1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <[email protected]>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/mutex.h>
43 #include <linux/netdevice.h>
44 #include <linux/rcupdate.h>
45
46 #include <net/net_namespace.h>
47 #include <net/tcp.h>
48 #include <net/strparser.h>
49 #include <crypto/aead.h>
50 #include <uapi/linux/tls.h>
51
52 struct tls_rec;
53
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
56
57 #define TLS_HEADER_SIZE 5
58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
59
60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
61
62 #define TLS_HANDSHAKE_KEYUPDATE 24 /* rfc8446 B.3: Key update */
63
64 #define TLS_AAD_SPACE_SIZE 13
65
66 #define TLS_MAX_IV_SIZE 16
67 #define TLS_MAX_SALT_SIZE 4
68 #define TLS_TAG_SIZE 16
69 #define TLS_MAX_REC_SEQ_SIZE 8
70 #define TLS_MAX_AAD_SIZE TLS_AAD_SPACE_SIZE
71
72 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
73 *
74 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
75 *
76 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
77 * Hence b0 contains (3 - 1) = 2.
78 */
79 #define TLS_AES_CCM_IV_B0_BYTE 2
80 #define TLS_SM4_CCM_IV_B0_BYTE 2
81
82 enum {
83 TLS_BASE,
84 TLS_SW,
85 TLS_HW,
86 TLS_HW_RECORD,
87 TLS_NUM_CONFIG,
88 };
89
90 struct tx_work {
91 struct delayed_work work;
92 struct sock *sk;
93 };
94
95 struct tls_sw_context_tx {
96 struct crypto_aead *aead_send;
97 struct crypto_wait async_wait;
98 struct tx_work tx_work;
99 struct tls_rec *open_rec;
100 struct list_head tx_list;
101 atomic_t encrypt_pending;
102 u8 async_capable:1;
103
104 #define BIT_TX_SCHEDULED 0
105 #define BIT_TX_CLOSING 1
106 unsigned long tx_bitmask;
107 };
108
109 struct tls_strparser {
110 struct sock *sk;
111
112 u32 mark : 8;
113 u32 stopped : 1;
114 u32 copy_mode : 1;
115 u32 mixed_decrypted : 1;
116
117 bool msg_ready;
118
119 struct strp_msg stm;
120
121 struct sk_buff *anchor;
122 struct work_struct work;
123 };
124
125 struct tls_sw_context_rx {
126 struct crypto_aead *aead_recv;
127 struct crypto_wait async_wait;
128 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
129 void (*saved_data_ready)(struct sock *sk);
130
131 u8 reader_present;
132 u8 async_capable:1;
133 u8 zc_capable:1;
134 u8 reader_contended:1;
135 bool key_update_pending;
136
137 struct tls_strparser strp;
138
139 atomic_t decrypt_pending;
140 struct sk_buff_head async_hold;
141 struct wait_queue_head wq;
142 };
143
144 struct tls_record_info {
145 struct list_head list;
146 u32 end_seq;
147 int len;
148 int num_frags;
149 skb_frag_t frags[MAX_SKB_FRAGS];
150 };
151
152 #define TLS_DRIVER_STATE_SIZE_TX 16
153 struct tls_offload_context_tx {
154 struct crypto_aead *aead_send;
155 spinlock_t lock; /* protects records list */
156 struct list_head records_list;
157 struct tls_record_info *open_record;
158 struct tls_record_info *retransmit_hint;
159 u64 hint_record_sn;
160 u64 unacked_record_sn;
161
162 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
163 void (*sk_destruct)(struct sock *sk);
164 struct work_struct destruct_work;
165 struct tls_context *ctx;
166 /* The TLS layer reserves room for driver specific state
167 * Currently the belief is that there is not enough
168 * driver specific state to justify another layer of indirection
169 */
170 u8 driver_state[TLS_DRIVER_STATE_SIZE_TX] __aligned(8);
171 };
172
173 enum tls_context_flags {
174 /* tls_device_down was called after the netdev went down, device state
175 * was released, and kTLS works in software, even though rx_conf is
176 * still TLS_HW (needed for transition).
177 */
178 TLS_RX_DEV_DEGRADED = 0,
179 /* Unlike RX where resync is driven entirely by the core in TX only
180 * the driver knows when things went out of sync, so we need the flag
181 * to be atomic.
182 */
183 TLS_TX_SYNC_SCHED = 1,
184 /* tls_dev_del was called for the RX side, device state was released,
185 * but tls_ctx->netdev might still be kept, because TX-side driver
186 * resources might not be released yet. Used to prevent the second
187 * tls_dev_del call in tls_device_down if it happens simultaneously.
188 */
189 TLS_RX_DEV_CLOSED = 2,
190 };
191
192 struct cipher_context {
193 char iv[TLS_MAX_IV_SIZE + TLS_MAX_SALT_SIZE];
194 char rec_seq[TLS_MAX_REC_SEQ_SIZE];
195 };
196
197 union tls_crypto_context {
198 struct tls_crypto_info info;
199 union {
200 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
201 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
202 struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
203 struct tls12_crypto_info_sm4_gcm sm4_gcm;
204 struct tls12_crypto_info_sm4_ccm sm4_ccm;
205 };
206 };
207
208 struct tls_prot_info {
209 u16 version;
210 u16 cipher_type;
211 u16 prepend_size;
212 u16 tag_size;
213 u16 overhead_size;
214 u16 iv_size;
215 u16 salt_size;
216 u16 rec_seq_size;
217 u16 aad_size;
218 u16 tail_size;
219 };
220
221 struct tls_context {
222 /* read-only cache line */
223 struct tls_prot_info prot_info;
224
225 u8 tx_conf:3;
226 u8 rx_conf:3;
227 u8 zerocopy_sendfile:1;
228 u8 rx_no_pad:1;
229
230 int (*push_pending_record)(struct sock *sk, int flags);
231 void (*sk_write_space)(struct sock *sk);
232
233 void *priv_ctx_tx;
234 void *priv_ctx_rx;
235
236 struct net_device __rcu *netdev;
237
238 /* rw cache line */
239 struct cipher_context tx;
240 struct cipher_context rx;
241
242 struct scatterlist *partially_sent_record;
243 u16 partially_sent_offset;
244
245 bool splicing_pages;
246 bool pending_open_record_frags;
247
248 struct mutex tx_lock; /* protects partially_sent_* fields and
249 * per-type TX fields
250 */
251 unsigned long flags;
252
253 /* cache cold stuff */
254 struct proto *sk_proto;
255 struct sock *sk;
256
257 void (*sk_destruct)(struct sock *sk);
258
259 union tls_crypto_context crypto_send;
260 union tls_crypto_context crypto_recv;
261
262 struct list_head list;
263 refcount_t refcount;
264 struct rcu_head rcu;
265 };
266
267 enum tls_offload_ctx_dir {
268 TLS_OFFLOAD_CTX_DIR_RX,
269 TLS_OFFLOAD_CTX_DIR_TX,
270 };
271
272 struct tlsdev_ops {
273 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
274 enum tls_offload_ctx_dir direction,
275 struct tls_crypto_info *crypto_info,
276 u32 start_offload_tcp_sn);
277 void (*tls_dev_del)(struct net_device *netdev,
278 struct tls_context *ctx,
279 enum tls_offload_ctx_dir direction);
280 int (*tls_dev_resync)(struct net_device *netdev,
281 struct sock *sk, u32 seq, u8 *rcd_sn,
282 enum tls_offload_ctx_dir direction);
283 };
284
285 enum tls_offload_sync_type {
286 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
287 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
288 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
289 };
290
291 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2
292 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
293
294 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13
295 struct tls_offload_resync_async {
296 atomic64_t req;
297 u16 loglen;
298 u16 rcd_delta;
299 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
300 };
301
302 #define TLS_DRIVER_STATE_SIZE_RX 8
303 struct tls_offload_context_rx {
304 /* sw must be the first member of tls_offload_context_rx */
305 struct tls_sw_context_rx sw;
306 enum tls_offload_sync_type resync_type;
307 /* this member is set regardless of resync_type, to avoid branches */
308 u8 resync_nh_reset:1;
309 /* CORE_NEXT_HINT-only member, but use the hole here */
310 u8 resync_nh_do_now:1;
311 union {
312 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
313 struct {
314 atomic64_t resync_req;
315 };
316 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
317 struct {
318 u32 decrypted_failed;
319 u32 decrypted_tgt;
320 } resync_nh;
321 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
322 struct {
323 struct tls_offload_resync_async *resync_async;
324 };
325 };
326 /* The TLS layer reserves room for driver specific state
327 * Currently the belief is that there is not enough
328 * driver specific state to justify another layer of indirection
329 */
330 u8 driver_state[TLS_DRIVER_STATE_SIZE_RX] __aligned(8);
331 };
332
333 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
334 u32 seq, u64 *p_record_sn);
335
tls_record_is_start_marker(struct tls_record_info * rec)336 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
337 {
338 return rec->len == 0;
339 }
340
tls_record_start_seq(struct tls_record_info * rec)341 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
342 {
343 return rec->end_seq - rec->len;
344 }
345
346 struct sk_buff *
347 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
348 struct sk_buff *skb);
349 struct sk_buff *
350 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
351 struct sk_buff *skb);
352
tls_is_skb_tx_device_offloaded(const struct sk_buff * skb)353 static inline bool tls_is_skb_tx_device_offloaded(const struct sk_buff *skb)
354 {
355 #ifdef CONFIG_TLS_DEVICE
356 struct sock *sk = skb->sk;
357
358 return sk && sk_fullsock(sk) &&
359 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
360 &tls_validate_xmit_skb);
361 #else
362 return false;
363 #endif
364 }
365
tls_get_ctx(const struct sock * sk)366 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
367 {
368 const struct inet_connection_sock *icsk = inet_csk(sk);
369
370 /* Use RCU on icsk_ulp_data only for sock diag code,
371 * TLS data path doesn't need rcu_dereference().
372 */
373 return (__force void *)icsk->icsk_ulp_data;
374 }
375
tls_sw_ctx_rx(const struct tls_context * tls_ctx)376 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
377 const struct tls_context *tls_ctx)
378 {
379 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
380 }
381
tls_sw_ctx_tx(const struct tls_context * tls_ctx)382 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
383 const struct tls_context *tls_ctx)
384 {
385 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
386 }
387
388 static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context * tls_ctx)389 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
390 {
391 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
392 }
393
tls_sw_has_ctx_tx(const struct sock * sk)394 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
395 {
396 struct tls_context *ctx;
397
398 if (!sk_is_inet(sk) || !inet_test_bit(IS_ICSK, sk))
399 return false;
400
401 ctx = tls_get_ctx(sk);
402 if (!ctx)
403 return false;
404 return !!tls_sw_ctx_tx(ctx);
405 }
406
tls_sw_has_ctx_rx(const struct sock * sk)407 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
408 {
409 struct tls_context *ctx;
410
411 if (!sk_is_inet(sk) || !inet_test_bit(IS_ICSK, sk))
412 return false;
413
414 ctx = tls_get_ctx(sk);
415 if (!ctx)
416 return false;
417 return !!tls_sw_ctx_rx(ctx);
418 }
419
420 static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context * tls_ctx)421 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
422 {
423 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
424 }
425
__tls_driver_ctx(struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)426 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
427 enum tls_offload_ctx_dir direction)
428 {
429 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
430 return tls_offload_ctx_tx(tls_ctx)->driver_state;
431 else
432 return tls_offload_ctx_rx(tls_ctx)->driver_state;
433 }
434
435 static inline void *
tls_driver_ctx(const struct sock * sk,enum tls_offload_ctx_dir direction)436 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
437 {
438 return __tls_driver_ctx(tls_get_ctx(sk), direction);
439 }
440
441 #define RESYNC_REQ BIT(0)
442 #define RESYNC_REQ_ASYNC BIT(1)
443 /* The TLS context is valid until sk_destruct is called */
tls_offload_rx_resync_request(struct sock * sk,__be32 seq)444 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
445 {
446 struct tls_context *tls_ctx = tls_get_ctx(sk);
447 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
448
449 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
450 }
451
452 /* Log all TLS record header TCP sequences in [seq, seq+len] */
453 static inline void
tls_offload_rx_resync_async_request_start(struct sock * sk,__be32 seq,u16 len)454 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
455 {
456 struct tls_context *tls_ctx = tls_get_ctx(sk);
457 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
458
459 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
460 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
461 rx_ctx->resync_async->loglen = 0;
462 rx_ctx->resync_async->rcd_delta = 0;
463 }
464
465 static inline void
tls_offload_rx_resync_async_request_end(struct sock * sk,__be32 seq)466 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
467 {
468 struct tls_context *tls_ctx = tls_get_ctx(sk);
469 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
470
471 atomic64_set(&rx_ctx->resync_async->req,
472 ((u64)ntohl(seq) << 32) | RESYNC_REQ);
473 }
474
475 static inline void
tls_offload_rx_resync_set_type(struct sock * sk,enum tls_offload_sync_type type)476 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
477 {
478 struct tls_context *tls_ctx = tls_get_ctx(sk);
479
480 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
481 }
482
483 /* Driver's seq tracking has to be disabled until resync succeeded */
tls_offload_tx_resync_pending(struct sock * sk)484 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
485 {
486 struct tls_context *tls_ctx = tls_get_ctx(sk);
487 bool ret;
488
489 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
490 smp_mb__after_atomic();
491 return ret;
492 }
493
494 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
495
496 #ifdef CONFIG_TLS_DEVICE
497 void tls_device_sk_destruct(struct sock *sk);
498 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
499
tls_is_sk_rx_device_offloaded(struct sock * sk)500 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
501 {
502 if (!sk_fullsock(sk) ||
503 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
504 return false;
505 return tls_get_ctx(sk)->rx_conf == TLS_HW;
506 }
507 #endif
508 #endif /* _TLS_OFFLOAD_H */
509