1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/kernel/capability.c
4 *
5 * Copyright (C) 1997 Andrew Main <[email protected]>
6 *
7 * Integrated into 2.1.97+, Andrew G. Morgan <[email protected]>
8 * 30 May 2002: Cleanup, Robert M. Love <[email protected]>
9 */
10
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13 #include <linux/audit.h>
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/export.h>
17 #include <linux/security.h>
18 #include <linux/syscalls.h>
19 #include <linux/pid_namespace.h>
20 #include <linux/user_namespace.h>
21 #include <linux/uaccess.h>
22
23 int file_caps_enabled = 1;
24
file_caps_disable(char * str)25 static int __init file_caps_disable(char *str)
26 {
27 file_caps_enabled = 0;
28 return 1;
29 }
30 __setup("no_file_caps", file_caps_disable);
31
32 #ifdef CONFIG_MULTIUSER
33 /*
34 * More recent versions of libcap are available from:
35 *
36 * http://www.kernel.org/pub/linux/libs/security/linux-privs/
37 */
38
warn_legacy_capability_use(void)39 static void warn_legacy_capability_use(void)
40 {
41 pr_info_once("warning: `%s' uses 32-bit capabilities (legacy support in use)\n",
42 current->comm);
43 }
44
45 /*
46 * Version 2 capabilities worked fine, but the linux/capability.h file
47 * that accompanied their introduction encouraged their use without
48 * the necessary user-space source code changes. As such, we have
49 * created a version 3 with equivalent functionality to version 2, but
50 * with a header change to protect legacy source code from using
51 * version 2 when it wanted to use version 1. If your system has code
52 * that trips the following warning, it is using version 2 specific
53 * capabilities and may be doing so insecurely.
54 *
55 * The remedy is to either upgrade your version of libcap (to 2.10+,
56 * if the application is linked against it), or recompile your
57 * application with modern kernel headers and this warning will go
58 * away.
59 */
60
warn_deprecated_v2(void)61 static void warn_deprecated_v2(void)
62 {
63 pr_info_once("warning: `%s' uses deprecated v2 capabilities in a way that may be insecure\n",
64 current->comm);
65 }
66
67 /*
68 * Version check. Return the number of u32s in each capability flag
69 * array, or a negative value on error.
70 */
cap_validate_magic(cap_user_header_t header,unsigned * tocopy)71 static int cap_validate_magic(cap_user_header_t header, unsigned *tocopy)
72 {
73 __u32 version;
74
75 if (get_user(version, &header->version))
76 return -EFAULT;
77
78 switch (version) {
79 case _LINUX_CAPABILITY_VERSION_1:
80 warn_legacy_capability_use();
81 *tocopy = _LINUX_CAPABILITY_U32S_1;
82 break;
83 case _LINUX_CAPABILITY_VERSION_2:
84 warn_deprecated_v2();
85 fallthrough; /* v3 is otherwise equivalent to v2 */
86 case _LINUX_CAPABILITY_VERSION_3:
87 *tocopy = _LINUX_CAPABILITY_U32S_3;
88 break;
89 default:
90 if (put_user((u32)_KERNEL_CAPABILITY_VERSION, &header->version))
91 return -EFAULT;
92 return -EINVAL;
93 }
94
95 return 0;
96 }
97
98 /*
99 * The only thing that can change the capabilities of the current
100 * process is the current process. As such, we can't be in this code
101 * at the same time as we are in the process of setting capabilities
102 * in this process. The net result is that we can limit our use of
103 * locks to when we are reading the caps of another process.
104 */
cap_get_target_pid(pid_t pid,kernel_cap_t * pEp,kernel_cap_t * pIp,kernel_cap_t * pPp)105 static inline int cap_get_target_pid(pid_t pid, kernel_cap_t *pEp,
106 kernel_cap_t *pIp, kernel_cap_t *pPp)
107 {
108 int ret;
109
110 if (pid && (pid != task_pid_vnr(current))) {
111 const struct task_struct *target;
112
113 rcu_read_lock();
114
115 target = find_task_by_vpid(pid);
116 if (!target)
117 ret = -ESRCH;
118 else
119 ret = security_capget(target, pEp, pIp, pPp);
120
121 rcu_read_unlock();
122 } else
123 ret = security_capget(current, pEp, pIp, pPp);
124
125 return ret;
126 }
127
128 /**
129 * sys_capget - get the capabilities of a given process.
130 * @header: pointer to struct that contains capability version and
131 * target pid data
132 * @dataptr: pointer to struct that contains the effective, permitted,
133 * and inheritable capabilities that are returned
134 *
135 * Returns 0 on success and < 0 on error.
136 */
SYSCALL_DEFINE2(capget,cap_user_header_t,header,cap_user_data_t,dataptr)137 SYSCALL_DEFINE2(capget, cap_user_header_t, header, cap_user_data_t, dataptr)
138 {
139 int ret = 0;
140 pid_t pid;
141 unsigned tocopy;
142 kernel_cap_t pE, pI, pP;
143 struct __user_cap_data_struct kdata[2];
144
145 ret = cap_validate_magic(header, &tocopy);
146 if ((dataptr == NULL) || (ret != 0))
147 return ((dataptr == NULL) && (ret == -EINVAL)) ? 0 : ret;
148
149 if (get_user(pid, &header->pid))
150 return -EFAULT;
151
152 if (pid < 0)
153 return -EINVAL;
154
155 ret = cap_get_target_pid(pid, &pE, &pI, &pP);
156 if (ret)
157 return ret;
158
159 /*
160 * Annoying legacy format with 64-bit capabilities exposed
161 * as two sets of 32-bit fields, so we need to split the
162 * capability values up.
163 */
164 kdata[0].effective = pE.val; kdata[1].effective = pE.val >> 32;
165 kdata[0].permitted = pP.val; kdata[1].permitted = pP.val >> 32;
166 kdata[0].inheritable = pI.val; kdata[1].inheritable = pI.val >> 32;
167
168 /*
169 * Note, in the case, tocopy < _KERNEL_CAPABILITY_U32S,
170 * we silently drop the upper capabilities here. This
171 * has the effect of making older libcap
172 * implementations implicitly drop upper capability
173 * bits when they perform a: capget/modify/capset
174 * sequence.
175 *
176 * This behavior is considered fail-safe
177 * behavior. Upgrading the application to a newer
178 * version of libcap will enable access to the newer
179 * capabilities.
180 *
181 * An alternative would be to return an error here
182 * (-ERANGE), but that causes legacy applications to
183 * unexpectedly fail; the capget/modify/capset aborts
184 * before modification is attempted and the application
185 * fails.
186 */
187 if (copy_to_user(dataptr, kdata, tocopy * sizeof(kdata[0])))
188 return -EFAULT;
189
190 return 0;
191 }
192
mk_kernel_cap(u32 low,u32 high)193 static kernel_cap_t mk_kernel_cap(u32 low, u32 high)
194 {
195 return (kernel_cap_t) { (low | ((u64)high << 32)) & CAP_VALID_MASK };
196 }
197
198 /**
199 * sys_capset - set capabilities for a process or (*) a group of processes
200 * @header: pointer to struct that contains capability version and
201 * target pid data
202 * @data: pointer to struct that contains the effective, permitted,
203 * and inheritable capabilities
204 *
205 * Set capabilities for the current process only. The ability to any other
206 * process(es) has been deprecated and removed.
207 *
208 * The restrictions on setting capabilities are specified as:
209 *
210 * I: any raised capabilities must be a subset of the old permitted
211 * P: any raised capabilities must be a subset of the old permitted
212 * E: must be set to a subset of new permitted
213 *
214 * Returns 0 on success and < 0 on error.
215 */
SYSCALL_DEFINE2(capset,cap_user_header_t,header,const cap_user_data_t,data)216 SYSCALL_DEFINE2(capset, cap_user_header_t, header, const cap_user_data_t, data)
217 {
218 struct __user_cap_data_struct kdata[2] = { { 0, }, };
219 unsigned tocopy, copybytes;
220 kernel_cap_t inheritable, permitted, effective;
221 struct cred *new;
222 int ret;
223 pid_t pid;
224
225 ret = cap_validate_magic(header, &tocopy);
226 if (ret != 0)
227 return ret;
228
229 if (get_user(pid, &header->pid))
230 return -EFAULT;
231
232 /* may only affect current now */
233 if (pid != 0 && pid != task_pid_vnr(current))
234 return -EPERM;
235
236 copybytes = tocopy * sizeof(struct __user_cap_data_struct);
237 if (copybytes > sizeof(kdata))
238 return -EFAULT;
239
240 if (copy_from_user(&kdata, data, copybytes))
241 return -EFAULT;
242
243 effective = mk_kernel_cap(kdata[0].effective, kdata[1].effective);
244 permitted = mk_kernel_cap(kdata[0].permitted, kdata[1].permitted);
245 inheritable = mk_kernel_cap(kdata[0].inheritable, kdata[1].inheritable);
246
247 new = prepare_creds();
248 if (!new)
249 return -ENOMEM;
250
251 ret = security_capset(new, current_cred(),
252 &effective, &inheritable, &permitted);
253 if (ret < 0)
254 goto error;
255
256 audit_log_capset(new, current_cred());
257
258 return commit_creds(new);
259
260 error:
261 abort_creds(new);
262 return ret;
263 }
264
265 /**
266 * has_ns_capability - Does a task have a capability in a specific user ns
267 * @t: The task in question
268 * @ns: target user namespace
269 * @cap: The capability to be tested for
270 *
271 * Return true if the specified task has the given superior capability
272 * currently in effect to the specified user namespace, false if not.
273 *
274 * Note that this does not set PF_SUPERPRIV on the task.
275 */
has_ns_capability(struct task_struct * t,struct user_namespace * ns,int cap)276 bool has_ns_capability(struct task_struct *t,
277 struct user_namespace *ns, int cap)
278 {
279 int ret;
280
281 rcu_read_lock();
282 ret = security_capable(__task_cred(t), ns, cap, CAP_OPT_NONE);
283 rcu_read_unlock();
284
285 return (ret == 0);
286 }
287
288 /**
289 * has_capability - Does a task have a capability in init_user_ns
290 * @t: The task in question
291 * @cap: The capability to be tested for
292 *
293 * Return true if the specified task has the given superior capability
294 * currently in effect to the initial user namespace, false if not.
295 *
296 * Note that this does not set PF_SUPERPRIV on the task.
297 */
has_capability(struct task_struct * t,int cap)298 bool has_capability(struct task_struct *t, int cap)
299 {
300 return has_ns_capability(t, &init_user_ns, cap);
301 }
302 EXPORT_SYMBOL(has_capability);
303
304 /**
305 * has_ns_capability_noaudit - Does a task have a capability (unaudited)
306 * in a specific user ns.
307 * @t: The task in question
308 * @ns: target user namespace
309 * @cap: The capability to be tested for
310 *
311 * Return true if the specified task has the given superior capability
312 * currently in effect to the specified user namespace, false if not.
313 * Do not write an audit message for the check.
314 *
315 * Note that this does not set PF_SUPERPRIV on the task.
316 */
has_ns_capability_noaudit(struct task_struct * t,struct user_namespace * ns,int cap)317 bool has_ns_capability_noaudit(struct task_struct *t,
318 struct user_namespace *ns, int cap)
319 {
320 int ret;
321
322 rcu_read_lock();
323 ret = security_capable(__task_cred(t), ns, cap, CAP_OPT_NOAUDIT);
324 rcu_read_unlock();
325
326 return (ret == 0);
327 }
328
329 /**
330 * has_capability_noaudit - Does a task have a capability (unaudited) in the
331 * initial user ns
332 * @t: The task in question
333 * @cap: The capability to be tested for
334 *
335 * Return true if the specified task has the given superior capability
336 * currently in effect to init_user_ns, false if not. Don't write an
337 * audit message for the check.
338 *
339 * Note that this does not set PF_SUPERPRIV on the task.
340 */
has_capability_noaudit(struct task_struct * t,int cap)341 bool has_capability_noaudit(struct task_struct *t, int cap)
342 {
343 return has_ns_capability_noaudit(t, &init_user_ns, cap);
344 }
345 EXPORT_SYMBOL(has_capability_noaudit);
346
ns_capable_common(struct user_namespace * ns,int cap,unsigned int opts)347 static bool ns_capable_common(struct user_namespace *ns,
348 int cap,
349 unsigned int opts)
350 {
351 int capable;
352
353 if (unlikely(!cap_valid(cap))) {
354 pr_crit("capable() called with invalid cap=%u\n", cap);
355 BUG();
356 }
357
358 capable = security_capable(current_cred(), ns, cap, opts);
359 if (capable == 0) {
360 current->flags |= PF_SUPERPRIV;
361 return true;
362 }
363 return false;
364 }
365
366 /**
367 * ns_capable - Determine if the current task has a superior capability in effect
368 * @ns: The usernamespace we want the capability in
369 * @cap: The capability to be tested for
370 *
371 * Return true if the current task has the given superior capability currently
372 * available for use, false if not.
373 *
374 * This sets PF_SUPERPRIV on the task if the capability is available on the
375 * assumption that it's about to be used.
376 */
ns_capable(struct user_namespace * ns,int cap)377 bool ns_capable(struct user_namespace *ns, int cap)
378 {
379 return ns_capable_common(ns, cap, CAP_OPT_NONE);
380 }
381 EXPORT_SYMBOL(ns_capable);
382
383 /**
384 * ns_capable_noaudit - Determine if the current task has a superior capability
385 * (unaudited) in effect
386 * @ns: The usernamespace we want the capability in
387 * @cap: The capability to be tested for
388 *
389 * Return true if the current task has the given superior capability currently
390 * available for use, false if not.
391 *
392 * This sets PF_SUPERPRIV on the task if the capability is available on the
393 * assumption that it's about to be used.
394 */
ns_capable_noaudit(struct user_namespace * ns,int cap)395 bool ns_capable_noaudit(struct user_namespace *ns, int cap)
396 {
397 return ns_capable_common(ns, cap, CAP_OPT_NOAUDIT);
398 }
399 EXPORT_SYMBOL(ns_capable_noaudit);
400
401 /**
402 * ns_capable_setid - Determine if the current task has a superior capability
403 * in effect, while signalling that this check is being done from within a
404 * setid or setgroups syscall.
405 * @ns: The usernamespace we want the capability in
406 * @cap: The capability to be tested for
407 *
408 * Return true if the current task has the given superior capability currently
409 * available for use, false if not.
410 *
411 * This sets PF_SUPERPRIV on the task if the capability is available on the
412 * assumption that it's about to be used.
413 */
ns_capable_setid(struct user_namespace * ns,int cap)414 bool ns_capable_setid(struct user_namespace *ns, int cap)
415 {
416 return ns_capable_common(ns, cap, CAP_OPT_INSETID);
417 }
418 EXPORT_SYMBOL(ns_capable_setid);
419
420 /**
421 * capable - Determine if the current task has a superior capability in effect
422 * @cap: The capability to be tested for
423 *
424 * Return true if the current task has the given superior capability currently
425 * available for use, false if not.
426 *
427 * This sets PF_SUPERPRIV on the task if the capability is available on the
428 * assumption that it's about to be used.
429 */
capable(int cap)430 bool capable(int cap)
431 {
432 return ns_capable(&init_user_ns, cap);
433 }
434 EXPORT_SYMBOL(capable);
435 #endif /* CONFIG_MULTIUSER */
436
437 /**
438 * file_ns_capable - Determine if the file's opener had a capability in effect
439 * @file: The file we want to check
440 * @ns: The usernamespace we want the capability in
441 * @cap: The capability to be tested for
442 *
443 * Return true if task that opened the file had a capability in effect
444 * when the file was opened.
445 *
446 * This does not set PF_SUPERPRIV because the caller may not
447 * actually be privileged.
448 */
file_ns_capable(const struct file * file,struct user_namespace * ns,int cap)449 bool file_ns_capable(const struct file *file, struct user_namespace *ns,
450 int cap)
451 {
452
453 if (WARN_ON_ONCE(!cap_valid(cap)))
454 return false;
455
456 if (security_capable(file->f_cred, ns, cap, CAP_OPT_NONE) == 0)
457 return true;
458
459 return false;
460 }
461 EXPORT_SYMBOL(file_ns_capable);
462
463 /**
464 * privileged_wrt_inode_uidgid - Do capabilities in the namespace work over the inode?
465 * @ns: The user namespace in question
466 * @idmap: idmap of the mount @inode was found from
467 * @inode: The inode in question
468 *
469 * Return true if the inode uid and gid are within the namespace.
470 */
privileged_wrt_inode_uidgid(struct user_namespace * ns,struct mnt_idmap * idmap,const struct inode * inode)471 bool privileged_wrt_inode_uidgid(struct user_namespace *ns,
472 struct mnt_idmap *idmap,
473 const struct inode *inode)
474 {
475 return vfsuid_has_mapping(ns, i_uid_into_vfsuid(idmap, inode)) &&
476 vfsgid_has_mapping(ns, i_gid_into_vfsgid(idmap, inode));
477 }
478
479 /**
480 * capable_wrt_inode_uidgid - Check nsown_capable and uid and gid mapped
481 * @idmap: idmap of the mount @inode was found from
482 * @inode: The inode in question
483 * @cap: The capability in question
484 *
485 * Return true if the current task has the given capability targeted at
486 * its own user namespace and that the given inode's uid and gid are
487 * mapped into the current user namespace.
488 */
capable_wrt_inode_uidgid(struct mnt_idmap * idmap,const struct inode * inode,int cap)489 bool capable_wrt_inode_uidgid(struct mnt_idmap *idmap,
490 const struct inode *inode, int cap)
491 {
492 struct user_namespace *ns = current_user_ns();
493
494 return ns_capable(ns, cap) &&
495 privileged_wrt_inode_uidgid(ns, idmap, inode);
496 }
497 EXPORT_SYMBOL(capable_wrt_inode_uidgid);
498
499 /**
500 * ptracer_capable - Determine if the ptracer holds CAP_SYS_PTRACE in the namespace
501 * @tsk: The task that may be ptraced
502 * @ns: The user namespace to search for CAP_SYS_PTRACE in
503 *
504 * Return true if the task that is ptracing the current task had CAP_SYS_PTRACE
505 * in the specified user namespace.
506 */
ptracer_capable(struct task_struct * tsk,struct user_namespace * ns)507 bool ptracer_capable(struct task_struct *tsk, struct user_namespace *ns)
508 {
509 int ret = 0; /* An absent tracer adds no restrictions */
510 const struct cred *cred;
511
512 rcu_read_lock();
513 cred = rcu_dereference(tsk->ptracer_cred);
514 if (cred)
515 ret = security_capable(cred, ns, CAP_SYS_PTRACE,
516 CAP_OPT_NOAUDIT);
517 rcu_read_unlock();
518 return (ret == 0);
519 }
520