific module finalizing. */
2888 ret = module_finalize(info->hdr, info->sechdrs, mod);
2889 if (ret)
2890 return ret;
2891
2892 for_each_mod_mem_type(type) {
2893 struct module_memory *mem = &mod->mem[type];
2894
2895 if (mem->is_rox) {
2896 if (!execmem_update_copy(mem->base, mem->rw_copy,
2897 mem->size))
2898 return -ENOMEM;
2899
2900 vfree(mem->rw_copy);
2901 mem->rw_copy = NULL;
2902 }
2903 }
2904
2905 return module_post_finalize(info->hdr, info->sechdrs, mod);
2906 }
2907
2908 /* Call module constructors. */
do_mod_ctors(struct module * mod)2909 static void do_mod_ctors(struct module *mod)
2910 {
2911 #ifdef CONFIG_CONSTRUCTORS
2912 unsigned long i;
2913
2914 for (i = 0; i < mod->num_ctors; i++)
2915 mod->ctors[i]();
2916 #endif
2917 }
2918
2919 /* For freeing module_init on success, in case kallsyms traversing */
2920 struct mod_initfree {
2921 struct llist_node node;
2922 void *init_text;
2923 void *init_data;
2924 void *init_rodata;
2925 };
2926
do_free_init(struct work_struct * w)2927 static void do_free_init(struct work_struct *w)
2928 {
2929 struct llist_node *pos, *n, *list;
2930 struct mod_initfree *initfree;
2931
2932 list = llist_del_all(&init_free_list);
2933
2934 synchronize_rcu();
2935
2936 llist_for_each_safe(pos, n, list) {
2937 initfree = container_of(pos, struct mod_initfree, node);
2938 execmem_free(initfree->init_text);
2939 execmem_free(initfree->init_data);
2940 execmem_free(initfree->init_rodata);
2941 kfree(initfree);
2942 }
2943 }
2944
flush_module_init_free_work(void)2945 void flush_module_init_free_work(void)
2946 {
2947 flush_work(&init_free_wq);
2948 }
2949
2950 #undef MODULE_PARAM_PREFIX
2951 #define MODULE_PARAM_PREFIX "module."
2952 /* Default value for module->async_probe_requested */
2953 static bool async_probe;
2954 module_param(async_probe, bool, 0644);
2955
2956 /*
2957 * This is where the real work happens.
2958 *
2959 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2960 * helper command 'lx-symbols'.
2961 */
do_init_module(struct module * mod)2962 static noinline int do_init_module(struct module *mod)
2963 {
2964 int ret = 0;
2965 struct mod_initfree *freeinit;
2966 #if defined(CONFIG_MODULE_STATS)
2967 unsigned int text_size = 0, total_size = 0;
2968
2969 for_each_mod_mem_type(type) {
2970 const struct module_memory *mod_mem = &mod->mem[type];
2971 if (mod_mem->size) {
2972 total_size += mod_mem->size;
2973 if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2974 text_size += mod_mem->size;
2975 }
2976 }
2977 #endif
2978
2979 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2980 if (!freeinit) {
2981 ret = -ENOMEM;
2982 goto fail;
2983 }
2984 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2985 freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2986 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2987
2988 do_mod_ctors(mod);
2989 /* Start the module */
2990 if (mod->init != NULL)
2991 ret = do_one_initcall(mod->init);
2992 if (ret < 0) {
2993 goto fail_free_freeinit;
2994 }
2995 if (ret > 0) {
2996 pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2997 "follow 0/-E convention\n"
2998 "%s: loading module anyway...\n",
2999 __func__, mod->name, ret, __func__);
3000 dump_stack();
3001 }
3002
3003 /* Now it's a first class citizen! */
3004 mod->state = MODULE_STATE_LIVE;
3005 blocking_notifier_call_chain(&module_notify_list,
3006 MODULE_STATE_LIVE, mod);
3007
3008 /* Delay uevent until module has finished its init routine */
3009 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3010
3011 /*
3012 * We need to finish all async code before the module init sequence
3013 * is done. This has potential to deadlock if synchronous module
3014 * loading is requested from async (which is not allowed!).
3015 *
3016 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3017 * request_module() from async workers") for more details.
3018 */
3019 if (!mod->async_probe_requested)
3020 async_synchronize_full();
3021
3022 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
3023 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
3024 mutex_lock(&module_mutex);
3025 /* Drop initial reference. */
3026 module_put(mod);
3027 trim_init_extable(mod);
3028 #ifdef CONFIG_KALLSYMS
3029 /* Switch to core kallsyms now init is done: kallsyms may be walking! */
3030 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3031 #endif
3032 ret = module_enable_rodata_ro_after_init(mod);
3033 if (ret)
3034 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
3035 "ro_after_init data might still be writable\n",
3036 mod->name, ret);
3037
3038 mod_tree_remove_init(mod);
3039 module_arch_freeing_init(mod);
3040 for_class_mod_mem_type(type, init) {
3041 mod->mem[type].base = NULL;
3042 mod->mem[type].size = 0;
3043 }
3044
3045 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3046 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3047 mod->btf_data = NULL;
3048 mod->btf_base_data = NULL;
3049 #endif
3050 /*
3051 * We want to free module_init, but be aware that kallsyms may be
3052 * walking this with preempt disabled. In all the failure paths, we
3053 * call synchronize_rcu(), but we don't want to slow down the success
3054 * path. execmem_free() cannot be called in an interrupt, so do the
3055 * work and call synchronize_rcu() in a work queue.
3056 *
3057 * Note that execmem_alloc() on most architectures creates W+X page
3058 * mappings which won't be cleaned up until do_free_init() runs. Any
3059 * code such as mark_rodata_ro() which depends on those mappings to
3060 * be cleaned up needs to sync with the queued work by invoking
3061 * flush_module_init_free_work().
3062 */
3063 if (llist_add(&freeinit->node, &init_free_list))
3064 schedule_work(&init_free_wq);
3065
3066 mutex_unlock(&module_mutex);
3067 wake_up_all(&module_wq);
3068
3069 mod_stat_add_long(text_size, &total_text_size);
3070 mod_stat_add_long(total_size, &total_mod_size);
3071
3072 mod_stat_inc(&modcount);
3073
3074 return 0;
3075
3076 fail_free_freeinit:
3077 kfree(freeinit);
3078 fail:
3079 /* Try to protect us from buggy refcounters. */
3080 mod->state = MODULE_STATE_GOING;
3081 synchronize_rcu();
3082 module_put(mod);
3083 blocking_notifier_call_chain(&module_notify_list,
3084 MODULE_STATE_GOING, mod);
3085 klp_module_going(mod);
3086 ftrace_release_mod(mod);
3087 free_module(mod);
3088 wake_up_all(&module_wq);
3089
3090 return ret;
3091 }
3092
may_init_module(void)3093 static int may_init_module(void)
3094 {
3095 if (!capable(CAP_SYS_MODULE) || modules_disabled)
3096 return -EPERM;
3097
3098 return 0;
3099 }
3100
3101 /* Is this module of this name done loading? No locks held. */
finished_loading(const char * name)3102 static bool finished_loading(const char *name)
3103 {
3104 struct module *mod;
3105 bool ret;
3106
3107 /*
3108 * The module_mutex should not be a heavily contended lock;
3109 * if we get the occasional sleep here, we'll go an extra iteration
3110 * in the wait_event_interruptible(), which is harmless.
3111 */
3112 sched_annotate_sleep();
3113 mutex_lock(&module_mutex);
3114 mod = find_module_all(name, strlen(name), true);
3115 ret = !mod || mod->state == MODULE_STATE_LIVE
3116 || mod->state == MODULE_STATE_GOING;
3117 mutex_unlock(&module_mutex);
3118
3119 return ret;
3120 }
3121
3122 /* Must be called with module_mutex held */
module_patient_check_exists(const char * name,enum fail_dup_mod_reason reason)3123 static int module_patient_check_exists(const char *name,
3124 enum fail_dup_mod_reason reason)
3125 {
3126 struct module *old;
3127 int err = 0;
3128
3129 old = find_module_all(name, strlen(name), true);
3130 if (old == NULL)
3131 return 0;
3132
3133 if (old->state == MODULE_STATE_COMING ||
3134 old->state == MODULE_STATE_UNFORMED) {
3135 /* Wait in case it fails to load. */
3136 mutex_unlock(&module_mutex);
3137 err = wait_event_interruptible(module_wq,
3138 finished_loading(name));
3139 mutex_lock(&module_mutex);
3140 if (err)
3141 return err;
3142
3143 /* The module might have gone in the meantime. */
3144 old = find_module_all(name, strlen(name), true);
3145 }
3146
3147 if (try_add_failed_module(name, reason))
3148 pr_warn("Could not add fail-tracking for module: %s\n", name);
3149
3150 /*
3151 * We are here only when the same module was being loaded. Do
3152 * not try to load it again right now. It prevents long delays
3153 * caused by serialized module load failures. It might happen
3154 * when more devices of the same type trigger load of
3155 * a particular module.
3156 */
3157 if (old && old->state == MODULE_STATE_LIVE)
3158 return -EEXIST;
3159 return -EBUSY;
3160 }
3161
3162 /*
3163 * We try to place it in the list now to make sure it's unique before
3164 * we dedicate too many resources. In particular, temporary percpu
3165 * memory exhaustion.
3166 */
add_unformed_module(struct module * mod)3167 static int add_unformed_module(struct module *mod)
3168 {
3169 int err;
3170
3171 mod->state = MODULE_STATE_UNFORMED;
3172
3173 mutex_lock(&module_mutex);
3174 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3175 if (err)
3176 goto out;
3177
3178 mod_update_bounds(mod);
3179 list_add_rcu(&mod->list, &modules);
3180 mod_tree_insert(mod);
3181 err = 0;
3182
3183 out:
3184 mutex_unlock(&module_mutex);
3185 return err;
3186 }
3187
complete_formation(struct module * mod,struct load_info * info)3188 static int complete_formation(struct module *mod, struct load_info *info)
3189 {
3190 int err;
3191
3192 mutex_lock(&module_mutex);
3193
3194 /* Find duplicate symbols (must be called under lock). */
3195 err = verify_exported_symbols(mod);
3196 if (err < 0)
3197 goto out;
3198
3199 /* These rely on module_mutex for list integrity. */
3200 module_bug_finalize(info->hdr, info->sechdrs, mod);
3201 module_cfi_finalize(info->hdr, info->sechdrs, mod);
3202
3203 err = module_enable_rodata_ro(mod);
3204 if (err)
3205 goto out_strict_rwx;
3206 err = module_enable_data_nx(mod);
3207 if (err)
3208 goto out_strict_rwx;
3209 err = module_enable_text_rox(mod);
3210 if (err)
3211 goto out_strict_rwx;
3212
3213 /*
3214 * Mark state as coming so strong_try_module_get() ignores us,
3215 * but kallsyms etc. can see us.
3216 */
3217 mod->state = MODULE_STATE_COMING;
3218 mutex_unlock(&module_mutex);
3219
3220 return 0;
3221
3222 out_strict_rwx:
3223 module_bug_cleanup(mod);
3224 out:
3225 mutex_unlock(&module_mutex);
3226 return err;
3227 }
3228
prepare_coming_module(struct module * mod)3229 static int prepare_coming_module(struct module *mod)
3230 {
3231 int err;
3232
3233 ftrace_module_enable(mod);
3234 err = klp_module_coming(mod);
3235 if (err)
3236 return err;
3237
3238 err = blocking_notifier_call_chain_robust(&module_notify_list,
3239 MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3240 err = notifier_to_errno(err);
3241 if (err)
3242 klp_module_going(mod);
3243
3244 return err;
3245 }
3246
unknown_module_param_cb(char * param,char * val,const char * modname,void * arg)3247 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3248 void *arg)
3249 {
3250 struct module *mod = arg;
3251 int ret;
3252
3253 if (strcmp(param, "async_probe") == 0) {
3254 if (kstrtobool(val, &mod->async_probe_requested))
3255 mod->async_probe_requested = true;
3256 return 0;
3257 }
3258
3259 /* Check for magic 'dyndbg' arg */
3260 ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3261 if (ret != 0)
3262 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3263 return 0;
3264 }
3265
3266 /* Module within temporary copy, this doesn't do any allocation */
early_mod_check(struct load_info * info,int flags)3267 static int early_mod_check(struct load_info *info, int flags)
3268 {
3269 int err;
3270
3271 /*
3272 * Now that we know we have the correct module name, check
3273 * if it's blacklisted.
3274 */
3275 if (blacklisted(info->name)) {
3276 pr_err("Module %s is blacklisted\n", info->name);
3277 return -EPERM;
3278 }
3279
3280 err = rewrite_section_headers(info, flags);
3281 if (err)
3282 return err;
3283
3284 /* Check module struct version now, before we try to use module. */
3285 if (!check_modstruct_version(info, info->mod))
3286 return -ENOEXEC;
3287
3288 err = check_modinfo(info->mod, info, flags);
3289 if (err)
3290 return err;
3291
3292 mutex_lock(&module_mutex);
3293 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3294 mutex_unlock(&module_mutex);
3295
3296 return err;
3297 }
3298
3299 /*
3300 * Allocate and load the module: note that size of section 0 is always
3301 * zero, and we rely on this for optional sections.
3302 */
load_module(struct load_info * info,const char __user * uargs,int flags)3303 static int load_module(struct load_info *info, const char __user *uargs,
3304 int flags)
3305 {
3306 struct module *mod;
3307 bool module_allocated = false;
3308 long err = 0;
3309 char *after_dashes;
3310
3311 /*
3312 * Do the signature check (if any) first. All that
3313 * the signature check needs is info->len, it does
3314 * not need any of the section info. That can be
3315 * set up later. This will minimize the chances
3316 * of a corrupt module causing problems before
3317 * we even get to the signature check.
3318 *
3319 * The check will also adjust info->len by stripping
3320 * off the sig length at the end of the module, making
3321 * checks against info->len more correct.
3322 */
3323 err = module_sig_check(info, flags);
3324 if (err)
3325 goto free_copy;
3326
3327 /*
3328 * Do basic sanity checks against the ELF header and
3329 * sections. Cache useful sections and set the
3330 * info->mod to the userspace passed struct module.
3331 */
3332 err = elf_validity_cache_copy(info, flags);
3333 if (err)
3334 goto free_copy;
3335
3336 err = early_mod_check(info, flags);
3337 if (err)
3338 goto free_copy;
3339
3340 /* Figure out module layout, and allocate all the memory. */
3341 mod = layout_and_allocate(info, flags);
3342 if (IS_ERR(mod)) {
3343 err = PTR_ERR(mod);
3344 goto free_copy;
3345 }
3346
3347 module_allocated = true;
3348
3349 audit_log_kern_module(mod->name);
3350
3351 /* Reserve our place in the list. */
3352 err = add_unformed_module(mod);
3353 if (err)
3354 goto free_module;
3355
3356 /*
3357 * We are tainting your kernel if your module gets into
3358 * the modules linked list somehow.
3359 */
3360 module_augment_kernel_taints(mod, info);
3361
3362 /* To avoid stressing percpu allocator, do this once we're unique. */
3363 err = percpu_modalloc(mod, info);
3364 if (err)
3365 goto unlink_mod;
3366
3367 /* Now module is in final location, initialize linked lists, etc. */
3368 err = module_unload_init(mod);
3369 if (err)
3370 goto unlink_mod;
3371
3372 init_param_lock(mod);
3373
3374 /*
3375 * Now we've got everything in the final locations, we can
3376 * find optional sections.
3377 */
3378 err = find_module_sections(mod, info);
3379 if (err)
3380 goto free_unload;
3381
3382 err = check_export_symbol_versions(mod);
3383 if (err)
3384 goto free_unload;
3385
3386 /* Set up MODINFO_ATTR fields */
3387 setup_modinfo(mod, info);
3388
3389 /* Fix up syms, so that st_value is a pointer to location. */
3390 err = simplify_symbols(mod, info);
3391 if (err < 0)
3392 goto free_modinfo;
3393
3394 err = apply_relocations(mod, info);
3395 if (err < 0)
3396 goto free_modinfo;
3397
3398 err = post_relocation(mod, info);
3399 if (err < 0)
3400 goto free_modinfo;
3401
3402 flush_module_icache(mod);
3403
3404 /* Now copy in args */
3405 mod->args = strndup_user(uargs, ~0UL >> 1);
3406 if (IS_ERR(mod->args)) {
3407 err = PTR_ERR(mod->args);
3408 goto free_arch_cleanup;
3409 }
3410
3411 init_build_id(mod, info);
3412
3413 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3414 ftrace_module_init(mod);
3415
3416 /* Finally it's fully formed, ready to start executing. */
3417 err = complete_formation(mod, info);
3418 if (err)
3419 goto ddebug_cleanup;
3420
3421 err = prepare_coming_module(mod);
3422 if (err)
3423 goto bug_cleanup;
3424
3425 mod->async_probe_requested = async_probe;
3426
3427 /* Module is ready to execute: parsing args may do that. */
3428 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3429 -32768, 32767, mod,
3430 unknown_module_param_cb);
3431 if (IS_ERR(after_dashes)) {
3432 err = PTR_ERR(after_dashes);
3433 goto coming_cleanup;
3434 } else if (after_dashes) {
3435 pr_warn("%s: parameters '%s' after `--' ignored\n",
3436 mod->name, after_dashes);
3437 }
3438
3439 /* Link in to sysfs. */
3440 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3441 if (err < 0)
3442 goto coming_cleanup;
3443
3444 if (is_livepatch_module(mod)) {
3445 err = copy_module_elf(mod, info);
3446 if (err < 0)
3447 goto sysfs_cleanup;
3448 }
3449
3450 /* Get rid of temporary copy. */
3451 free_copy(info, flags);
3452
3453 codetag_load_module(mod);
3454
3455 /* Done! */
3456 trace_module_load(mod);
3457
3458 return do_init_module(mod);
3459
3460 sysfs_cleanup:
3461 mod_sysfs_teardown(mod);
3462 coming_cleanup:
3463 mod->state = MODULE_STATE_GOING;
3464 destroy_params(mod->kp, mod->num_kp);
3465 blocking_notifier_call_chain(&module_notify_list,
3466 MODULE_STATE_GOING, mod);
3467 klp_module_going(mod);
3468 bug_cleanup:
3469 mod->state = MODULE_STATE_GOING;
3470 /* module_bug_cleanup needs module_mutex protection */
3471 mutex_lock(&module_mutex);
3472 module_bug_cleanup(mod);
3473 mutex_unlock(&module_mutex);
3474
3475 ddebug_cleanup:
3476 ftrace_release_mod(mod);
3477 synchronize_rcu();
3478 kfree(mod->args);
3479 free_arch_cleanup:
3480 module_arch_cleanup(mod);
3481 free_modinfo:
3482 free_modinfo(mod);
3483 free_unload:
3484 module_unload_free(mod);
3485 unlink_mod:
3486 mutex_lock(&module_mutex);
3487 /* Unlink carefully: kallsyms could be walking list. */
3488 list_del_rcu(&mod->list);
3489 mod_tree_remove(mod);
3490 wake_up_all(&module_wq);
3491 /* Wait for RCU-sched synchronizing before releasing mod->list. */
3492 synchronize_rcu();
3493 mutex_unlock(&module_mutex);
3494 free_module:
3495 mod_stat_bump_invalid(info, flags);
3496 /* Free lock-classes; relies on the preceding sync_rcu() */
3497 for_class_mod_mem_type(type, core_data) {
3498 lockdep_free_key_range(mod->mem[type].base,
3499 mod->mem[type].size);
3500 }
3501
3502 module_deallocate(mod, info);
3503 free_copy:
3504 /*
3505 * The info->len is always set. We distinguish between
3506 * failures once the proper module was allocated and
3507 * before that.
3508 */
3509 if (!module_allocated)
3510 mod_stat_bump_becoming(info, flags);
3511 free_copy(info, flags);
3512 return err;
3513 }
3514
SYSCALL_DEFINE3(init_module,void __user *,umod,unsigned long,len,const char __user *,uargs)3515 SYSCALL_DEFINE3(init_module, void __user *, umod,
3516 unsigned long, len, const char __user *, uargs)
3517 {
3518 int err;
3519 struct load_info info = { };
3520
3521 err = may_init_module();
3522 if (err)
3523 return err;
3524
3525 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3526 umod, len, uargs);
3527
3528 err = copy_module_from_user(umod, len, &info);
3529 if (err) {
3530 mod_stat_inc(&failed_kreads);
3531 mod_stat_add_long(len, &invalid_kread_bytes);
3532 return err;
3533 }
3534
3535 return load_module(&info, uargs, 0);
3536 }
3537
3538 struct idempotent {
3539 const void *cookie;
3540 struct hlist_node entry;
3541 struct completion complete;
3542 int ret;
3543 };
3544
3545 #define IDEM_HASH_BITS 8
3546 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3547 static DEFINE_SPINLOCK(idem_lock);
3548
idempotent(struct idempotent * u,const void * cookie)3549 static bool idempotent(struct idempotent *u, const void *cookie)
3550 {
3551 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3552 struct hlist_head *head = idem_hash + hash;
3553 struct idempotent *existing;
3554 bool first;
3555
3556 u->ret = -EINTR;
3557 u->cookie = cookie;
3558 init_completion(&u->complete);
3559
3560 spin_lock(&idem_lock);
3561 first = true;
3562 hlist_for_each_entry(existing, head, entry) {
3563 if (existing->cookie != cookie)
3564 continue;
3565 first = false;
3566 break;
3567 }
3568 hlist_add_head(&u->entry, idem_hash + hash);
3569 spin_unlock(&idem_lock);
3570
3571 return !first;
3572 }
3573
3574 /*
3575 * We were the first one with 'cookie' on the list, and we ended
3576 * up completing the operation. We now need to walk the list,
3577 * remove everybody - which includes ourselves - fill in the return
3578 * value, and then complete the operation.
3579 */
idempotent_complete(struct idempotent * u,int ret)3580 static int idempotent_complete(struct idempotent *u, int ret)
3581 {
3582 const void *cookie = u->cookie;
3583 int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3584 struct hlist_head *head = idem_hash + hash;
3585 struct hlist_node *next;
3586 struct idempotent *pos;
3587
3588 spin_lock(&idem_lock);
3589 hlist_for_each_entry_safe(pos, next, head, entry) {
3590 if (pos->cookie != cookie)
3591 continue;
3592 hlist_del_init(&pos->entry);
3593 pos->ret = ret;
3594 complete(&pos->complete);
3595 }
3596 spin_unlock(&idem_lock);
3597 return ret;
3598 }
3599
3600 /*
3601 * Wait for the idempotent worker.
3602 *
3603 * If we get interrupted, we need to remove ourselves from the
3604 * the idempotent list, and the completion may still come in.
3605 *
3606 * The 'idem_lock' protects against the race, and 'idem.ret' was
3607 * initialized to -EINTR and is thus always the right return
3608 * value even if the idempotent work then completes between
3609 * the wait_for_completion and the cleanup.
3610 */
idempotent_wait_for_completion(struct idempotent * u)3611 static int idempotent_wait_for_completion(struct idempotent *u)
3612 {
3613 if (wait_for_completion_interruptible(&u->complete)) {
3614 spin_lock(&idem_lock);
3615 if (!hlist_unhashed(&u->entry))
3616 hlist_del(&u->entry);
3617 spin_unlock(&idem_lock);
3618 }
3619 return u->ret;
3620 }
3621
init_module_from_file(struct file * f,const char __user * uargs,int flags)3622 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3623 {
3624 struct load_info info = { };
3625 void *buf = NULL;
3626 int len;
3627
3628 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3629 if (len < 0) {
3630 mod_stat_inc(&failed_kreads);
3631 return len;
3632 }
3633
3634 if (flags & MODULE_INIT_COMPRESSED_FILE) {
3635 int err = module_decompress(&info, buf, len);
3636 vfree(buf); /* compressed data is no longer needed */
3637 if (err) {
3638 mod_stat_inc(&failed_decompress);
3639 mod_stat_add_long(len, &invalid_decompress_bytes);
3640 return err;
3641 }
3642 } else {
3643 info.hdr = buf;
3644 info.len = len;
3645 }
3646
3647 return load_module(&info, uargs, flags);
3648 }
3649
idempotent_init_module(struct file * f,const char __user * uargs,int flags)3650 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3651 {
3652 struct idempotent idem;
3653
3654 if (!(f->f_mode & FMODE_READ))
3655 return -EBADF;
3656
3657 /* Are we the winners of the race and get to do this? */
3658 if (!idempotent(&idem, file_inode(f))) {
3659 int ret = init_module_from_file(f, uargs, flags);
3660 return idempotent_complete(&idem, ret);
3661 }
3662
3663 /*
3664 * Somebody else won the race and is loading the module.
3665 */
3666 return idempotent_wait_for_completion(&idem);
3667 }
3668
SYSCALL_DEFINE3(finit_module,int,fd,const char __user *,uargs,int,flags)3669 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3670 {
3671 int err = may_init_module();
3672 if (err)
3673 return err;
3674
3675 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3676
3677 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3678 |MODULE_INIT_IGNORE_VERMAGIC
3679 |MODULE_INIT_COMPRESSED_FILE))
3680 return -EINVAL;
3681
3682 CLASS(fd, f)(fd);
3683 if (fd_empty(f))
3684 return -EBADF;
3685 return idempotent_init_module(fd_file(f), uargs, flags);
3686 }
3687
3688 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
module_flags(struct module * mod,char * buf,bool show_state)3689 char *module_flags(struct module *mod, char *buf, bool show_state)
3690 {
3691 int bx = 0;
3692
3693 BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3694 if (!mod->taints && !show_state)
3695 goto out;
3696 if (mod->taints ||
3697 mod->state == MODULE_STATE_GOING ||
3698 mod->state == MODULE_STATE_COMING) {
3699 buf[bx++] = '(';
3700 bx += module_flags_taint(mod->taints, buf + bx);
3701 /* Show a - for module-is-being-unloaded */
3702 if (mod->state == MODULE_STATE_GOING && show_state)
3703 buf[bx++] = '-';
3704 /* Show a + for module-is-being-loaded */
3705 if (mod->state == MODULE_STATE_COMING && show_state)
3706 buf[bx++] = '+';
3707 buf[bx++] = ')';
3708 }
3709 out:
3710 buf[bx] = '\0';
3711
3712 return buf;
3713 }
3714
3715 /* Given an address, look for it in the module exception tables. */
search_module_extables(unsigned long addr)3716 const struct exception_table_entry *search_module_extables(unsigned long addr)
3717 {
3718 const struct exception_table_entry *e = NULL;
3719 struct module *mod;
3720
3721 preempt_disable();
3722 mod = __module_address(addr);
3723 if (!mod)
3724 goto out;
3725
3726 if (!mod->num_exentries)
3727 goto out;
3728
3729 e = search_extable(mod->extable,
3730 mod->num_exentries,
3731 addr);
3732 out:
3733 preempt_enable();
3734
3735 /*
3736 * Now, if we found one, we are running inside it now, hence
3737 * we cannot unload the module, hence no refcnt needed.
3738 */
3739 return e;
3740 }
3741
3742 /**
3743 * is_module_address() - is this address inside a module?
3744 * @addr: the address to check.
3745 *
3746 * See is_module_text_address() if you simply want to see if the address
3747 * is code (not data).
3748 */
is_module_address(unsigned long addr)3749 bool is_module_address(unsigned long addr)
3750 {
3751 bool ret;
3752
3753 preempt_disable();
3754 ret = __module_address(addr) != NULL;
3755 preempt_enable();
3756
3757 return ret;
3758 }
3759
3760 /**
3761 * __module_address() - get the module which contains an address.
3762 * @addr: the address.
3763 *
3764 * Must be called with preempt disabled or module mutex held so that
3765 * module doesn't get freed during this.
3766 */
__module_address(unsigned long addr)3767 struct module *__module_address(unsigned long addr)
3768 {
3769 struct module *mod;
3770
3771 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3772 goto lookup;
3773
3774 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3775 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3776 goto lookup;
3777 #endif
3778
3779 return NULL;
3780
3781 lookup:
3782 module_assert_mutex_or_preempt();
3783
3784 mod = mod_find(addr, &mod_tree);
3785 if (mod) {
3786 BUG_ON(!within_module(addr, mod));
3787 if (mod->state == MODULE_STATE_UNFORMED)
3788 mod = NULL;
3789 }
3790 return mod;
3791 }
3792
3793 /**
3794 * is_module_text_address() - is this address inside module code?
3795 * @addr: the address to check.
3796 *
3797 * See is_module_address() if you simply want to see if the address is
3798 * anywhere in a module. See kernel_text_address() for testing if an
3799 * address corresponds to kernel or module code.
3800 */
is_module_text_address(unsigned long addr)3801 bool is_module_text_address(unsigned long addr)
3802 {
3803 bool ret;
3804
3805 preempt_disable();
3806 ret = __module_text_address(addr) != NULL;
3807 preempt_enable();
3808
3809 return ret;
3810 }
3811
3812 /**
3813 * __module_text_address() - get the module whose code contains an address.
3814 * @addr: the address.
3815 *
3816 * Must be called with preempt disabled or module mutex held so that
3817 * module doesn't get freed during this.
3818 */
__module_text_address(unsigned long addr)3819 struct module *__module_text_address(unsigned long addr)
3820 {
3821 struct module *mod = __module_address(addr);
3822 if (mod) {
3823 /* Make sure it's within the text section. */
3824 if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3825 !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3826 mod = NULL;
3827 }
3828 return mod;
3829 }
3830
3831 /* Don't grab lock, we're oopsing. */
print_modules(void)3832 void print_modules(void)
3833 {
3834 struct module *mod;
3835 char buf[MODULE_FLAGS_BUF_SIZE];
3836
3837 printk(KERN_DEFAULT "Modules linked in:");
3838 /* Most callers should already have preempt disabled, but make sure */
3839 preempt_disable();
3840 list_for_each_entry_rcu(mod, &modules, list) {
3841 if (mod->state == MODULE_STATE_UNFORMED)
3842 continue;
3843 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3844 }
3845
3846 print_unloaded_tainted_modules();
3847 preempt_enable();
3848 if (last_unloaded_module.name[0])
3849 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3850 last_unloaded_module.taints);
3851 pr_cont("\n");
3852 }
3853
3854 #ifdef CONFIG_MODULE_DEBUGFS
3855 struct dentry *mod_debugfs_root;
3856
module_debugfs_init(void)3857 static int module_debugfs_init(void)
3858 {
3859 mod_debugfs_root = debugfs_create_dir("modules", NULL);
3860 return 0;
3861 }
3862 module_init(module_debugfs_init);
3863 #endif
3864