1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MMZONE_H
3 #define _LINUX_MMZONE_H
4 
5 #ifndef __ASSEMBLY__
6 #ifndef __GENERATING_BOUNDS_H
7 
8 #include <linux/spinlock.h>
9 #include <linux/list.h>
10 #include <linux/list_nulls.h>
11 #include <linux/wait.h>
12 #include <linux/bitops.h>
13 #include <linux/cache.h>
14 #include <linux/threads.h>
15 #include <linux/numa.h>
16 #include <linux/init.h>
17 #include <linux/seqlock.h>
18 #include <linux/nodemask.h>
19 #include <linux/pageblock-flags.h>
20 #include <linux/page-flags-layout.h>
21 #include <linux/atomic.h>
22 #include <linux/mm_types.h>
23 #include <linux/page-flags.h>
24 #include <linux/local_lock.h>
25 #include <linux/zswap.h>
26 #include <asm/page.h>
27 
28 /* Free memory management - zoned buddy allocator.  */
29 #ifndef CONFIG_ARCH_FORCE_MAX_ORDER
30 #define MAX_PAGE_ORDER 10
31 #else
32 #define MAX_PAGE_ORDER CONFIG_ARCH_FORCE_MAX_ORDER
33 #endif
34 #define MAX_ORDER_NR_PAGES (1 << MAX_PAGE_ORDER)
35 
36 #define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES)
37 
38 #define NR_PAGE_ORDERS (MAX_PAGE_ORDER + 1)
39 
40 /*
41  * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
42  * costly to service.  That is between allocation orders which should
43  * coalesce naturally under reasonable reclaim pressure and those which
44  * will not.
45  */
46 #define PAGE_ALLOC_COSTLY_ORDER 3
47 
48 enum migratetype {
49 	MIGRATE_UNMOVABLE,
50 	MIGRATE_MOVABLE,
51 	MIGRATE_RECLAIMABLE,
52 	MIGRATE_PCPTYPES,	/* the number of types on the pcp lists */
53 	MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES,
54 #ifdef CONFIG_CMA
55 	/*
56 	 * MIGRATE_CMA migration type is designed to mimic the way
57 	 * ZONE_MOVABLE works.  Only movable pages can be allocated
58 	 * from MIGRATE_CMA pageblocks and page allocator never
59 	 * implicitly change migration type of MIGRATE_CMA pageblock.
60 	 *
61 	 * The way to use it is to change migratetype of a range of
62 	 * pageblocks to MIGRATE_CMA which can be done by
63 	 * __free_pageblock_cma() function.
64 	 */
65 	MIGRATE_CMA,
66 #endif
67 #ifdef CONFIG_MEMORY_ISOLATION
68 	MIGRATE_ISOLATE,	/* can't allocate from here */
69 #endif
70 	MIGRATE_TYPES
71 };
72 
73 /* In mm/page_alloc.c; keep in sync also with show_migration_types() there */
74 extern const char * const migratetype_names[MIGRATE_TYPES];
75 
76 #ifdef CONFIG_CMA
77 #  define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA)
78 #  define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA)
79 #  define is_migrate_cma_folio(folio, pfn)	(MIGRATE_CMA ==		\
80 	get_pfnblock_flags_mask(&folio->page, pfn, MIGRATETYPE_MASK))
81 #else
82 #  define is_migrate_cma(migratetype) false
83 #  define is_migrate_cma_page(_page) false
84 #  define is_migrate_cma_folio(folio, pfn) false
85 #endif
86 
is_migrate_movable(int mt)87 static inline bool is_migrate_movable(int mt)
88 {
89 	return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE;
90 }
91 
92 /*
93  * Check whether a migratetype can be merged with another migratetype.
94  *
95  * It is only mergeable when it can fall back to other migratetypes for
96  * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c.
97  */
migratetype_is_mergeable(int mt)98 static inline bool migratetype_is_mergeable(int mt)
99 {
100 	return mt < MIGRATE_PCPTYPES;
101 }
102 
103 #define for_each_migratetype_order(order, type) \
104 	for (order = 0; order < NR_PAGE_ORDERS; order++) \
105 		for (type = 0; type < MIGRATE_TYPES; type++)
106 
107 extern int page_group_by_mobility_disabled;
108 
109 #define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1)
110 
111 #define get_pageblock_migratetype(page)					\
112 	get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK)
113 
114 #define folio_migratetype(folio)				\
115 	get_pfnblock_flags_mask(&folio->page, folio_pfn(folio),		\
116 			MIGRATETYPE_MASK)
117 struct free_area {
118 	struct list_head	free_list[MIGRATE_TYPES];
119 	unsigned long		nr_free;
120 };
121 
122 struct pglist_data;
123 
124 #ifdef CONFIG_NUMA
125 enum numa_stat_item {
126 	NUMA_HIT,		/* allocated in intended node */
127 	NUMA_MISS,		/* allocated in non intended node */
128 	NUMA_FOREIGN,		/* was intended here, hit elsewhere */
129 	NUMA_INTERLEAVE_HIT,	/* interleaver preferred this zone */
130 	NUMA_LOCAL,		/* allocation from local node */
131 	NUMA_OTHER,		/* allocation from other node */
132 	NR_VM_NUMA_EVENT_ITEMS
133 };
134 #else
135 #define NR_VM_NUMA_EVENT_ITEMS 0
136 #endif
137 
138 enum zone_stat_item {
139 	/* First 128 byte cacheline (assuming 64 bit words) */
140 	NR_FREE_PAGES,
141 	NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */
142 	NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE,
143 	NR_ZONE_ACTIVE_ANON,
144 	NR_ZONE_INACTIVE_FILE,
145 	NR_ZONE_ACTIVE_FILE,
146 	NR_ZONE_UNEVICTABLE,
147 	NR_ZONE_WRITE_PENDING,	/* Count of dirty, writeback and unstable pages */
148 	NR_MLOCK,		/* mlock()ed pages found and moved off LRU */
149 	/* Second 128 byte cacheline */
150 	NR_BOUNCE,
151 #if IS_ENABLED(CONFIG_ZSMALLOC)
152 	NR_ZSPAGES,		/* allocated in zsmalloc */
153 #endif
154 	NR_FREE_CMA_PAGES,
155 #ifdef CONFIG_UNACCEPTED_MEMORY
156 	NR_UNACCEPTED,
157 #endif
158 	NR_VM_ZONE_STAT_ITEMS };
159 
160 enum node_stat_item {
161 	NR_LRU_BASE,
162 	NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
163 	NR_ACTIVE_ANON,		/*  "     "     "   "       "         */
164 	NR_INACTIVE_FILE,	/*  "     "     "   "       "         */
165 	NR_ACTIVE_FILE,		/*  "     "     "   "       "         */
166 	NR_UNEVICTABLE,		/*  "     "     "   "       "         */
167 	NR_SLAB_RECLAIMABLE_B,
168 	NR_SLAB_UNRECLAIMABLE_B,
169 	NR_ISOLATED_ANON,	/* Temporary isolated pages from anon lru */
170 	NR_ISOLATED_FILE,	/* Temporary isolated pages from file lru */
171 	WORKINGSET_NODES,
172 	WORKINGSET_REFAULT_BASE,
173 	WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE,
174 	WORKINGSET_REFAULT_FILE,
175 	WORKINGSET_ACTIVATE_BASE,
176 	WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE,
177 	WORKINGSET_ACTIVATE_FILE,
178 	WORKINGSET_RESTORE_BASE,
179 	WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE,
180 	WORKINGSET_RESTORE_FILE,
181 	WORKINGSET_NODERECLAIM,
182 	NR_ANON_MAPPED,	/* Mapped anonymous pages */
183 	NR_FILE_MAPPED,	/* pagecache pages mapped into pagetables.
184 			   only modified from process context */
185 	NR_FILE_PAGES,
186 	NR_FILE_DIRTY,
187 	NR_WRITEBACK,
188 	NR_WRITEBACK_TEMP,	/* Writeback using temporary buffers */
189 	NR_SHMEM,		/* shmem pages (included tmpfs/GEM pages) */
190 	NR_SHMEM_THPS,
191 	NR_SHMEM_PMDMAPPED,
192 	NR_FILE_THPS,
193 	NR_FILE_PMDMAPPED,
194 	NR_ANON_THPS,
195 	NR_VMSCAN_WRITE,
196 	NR_VMSCAN_IMMEDIATE,	/* Prioritise for reclaim when writeback ends */
197 	NR_DIRTIED,		/* page dirtyings since bootup */
198 	NR_WRITTEN,		/* page writings since bootup */
199 	NR_THROTTLED_WRITTEN,	/* NR_WRITTEN while reclaim throttled */
200 	NR_KERNEL_MISC_RECLAIMABLE,	/* reclaimable non-slab kernel pages */
201 	NR_FOLL_PIN_ACQUIRED,	/* via: pin_user_page(), gup flag: FOLL_PIN */
202 	NR_FOLL_PIN_RELEASED,	/* pages returned via unpin_user_page() */
203 	NR_KERNEL_STACK_KB,	/* measured in KiB */
204 #if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
205 	NR_KERNEL_SCS_KB,	/* measured in KiB */
206 #endif
207 	NR_PAGETABLE,		/* used for pagetables */
208 	NR_SECONDARY_PAGETABLE, /* secondary pagetables, KVM & IOMMU */
209 #ifdef CONFIG_IOMMU_SUPPORT
210 	NR_IOMMU_PAGES,		/* # of pages allocated by IOMMU */
211 #endif
212 #ifdef CONFIG_SWAP
213 	NR_SWAPCACHE,
214 #endif
215 #ifdef CONFIG_NUMA_BALANCING
216 	PGPROMOTE_SUCCESS,	/* promote successfully */
217 	PGPROMOTE_CANDIDATE,	/* candidate pages to promote */
218 #endif
219 	/* PGDEMOTE_*: pages demoted */
220 	PGDEMOTE_KSWAPD,
221 	PGDEMOTE_DIRECT,
222 	PGDEMOTE_KHUGEPAGED,
223 #ifdef CONFIG_HUGETLB_PAGE
224 	NR_HUGETLB,
225 #endif
226 	NR_VM_NODE_STAT_ITEMS
227 };
228 
229 /*
230  * Returns true if the item should be printed in THPs (/proc/vmstat
231  * currently prints number of anon, file and shmem THPs. But the item
232  * is charged in pages).
233  */
vmstat_item_print_in_thp(enum node_stat_item item)234 static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item)
235 {
236 	if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
237 		return false;
238 
239 	return item == NR_ANON_THPS ||
240 	       item == NR_FILE_THPS ||
241 	       item == NR_SHMEM_THPS ||
242 	       item == NR_SHMEM_PMDMAPPED ||
243 	       item == NR_FILE_PMDMAPPED;
244 }
245 
246 /*
247  * Returns true if the value is measured in bytes (most vmstat values are
248  * measured in pages). This defines the API part, the internal representation
249  * might be different.
250  */
vmstat_item_in_bytes(int idx)251 static __always_inline bool vmstat_item_in_bytes(int idx)
252 {
253 	/*
254 	 * Global and per-node slab counters track slab pages.
255 	 * It's expected that changes are multiples of PAGE_SIZE.
256 	 * Internally values are stored in pages.
257 	 *
258 	 * Per-memcg and per-lruvec counters track memory, consumed
259 	 * by individual slab objects. These counters are actually
260 	 * byte-precise.
261 	 */
262 	return (idx == NR_SLAB_RECLAIMABLE_B ||
263 		idx == NR_SLAB_UNRECLAIMABLE_B);
264 }
265 
266 /*
267  * We do arithmetic on the LRU lists in various places in the code,
268  * so it is important to keep the active lists LRU_ACTIVE higher in
269  * the array than the corresponding inactive lists, and to keep
270  * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
271  *
272  * This has to be kept in sync with the statistics in zone_stat_item
273  * above and the descriptions in vmstat_text in mm/vmstat.c
274  */
275 #define LRU_BASE 0
276 #define LRU_ACTIVE 1
277 #define LRU_FILE 2
278 
279 enum lru_list {
280 	LRU_INACTIVE_ANON = LRU_BASE,
281 	LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
282 	LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
283 	LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
284 	LRU_UNEVICTABLE,
285 	NR_LRU_LISTS
286 };
287 
288 enum vmscan_throttle_state {
289 	VMSCAN_THROTTLE_WRITEBACK,
290 	VMSCAN_THROTTLE_ISOLATED,
291 	VMSCAN_THROTTLE_NOPROGRESS,
292 	VMSCAN_THROTTLE_CONGESTED,
293 	NR_VMSCAN_THROTTLE,
294 };
295 
296 #define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++)
297 
298 #define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++)
299 
is_file_lru(enum lru_list lru)300 static inline bool is_file_lru(enum lru_list lru)
301 {
302 	return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE);
303 }
304 
is_active_lru(enum lru_list lru)305 static inline bool is_active_lru(enum lru_list lru)
306 {
307 	return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE);
308 }
309 
310 #define WORKINGSET_ANON 0
311 #define WORKINGSET_FILE 1
312 #define ANON_AND_FILE 2
313 
314 enum lruvec_flags {
315 	/*
316 	 * An lruvec has many dirty pages backed by a congested BDI:
317 	 * 1. LRUVEC_CGROUP_CONGESTED is set by cgroup-level reclaim.
318 	 *    It can be cleared by cgroup reclaim or kswapd.
319 	 * 2. LRUVEC_NODE_CONGESTED is set by kswapd node-level reclaim.
320 	 *    It can only be cleared by kswapd.
321 	 *
322 	 * Essentially, kswapd can unthrottle an lruvec throttled by cgroup
323 	 * reclaim, but not vice versa. This only applies to the root cgroup.
324 	 * The goal is to prevent cgroup reclaim on the root cgroup (e.g.
325 	 * memory.reclaim) to unthrottle an unbalanced node (that was throttled
326 	 * by kswapd).
327 	 */
328 	LRUVEC_CGROUP_CONGESTED,
329 	LRUVEC_NODE_CONGESTED,
330 };
331 
332 #endif /* !__GENERATING_BOUNDS_H */
333 
334 /*
335  * Evictable folios are divided into multiple generations. The youngest and the
336  * oldest generation numbers, max_seq and min_seq, are monotonically increasing.
337  * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An
338  * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the
339  * corresponding generation. The gen counter in folio->flags stores gen+1 while
340  * a folio is on one of lrugen->folios[]. Otherwise it stores 0.
341  *
342  * After a folio is faulted in, the aging needs to check the accessed bit at
343  * least twice before handing this folio over to the eviction. The first check
344  * clears the accessed bit from the initial fault; the second check makes sure
345  * this folio hasn't been used since then. This process, AKA second chance,
346  * requires a minimum of two generations, hence MIN_NR_GENS. And to maintain ABI
347  * compatibility with the active/inactive LRU, e.g., /proc/vmstat, these two
348  * generations are considered active; the rest of generations, if they exist,
349  * are considered inactive. See lru_gen_is_active().
350  *
351  * PG_active is always cleared while a folio is on one of lrugen->folios[] so
352  * that the sliding window needs not to worry about it. And it's set again when
353  * a folio considered active is isolated for non-reclaiming purposes, e.g.,
354  * migration. See lru_gen_add_folio() and lru_gen_del_folio().
355  *
356  * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the
357  * number of categories of the active/inactive LRU when keeping track of
358  * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits
359  * in folio->flags, masked by LRU_GEN_MASK.
360  */
361 #define MIN_NR_GENS		2U
362 #define MAX_NR_GENS		4U
363 
364 /*
365  * Each generation is divided into multiple tiers. A folio accessed N times
366  * through file descriptors is in tier order_base_2(N). A folio in the first
367  * tier (N=0,1) is marked by PG_referenced unless it was faulted in through page
368  * tables or read ahead. A folio in the last tier (MAX_NR_TIERS-1) is marked by
369  * PG_workingset. A folio in any other tier (1<N<5) between the first and last
370  * is marked by additional bits of LRU_REFS_WIDTH in folio->flags.
371  *
372  * In contrast to moving across generations which requires the LRU lock, moving
373  * across tiers only involves atomic operations on folio->flags and therefore
374  * has a negligible cost in the buffered access path. In the eviction path,
375  * comparisons of refaulted/(evicted+protected) from the first tier and the rest
376  * infer whether folios accessed multiple times through file descriptors are
377  * statistically hot and thus worth protecting.
378  *
379  * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the
380  * number of categories of the active/inactive LRU when keeping track of
381  * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in
382  * folio->flags, masked by LRU_REFS_MASK.
383  */
384 #define MAX_NR_TIERS		4U
385 
386 #ifndef __GENERATING_BOUNDS_H
387 
388 #define LRU_GEN_MASK		((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF)
389 #define LRU_REFS_MASK		((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF)
390 
391 /*
392  * For folios accessed multiple times through file descriptors,
393  * lru_gen_inc_refs() sets additional bits of LRU_REFS_WIDTH in folio->flags
394  * after PG_referenced, then PG_workingset after LRU_REFS_WIDTH. After all its
395  * bits are set, i.e., LRU_REFS_FLAGS|BIT(PG_workingset), a folio is lazily
396  * promoted into the second oldest generation in the eviction path. And when
397  * folio_inc_gen() does that, it clears LRU_REFS_FLAGS so that
398  * lru_gen_inc_refs() can start over. Note that for this case, LRU_REFS_MASK is
399  * only valid when PG_referenced is set.
400  *
401  * For folios accessed multiple times through page tables, folio_update_gen()
402  * from a page table walk or lru_gen_set_refs() from a rmap walk sets
403  * PG_referenced after the accessed bit is cleared for the first time.
404  * Thereafter, those two paths set PG_workingset and promote folios to the
405  * youngest generation. Like folio_inc_gen(), folio_update_gen() also clears
406  * PG_referenced. Note that for this case, LRU_REFS_MASK is not used.
407  *
408  * For both cases above, after PG_workingset is set on a folio, it remains until
409  * this folio is either reclaimed, or "deactivated" by lru_gen_clear_refs(). It
410  * can be set again if lru_gen_test_recent() returns true upon a refault.
411  */
412 #define LRU_REFS_FLAGS		(LRU_REFS_MASK | BIT(PG_referenced))
413 
414 struct lruvec;
415 struct page_vma_mapped_walk;
416 
417 #ifdef CONFIG_LRU_GEN
418 
419 enum {
420 	LRU_GEN_ANON,
421 	LRU_GEN_FILE,
422 };
423 
424 enum {
425 	LRU_GEN_CORE,
426 	LRU_GEN_MM_WALK,
427 	LRU_GEN_NONLEAF_YOUNG,
428 	NR_LRU_GEN_CAPS
429 };
430 
431 #define MIN_LRU_BATCH		BITS_PER_LONG
432 #define MAX_LRU_BATCH		(MIN_LRU_BATCH * 64)
433 
434 /* whether to keep historical stats from evicted generations */
435 #ifdef CONFIG_LRU_GEN_STATS
436 #define NR_HIST_GENS		MAX_NR_GENS
437 #else
438 #define NR_HIST_GENS		1U
439 #endif
440 
441 /*
442  * The youngest generation number is stored in max_seq for both anon and file
443  * types as they are aged on an equal footing. The oldest generation numbers are
444  * stored in min_seq[] separately for anon and file types so that they can be
445  * incremented independently. Ideally min_seq[] are kept in sync when both anon
446  * and file types are evictable. However, to adapt to situations like extreme
447  * swappiness, they are allowed to be out of sync by at most
448  * MAX_NR_GENS-MIN_NR_GENS-1.
449  *
450  * The number of pages in each generation is eventually consistent and therefore
451  * can be transiently negative when reset_batch_size() is pending.
452  */
453 struct lru_gen_folio {
454 	/* the aging increments the youngest generation number */
455 	unsigned long max_seq;
456 	/* the eviction increments the oldest generation numbers */
457 	unsigned long min_seq[ANON_AND_FILE];
458 	/* the birth time of each generation in jiffies */
459 	unsigned long timestamps[MAX_NR_GENS];
460 	/* the multi-gen LRU lists, lazily sorted on eviction */
461 	struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
462 	/* the multi-gen LRU sizes, eventually consistent */
463 	long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
464 	/* the exponential moving average of refaulted */
465 	unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS];
466 	/* the exponential moving average of evicted+protected */
467 	unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS];
468 	/* can only be modified under the LRU lock */
469 	unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
470 	/* can be modified without holding the LRU lock */
471 	atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
472 	atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS];
473 	/* whether the multi-gen LRU is enabled */
474 	bool enabled;
475 	/* the memcg generation this lru_gen_folio belongs to */
476 	u8 gen;
477 	/* the list segment this lru_gen_folio belongs to */
478 	u8 seg;
479 	/* per-node lru_gen_folio list for global reclaim */
480 	struct hlist_nulls_node list;
481 };
482 
483 enum {
484 	MM_LEAF_TOTAL,		/* total leaf entries */
485 	MM_LEAF_YOUNG,		/* young leaf entries */
486 	MM_NONLEAF_FOUND,	/* non-leaf entries found in Bloom filters */
487 	MM_NONLEAF_ADDED,	/* non-leaf entries added to Bloom filters */
488 	NR_MM_STATS
489 };
490 
491 /* double-buffering Bloom filters */
492 #define NR_BLOOM_FILTERS	2
493 
494 struct lru_gen_mm_state {
495 	/* synced with max_seq after each iteration */
496 	unsigned long seq;
497 	/* where the current iteration continues after */
498 	struct list_head *head;
499 	/* where the last iteration ended before */
500 	struct list_head *tail;
501 	/* Bloom filters flip after each iteration */
502 	unsigned long *filters[NR_BLOOM_FILTERS];
503 	/* the mm stats for debugging */
504 	unsigned long stats[NR_HIST_GENS][NR_MM_STATS];
505 };
506 
507 struct lru_gen_mm_walk {
508 	/* the lruvec under reclaim */
509 	struct lruvec *lruvec;
510 	/* max_seq from lru_gen_folio: can be out of date */
511 	unsigned long seq;
512 	/* the next address within an mm to scan */
513 	unsigned long next_addr;
514 	/* to batch promoted pages */
515 	int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES];
516 	/* to batch the mm stats */
517 	int mm_stats[NR_MM_STATS];
518 	/* total batched items */
519 	int batched;
520 	int swappiness;
521 	bool force_scan;
522 };
523 
524 /*
525  * For each node, memcgs are divided into two generations: the old and the
526  * young. For each generation, memcgs are randomly sharded into multiple bins
527  * to improve scalability. For each bin, the hlist_nulls is virtually divided
528  * into three segments: the head, the tail and the default.
529  *
530  * An onlining memcg is added to the tail of a random bin in the old generation.
531  * The eviction starts at the head of a random bin in the old generation. The
532  * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes
533  * the old generation, is incremented when all its bins become empty.
534  *
535  * There are four operations:
536  * 1. MEMCG_LRU_HEAD, which moves a memcg to the head of a random bin in its
537  *    current generation (old or young) and updates its "seg" to "head";
538  * 2. MEMCG_LRU_TAIL, which moves a memcg to the tail of a random bin in its
539  *    current generation (old or young) and updates its "seg" to "tail";
540  * 3. MEMCG_LRU_OLD, which moves a memcg to the head of a random bin in the old
541  *    generation, updates its "gen" to "old" and resets its "seg" to "default";
542  * 4. MEMCG_LRU_YOUNG, which moves a memcg to the tail of a random bin in the
543  *    young generation, updates its "gen" to "young" and resets its "seg" to
544  *    "default".
545  *
546  * The events that trigger the above operations are:
547  * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD;
548  * 2. The first attempt to reclaim a memcg below low, which triggers
549  *    MEMCG_LRU_TAIL;
550  * 3. The first attempt to reclaim a memcg offlined or below reclaimable size
551  *    threshold, which triggers MEMCG_LRU_TAIL;
552  * 4. The second attempt to reclaim a memcg offlined or below reclaimable size
553  *    threshold, which triggers MEMCG_LRU_YOUNG;
554  * 5. Attempting to reclaim a memcg below min, which triggers MEMCG_LRU_YOUNG;
555  * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG;
556  * 7. Offlining a memcg, which triggers MEMCG_LRU_OLD.
557  *
558  * Notes:
559  * 1. Memcg LRU only applies to global reclaim, and the round-robin incrementing
560  *    of their max_seq counters ensures the eventual fairness to all eligible
561  *    memcgs. For memcg reclaim, it still relies on mem_cgroup_iter().
562  * 2. There are only two valid generations: old (seq) and young (seq+1).
563  *    MEMCG_NR_GENS is set to three so that when reading the generation counter
564  *    locklessly, a stale value (seq-1) does not wraparound to young.
565  */
566 #define MEMCG_NR_GENS	3
567 #define MEMCG_NR_BINS	8
568 
569 struct lru_gen_memcg {
570 	/* the per-node memcg generation counter */
571 	unsigned long seq;
572 	/* each memcg has one lru_gen_folio per node */
573 	unsigned long nr_memcgs[MEMCG_NR_GENS];
574 	/* per-node lru_gen_folio list for global reclaim */
575 	struct hlist_nulls_head	fifo[MEMCG_NR_GENS][MEMCG_NR_BINS];
576 	/* protects the above */
577 	spinlock_t lock;
578 };
579 
580 void lru_gen_init_pgdat(struct pglist_data *pgdat);
581 void lru_gen_init_lruvec(struct lruvec *lruvec);
582 bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw);
583 
584 void lru_gen_init_memcg(struct mem_cgroup *memcg);
585 void lru_gen_exit_memcg(struct mem_cgroup *memcg);
586 void lru_gen_online_memcg(struct mem_cgroup *memcg);
587 void lru_gen_offline_memcg(struct mem_cgroup *memcg);
588 void lru_gen_release_memcg(struct mem_cgroup *memcg);
589 void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid);
590 
591 #else /* !CONFIG_LRU_GEN */
592 
lru_gen_init_pgdat(struct pglist_data * pgdat)593 static inline void lru_gen_init_pgdat(struct pglist_data *pgdat)
594 {
595 }
596 
lru_gen_init_lruvec(struct lruvec * lruvec)597 static inline void lru_gen_init_lruvec(struct lruvec *lruvec)
598 {
599 }
600 
lru_gen_look_around(struct page_vma_mapped_walk * pvmw)601 static inline bool lru_gen_look_around(struct page_vma_mapped_walk *pvmw)
602 {
603 	return false;
604 }
605 
lru_gen_init_memcg(struct mem_cgroup * memcg)606 static inline void lru_gen_init_memcg(struct mem_cgroup *memcg)
607 {
608 }
609 
lru_gen_exit_memcg(struct mem_cgroup * memcg)610 static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg)
611 {
612 }
613 
lru_gen_online_memcg(struct mem_cgroup * memcg)614 static inline void lru_gen_online_memcg(struct mem_cgroup *memcg)
615 {
616 }
617 
lru_gen_offline_memcg(struct mem_cgroup * memcg)618 static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg)
619 {
620 }
621 
lru_gen_release_memcg(struct mem_cgroup * memcg)622 static inline void lru_gen_release_memcg(struct mem_cgroup *memcg)
623 {
624 }
625 
lru_gen_soft_reclaim(struct mem_cgroup * memcg,int nid)626 static inline void lru_gen_soft_reclaim(struct mem_cgroup *memcg, int nid)
627 {
628 }
629 
630 #endif /* CONFIG_LRU_GEN */
631 
632 struct lruvec {
633 	struct list_head		lists[NR_LRU_LISTS];
634 	/* per lruvec lru_lock for memcg */
635 	spinlock_t			lru_lock;
636 	/*
637 	 * These track the cost of reclaiming one LRU - file or anon -
638 	 * over the other. As the observed cost of reclaiming one LRU
639 	 * increases, the reclaim scan balance tips toward the other.
640 	 */
641 	unsigned long			anon_cost;
642 	unsigned long			file_cost;
643 	/* Non-resident age, driven by LRU movement */
644 	atomic_long_t			nonresident_age;
645 	/* Refaults at the time of last reclaim cycle */
646 	unsigned long			refaults[ANON_AND_FILE];
647 	/* Various lruvec state flags (enum lruvec_flags) */
648 	unsigned long			flags;
649 #ifdef CONFIG_LRU_GEN
650 	/* evictable pages divided into generations */
651 	struct lru_gen_folio		lrugen;
652 #ifdef CONFIG_LRU_GEN_WALKS_MMU
653 	/* to concurrently iterate lru_gen_mm_list */
654 	struct lru_gen_mm_state		mm_state;
655 #endif
656 #endif /* CONFIG_LRU_GEN */
657 #ifdef CONFIG_MEMCG
658 	struct pglist_data *pgdat;
659 #endif
660 	struct zswap_lruvec_state zswap_lruvec_state;
661 };
662 
663 /* Isolate for asynchronous migration */
664 #define ISOLATE_ASYNC_MIGRATE	((__force isolate_mode_t)0x4)
665 /* Isolate unevictable pages */
666 #define ISOLATE_UNEVICTABLE	((__force isolate_mode_t)0x8)
667 
668 /* LRU Isolation modes. */
669 typedef unsigned __bitwise isolate_mode_t;
670 
671 enum zone_watermarks {
672 	WMARK_MIN,
673 	WMARK_LOW,
674 	WMARK_HIGH,
675 	WMARK_PROMO,
676 	NR_WMARK
677 };
678 
679 /*
680  * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. Two additional lists
681  * are added for THP. One PCP list is used by GPF_MOVABLE, and the other PCP list
682  * is used by GFP_UNMOVABLE and GFP_RECLAIMABLE.
683  */
684 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
685 #define NR_PCP_THP 2
686 #else
687 #define NR_PCP_THP 0
688 #endif
689 #define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1))
690 #define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP)
691 
692 /*
693  * Flags used in pcp->flags field.
694  *
695  * PCPF_PREV_FREE_HIGH_ORDER: a high-order page is freed in the
696  * previous page freeing.  To avoid to drain PCP for an accident
697  * high-order page freeing.
698  *
699  * PCPF_FREE_HIGH_BATCH: preserve "pcp->batch" pages in PCP before
700  * draining PCP for consecutive high-order pages freeing without
701  * allocation if data cache slice of CPU is large enough.  To reduce
702  * zone lock contention and keep cache-hot pages reusing.
703  */
704 #define	PCPF_PREV_FREE_HIGH_ORDER	BIT(0)
705 #define	PCPF_FREE_HIGH_BATCH		BIT(1)
706 
707 struct per_cpu_pages {
708 	spinlock_t lock;	/* Protects lists field */
709 	int count;		/* number of pages in the list */
710 	int high;		/* high watermark, emptying needed */
711 	int high_min;		/* min high watermark */
712 	int high_max;		/* max high watermark */
713 	int batch;		/* chunk size for buddy add/remove */
714 	u8 flags;		/* protected by pcp->lock */
715 	u8 alloc_factor;	/* batch scaling factor during allocate */
716 #ifdef CONFIG_NUMA
717 	u8 expire;		/* When 0, remote pagesets are drained */
718 #endif
719 	short free_count;	/* consecutive free count */
720 
721 	/* Lists of pages, one per migrate type stored on the pcp-lists */
722 	struct list_head lists[NR_PCP_LISTS];
723 } ____cacheline_aligned_in_smp;
724 
725 struct per_cpu_zonestat {
726 #ifdef CONFIG_SMP
727 	s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
728 	s8 stat_threshold;
729 #endif
730 #ifdef CONFIG_NUMA
731 	/*
732 	 * Low priority inaccurate counters that are only folded
733 	 * on demand. Use a large type to avoid the overhead of
734 	 * folding during refresh_cpu_vm_stats.
735 	 */
736 	unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
737 #endif
738 };
739 
740 struct per_cpu_nodestat {
741 	s8 stat_threshold;
742 	s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS];
743 };
744 
745 #endif /* !__GENERATING_BOUNDS.H */
746 
747 enum zone_type {
748 	/*
749 	 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able
750 	 * to DMA to all of the addressable memory (ZONE_NORMAL).
751 	 * On architectures where this area covers the whole 32 bit address
752 	 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller
753 	 * DMA addressing constraints. This distinction is important as a 32bit
754 	 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit
755 	 * platforms may need both zones as they support peripherals with
756 	 * different DMA addressing limitations.
757 	 */
758 #ifdef CONFIG_ZONE_DMA
759 	ZONE_DMA,
760 #endif
761 #ifdef CONFIG_ZONE_DMA32
762 	ZONE_DMA32,
763 #endif
764 	/*
765 	 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
766 	 * performed on pages in ZONE_NORMAL if the DMA devices support
767 	 * transfers to all addressable memory.
768 	 */
769 	ZONE_NORMAL,
770 #ifdef CONFIG_HIGHMEM
771 	/*
772 	 * A memory area that is only addressable by the kernel through
773 	 * mapping portions into its own address space. This is for example
774 	 * used by i386 to allow the kernel to address the memory beyond
775 	 * 900MB. The kernel will set up special mappings (page
776 	 * table entries on i386) for each page that the kernel needs to
777 	 * access.
778 	 */
779 	ZONE_HIGHMEM,
780 #endif
781 	/*
782 	 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains
783 	 * movable pages with few exceptional cases described below. Main use
784 	 * cases for ZONE_MOVABLE are to make memory offlining/unplug more
785 	 * likely to succeed, and to locally limit unmovable allocations - e.g.,
786 	 * to increase the number of THP/huge pages. Notable special cases are:
787 	 *
788 	 * 1. Pinned pages: (long-term) pinning of movable pages might
789 	 *    essentially turn such pages unmovable. Therefore, we do not allow
790 	 *    pinning long-term pages in ZONE_MOVABLE. When pages are pinned and
791 	 *    faulted, they come from the right zone right away. However, it is
792 	 *    still possible that address space already has pages in
793 	 *    ZONE_MOVABLE at the time when pages are pinned (i.e. user has
794 	 *    touches that memory before pinning). In such case we migrate them
795 	 *    to a different zone. When migration fails - pinning fails.
796 	 * 2. memblock allocations: kernelcore/movablecore setups might create
797 	 *    situations where ZONE_MOVABLE contains unmovable allocations
798 	 *    after boot. Memory offlining and allocations fail early.
799 	 * 3. Memory holes: kernelcore/movablecore setups might create very rare
800 	 *    situations where ZONE_MOVABLE contains memory holes after boot,
801 	 *    for example, if we have sections that are only partially
802 	 *    populated. Memory offlining and allocations fail early.
803 	 * 4. PG_hwpoison pages: while poisoned pages can be skipped during
804 	 *    memory offlining, such pages cannot be allocated.
805 	 * 5. Unmovable PG_offline pages: in paravirtualized environments,
806 	 *    hotplugged memory blocks might only partially be managed by the
807 	 *    buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The
808 	 *    parts not manged by the buddy are unmovable PG_offline pages. In
809 	 *    some cases (virtio-mem), such pages can be skipped during
810 	 *    memory offlining, however, cannot be moved/allocated. These
811 	 *    techniques might use alloc_contig_range() to hide previously
812 	 *    exposed pages from the buddy again (e.g., to implement some sort
813 	 *    of memory unplug in virtio-mem).
814 	 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create
815 	 *    situations where ZERO_PAGE(0) which is allocated differently
816 	 *    on different platforms may end up in a movable zone. ZERO_PAGE(0)
817 	 *    cannot be migrated.
818 	 * 7. Memory-hotplug: when using memmap_on_memory and onlining the
819 	 *    memory to the MOVABLE zone, the vmemmap pages are also placed in
820 	 *    such zone. Such pages cannot be really moved around as they are
821 	 *    self-stored in the range, but they are treated as movable when
822 	 *    the range they describe is about to be offlined.
823 	 *
824 	 * In general, no unmovable allocations that degrade memory offlining
825 	 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range())
826 	 * have to expect that migrating pages in ZONE_MOVABLE can fail (even
827 	 * if has_unmovable_pages() states that there are no unmovable pages,
828 	 * there can be false negatives).
829 	 */
830 	ZONE_MOVABLE,
831 #ifdef CONFIG_ZONE_DEVICE
832 	ZONE_DEVICE,
833 #endif
834 	__MAX_NR_ZONES
835 
836 };
837 
838 #ifndef __GENERATING_BOUNDS_H
839 
840 #define ASYNC_AND_SYNC 2
841 
842 struct zone {
843 	/* Read-mostly fields */
844 
845 	/* zone watermarks, access with *_wmark_pages(zone) macros */
846 	unsigned long _watermark[NR_WMARK];
847 	unsigned long watermark_boost;
848 
849 	unsigned long nr_reserved_highatomic;
850 	unsigned long nr_free_highatomic;
851 
852 	/*
853 	 * We don't know if the memory that we're going to allocate will be
854 	 * freeable or/and it will be released eventually, so to avoid totally
855 	 * wasting several GB of ram we must reserve some of the lower zone
856 	 * memory (otherwise we risk to run OOM on the lower zones despite
857 	 * there being tons of freeable ram on the higher zones).  This array is
858 	 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl
859 	 * changes.
860 	 */
861 	long lowmem_reserve[MAX_NR_ZONES];
862 
863 #ifdef CONFIG_NUMA
864 	int node;
865 #endif
866 	struct pglist_data	*zone_pgdat;
867 	struct per_cpu_pages	__percpu *per_cpu_pageset;
868 	struct per_cpu_zonestat	__percpu *per_cpu_zonestats;
869 	/*
870 	 * the high and batch values are copied to individual pagesets for
871 	 * faster access
872 	 */
873 	int pageset_high_min;
874 	int pageset_high_max;
875 	int pageset_batch;
876 
877 #ifndef CONFIG_SPARSEMEM
878 	/*
879 	 * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
880 	 * In SPARSEMEM, this map is stored in struct mem_section
881 	 */
882 	unsigned long		*pageblock_flags;
883 #endif /* CONFIG_SPARSEMEM */
884 
885 	/* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
886 	unsigned long		zone_start_pfn;
887 
888 	/*
889 	 * spanned_pages is the total pages spanned by the zone, including
890 	 * holes, which is calculated as:
891 	 * 	spanned_pages = zone_end_pfn - zone_start_pfn;
892 	 *
893 	 * present_pages is physical pages existing within the zone, which
894 	 * is calculated as:
895 	 *	present_pages = spanned_pages - absent_pages(pages in holes);
896 	 *
897 	 * present_early_pages is present pages existing within the zone
898 	 * located on memory available since early boot, excluding hotplugged
899 	 * memory.
900 	 *
901 	 * managed_pages is present pages managed by the buddy system, which
902 	 * is calculated as (reserved_pages includes pages allocated by the
903 	 * bootmem allocator):
904 	 *	managed_pages = present_pages - reserved_pages;
905 	 *
906 	 * cma pages is present pages that are assigned for CMA use
907 	 * (MIGRATE_CMA).
908 	 *
909 	 * So present_pages may be used by memory hotplug or memory power
910 	 * management logic to figure out unmanaged pages by checking
911 	 * (present_pages - managed_pages). And managed_pages should be used
912 	 * by page allocator and vm scanner to calculate all kinds of watermarks
913 	 * and thresholds.
914 	 *
915 	 * Locking rules:
916 	 *
917 	 * zone_start_pfn and spanned_pages are protected by span_seqlock.
918 	 * It is a seqlock because it has to be read outside of zone->lock,
919 	 * and it is done in the main allocator path.  But, it is written
920 	 * quite infrequently.
921 	 *
922 	 * The span_seq lock is declared along with zone->lock because it is
923 	 * frequently read in proximity to zone->lock.  It's good to
924 	 * give them a chance of being in the same cacheline.
925 	 *
926 	 * Write access to present_pages at runtime should be protected by
927 	 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of
928 	 * present_pages should use get_online_mems() to get a stable value.
929 	 */
930 	atomic_long_t		managed_pages;
931 	unsigned long		spanned_pages;
932 	unsigned long		present_pages;
933 #if defined(CONFIG_MEMORY_HOTPLUG)
934 	unsigned long		present_early_pages;
935 #endif
936 #ifdef CONFIG_CMA
937 	unsigned long		cma_pages;
938 #endif
939 
940 	const char		*name;
941 
942 #ifdef CONFIG_MEMORY_ISOLATION
943 	/*
944 	 * Number of isolated pageblock. It is used to solve incorrect
945 	 * freepage counting problem due to racy retrieving migratetype
946 	 * of pageblock. Protected by zone->lock.
947 	 */
948 	unsigned long		nr_isolate_pageblock;
949 #endif
950 
951 #ifdef CONFIG_MEMORY_HOTPLUG
952 	/* see spanned/present_pages for more description */
953 	seqlock_t		span_seqlock;
954 #endif
955 
956 	int initialized;
957 
958 	/* Write-intensive fields used from the page allocator */
959 	CACHELINE_PADDING(_pad1_);
960 
961 	/* free areas of different sizes */
962 	struct free_area	free_area[NR_PAGE_ORDERS];
963 
964 #ifdef CONFIG_UNACCEPTED_MEMORY
965 	/* Pages to be accepted. All pages on the list are MAX_PAGE_ORDER */
966 	struct list_head	unaccepted_pages;
967 #endif
968 
969 	/* zone flags, see below */
970 	unsigned long		flags;
971 
972 	/* Primarily protects free_area */
973 	spinlock_t		lock;
974 
975 	/* Write-intensive fields used by compaction and vmstats. */
976 	CACHELINE_PADDING(_pad2_);
977 
978 	/*
979 	 * When free pages are below this point, additional steps are taken
980 	 * when reading the number of free pages to avoid per-cpu counter
981 	 * drift allowing watermarks to be breached
982 	 */
983 	unsigned long percpu_drift_mark;
984 
985 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
986 	/* pfn where compaction free scanner should start */
987 	unsigned long		compact_cached_free_pfn;
988 	/* pfn where compaction migration scanner should start */
989 	unsigned long		compact_cached_migrate_pfn[ASYNC_AND_SYNC];
990 	unsigned long		compact_init_migrate_pfn;
991 	unsigned long		compact_init_free_pfn;
992 #endif
993 
994 #ifdef CONFIG_COMPACTION
995 	/*
996 	 * On compaction failure, 1<<compact_defer_shift compactions
997 	 * are skipped before trying again. The number attempted since
998 	 * last failure is tracked with compact_considered.
999 	 * compact_order_failed is the minimum compaction failed order.
1000 	 */
1001 	unsigned int		compact_considered;
1002 	unsigned int		compact_defer_shift;
1003 	int			compact_order_failed;
1004 #endif
1005 
1006 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
1007 	/* Set to true when the PG_migrate_skip bits should be cleared */
1008 	bool			compact_blockskip_flush;
1009 #endif
1010 
1011 	bool			contiguous;
1012 
1013 	CACHELINE_PADDING(_pad3_);
1014 	/* Zone statistics */
1015 	atomic_long_t		vm_stat[NR_VM_ZONE_STAT_ITEMS];
1016 	atomic_long_t		vm_numa_event[NR_VM_NUMA_EVENT_ITEMS];
1017 } ____cacheline_internodealigned_in_smp;
1018 
1019 enum pgdat_flags {
1020 	PGDAT_DIRTY,			/* reclaim scanning has recently found
1021 					 * many dirty file pages at the tail
1022 					 * of the LRU.
1023 					 */
1024 	PGDAT_WRITEBACK,		/* reclaim scanning has recently found
1025 					 * many pages under writeback
1026 					 */
1027 	PGDAT_RECLAIM_LOCKED,		/* prevents concurrent reclaim */
1028 };
1029 
1030 enum zone_flags {
1031 	ZONE_BOOSTED_WATERMARK,		/* zone recently boosted watermarks.
1032 					 * Cleared when kswapd is woken.
1033 					 */
1034 	ZONE_RECLAIM_ACTIVE,		/* kswapd may be scanning the zone. */
1035 	ZONE_BELOW_HIGH,		/* zone is below high watermark. */
1036 };
1037 
wmark_pages(const struct zone * z,enum zone_watermarks w)1038 static inline unsigned long wmark_pages(const struct zone *z,
1039 					enum zone_watermarks w)
1040 {
1041 	return z->_watermark[w] + z->watermark_boost;
1042 }
1043 
min_wmark_pages(const struct zone * z)1044 static inline unsigned long min_wmark_pages(const struct zone *z)
1045 {
1046 	return wmark_pages(z, WMARK_MIN);
1047 }
1048 
low_wmark_pages(const struct zone * z)1049 static inline unsigned long low_wmark_pages(const struct zone *z)
1050 {
1051 	return wmark_pages(z, WMARK_LOW);
1052 }
1053 
high_wmark_pages(const struct zone * z)1054 static inline unsigned long high_wmark_pages(const struct zone *z)
1055 {
1056 	return wmark_pages(z, WMARK_HIGH);
1057 }
1058 
promo_wmark_pages(const struct zone * z)1059 static inline unsigned long promo_wmark_pages(const struct zone *z)
1060 {
1061 	return wmark_pages(z, WMARK_PROMO);
1062 }
1063 
zone_managed_pages(struct zone * zone)1064 static inline unsigned long zone_managed_pages(struct zone *zone)
1065 {
1066 	return (unsigned long)atomic_long_read(&zone->managed_pages);
1067 }
1068 
zone_cma_pages(struct zone * zone)1069 static inline unsigned long zone_cma_pages(struct zone *zone)
1070 {
1071 #ifdef CONFIG_CMA
1072 	return zone->cma_pages;
1073 #else
1074 	return 0;
1075 #endif
1076 }
1077 
zone_end_pfn(const struct zone * zone)1078 static inline unsigned long zone_end_pfn(const struct zone *zone)
1079 {
1080 	return zone->zone_start_pfn + zone->spanned_pages;
1081 }
1082 
zone_spans_pfn(const struct zone * zone,unsigned long pfn)1083 static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn)
1084 {
1085 	return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone);
1086 }
1087 
zone_is_initialized(struct zone * zone)1088 static inline bool zone_is_initialized(struct zone *zone)
1089 {
1090 	return zone->initialized;
1091 }
1092 
zone_is_empty(struct zone * zone)1093 static inline bool zone_is_empty(struct zone *zone)
1094 {
1095 	return zone->spanned_pages == 0;
1096 }
1097 
1098 #ifndef BUILD_VDSO32_64
1099 /*
1100  * The zone field is never updated after free_area_init_core()
1101  * sets it, so none of the operations on it need to be atomic.
1102  */
1103 
1104 /* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
1105 #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
1106 #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH)
1107 #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH)
1108 #define LAST_CPUPID_PGOFF	(ZONES_PGOFF - LAST_CPUPID_WIDTH)
1109 #define KASAN_TAG_PGOFF		(LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH)
1110 #define LRU_GEN_PGOFF		(KASAN_TAG_PGOFF - LRU_GEN_WIDTH)
1111 #define LRU_REFS_PGOFF		(LRU_GEN_PGOFF - LRU_REFS_WIDTH)
1112 
1113 /*
1114  * Define the bit shifts to access each section.  For non-existent
1115  * sections we define the shift as 0; that plus a 0 mask ensures
1116  * the compiler will optimise away reference to them.
1117  */
1118 #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
1119 #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0))
1120 #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0))
1121 #define LAST_CPUPID_PGSHIFT	(LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
1122 #define KASAN_TAG_PGSHIFT	(KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0))
1123 
1124 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
1125 #ifdef NODE_NOT_IN_PAGE_FLAGS
1126 #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT)
1127 #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF) ? \
1128 						SECTIONS_PGOFF : ZONES_PGOFF)
1129 #else
1130 #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT)
1131 #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF) ? \
1132 						NODES_PGOFF : ZONES_PGOFF)
1133 #endif
1134 
1135 #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0))
1136 
1137 #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1)
1138 #define NODES_MASK		((1UL << NODES_WIDTH) - 1)
1139 #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1)
1140 #define LAST_CPUPID_MASK	((1UL << LAST_CPUPID_SHIFT) - 1)
1141 #define KASAN_TAG_MASK		((1UL << KASAN_TAG_WIDTH) - 1)
1142 #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1)
1143 
page_zonenum(const struct page * page)1144 static inline enum zone_type page_zonenum(const struct page *page)
1145 {
1146 	ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT);
1147 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1148 }
1149 
folio_zonenum(const struct folio * folio)1150 static inline enum zone_type folio_zonenum(const struct folio *folio)
1151 {
1152 	return page_zonenum(&folio->page);
1153 }
1154 
1155 #ifdef CONFIG_ZONE_DEVICE
is_zone_device_page(const struct page * page)1156 static inline bool is_zone_device_page(const struct page *page)
1157 {
1158 	return page_zonenum(page) == ZONE_DEVICE;
1159 }
1160 
1161 /*
1162  * Consecutive zone device pages should not be merged into the same sgl
1163  * or bvec segment with other types of pages or if they belong to different
1164  * pgmaps. Otherwise getting the pgmap of a given segment is not possible
1165  * without scanning the entire segment. This helper returns true either if
1166  * both pages are not zone device pages or both pages are zone device pages
1167  * with the same pgmap.
1168  */
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1169 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1170 						     const struct page *b)
1171 {
1172 	if (is_zone_device_page(a) != is_zone_device_page(b))
1173 		return false;
1174 	if (!is_zone_device_page(a))
1175 		return true;
1176 	return a->pgmap == b->pgmap;
1177 }
1178 
1179 extern void memmap_init_zone_device(struct zone *, unsigned long,
1180 				    unsigned long, struct dev_pagemap *);
1181 #else
is_zone_device_page(const struct page * page)1182 static inline bool is_zone_device_page(const struct page *page)
1183 {
1184 	return false;
1185 }
zone_device_pages_have_same_pgmap(const struct page * a,const struct page * b)1186 static inline bool zone_device_pages_have_same_pgmap(const struct page *a,
1187 						     const struct page *b)
1188 {
1189 	return true;
1190 }
1191 #endif
1192 
folio_is_zone_device(const struct folio * folio)1193 static inline bool folio_is_zone_device(const struct folio *folio)
1194 {
1195 	return is_zone_device_page(&folio->page);
1196 }
1197 
is_zone_movable_page(const struct page * page)1198 static inline bool is_zone_movable_page(const struct page *page)
1199 {
1200 	return page_zonenum(page) == ZONE_MOVABLE;
1201 }
1202 
folio_is_zone_movable(const struct folio * folio)1203 static inline bool folio_is_zone_movable(const struct folio *folio)
1204 {
1205 	return folio_zonenum(folio) == ZONE_MOVABLE;
1206 }
1207 #endif
1208 
1209 /*
1210  * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty
1211  * intersection with the given zone
1212  */
zone_intersects(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)1213 static inline bool zone_intersects(struct zone *zone,
1214 		unsigned long start_pfn, unsigned long nr_pages)
1215 {
1216 	if (zone_is_empty(zone))
1217 		return false;
1218 	if (start_pfn >= zone_end_pfn(zone) ||
1219 	    start_pfn + nr_pages <= zone->zone_start_pfn)
1220 		return false;
1221 
1222 	return true;
1223 }
1224 
1225 /*
1226  * The "priority" of VM scanning is how much of the queues we will scan in one
1227  * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
1228  * queues ("queue_length >> 12") during an aging round.
1229  */
1230 #define DEF_PRIORITY 12
1231 
1232 /* Maximum number of zones on a zonelist */
1233 #define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
1234 
1235 enum {
1236 	ZONELIST_FALLBACK,	/* zonelist with fallback */
1237 #ifdef CONFIG_NUMA
1238 	/*
1239 	 * The NUMA zonelists are doubled because we need zonelists that
1240 	 * restrict the allocations to a single node for __GFP_THISNODE.
1241 	 */
1242 	ZONELIST_NOFALLBACK,	/* zonelist without fallback (__GFP_THISNODE) */
1243 #endif
1244 	MAX_ZONELISTS
1245 };
1246 
1247 /*
1248  * This struct contains information about a zone in a zonelist. It is stored
1249  * here to avoid dereferences into large structures and lookups of tables
1250  */
1251 struct zoneref {
1252 	struct zone *zone;	/* Pointer to actual zone */
1253 	int zone_idx;		/* zone_idx(zoneref->zone) */
1254 };
1255 
1256 /*
1257  * One allocation request operates on a zonelist. A zonelist
1258  * is a list of zones, the first one is the 'goal' of the
1259  * allocation, the other zones are fallback zones, in decreasing
1260  * priority.
1261  *
1262  * To speed the reading of the zonelist, the zonerefs contain the zone index
1263  * of the entry being read. Helper functions to access information given
1264  * a struct zoneref are
1265  *
1266  * zonelist_zone()	- Return the struct zone * for an entry in _zonerefs
1267  * zonelist_zone_idx()	- Return the index of the zone for an entry
1268  * zonelist_node_idx()	- Return the index of the node for an entry
1269  */
1270 struct zonelist {
1271 	struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
1272 };
1273 
1274 /*
1275  * The array of struct pages for flatmem.
1276  * It must be declared for SPARSEMEM as well because there are configurations
1277  * that rely on that.
1278  */
1279 extern struct page *mem_map;
1280 
1281 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1282 struct deferred_split {
1283 	spinlock_t split_queue_lock;
1284 	struct list_head split_queue;
1285 	unsigned long split_queue_len;
1286 };
1287 #endif
1288 
1289 #ifdef CONFIG_MEMORY_FAILURE
1290 /*
1291  * Per NUMA node memory failure handling statistics.
1292  */
1293 struct memory_failure_stats {
1294 	/*
1295 	 * Number of raw pages poisoned.
1296 	 * Cases not accounted: memory outside kernel control, offline page,
1297 	 * arch-specific memory_failure (SGX), hwpoison_filter() filtered
1298 	 * error events, and unpoison actions from hwpoison_unpoison.
1299 	 */
1300 	unsigned long total;
1301 	/*
1302 	 * Recovery results of poisoned raw pages handled by memory_failure,
1303 	 * in sync with mf_result.
1304 	 * total = ignored + failed + delayed + recovered.
1305 	 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted.
1306 	 */
1307 	unsigned long ignored;
1308 	unsigned long failed;
1309 	unsigned long delayed;
1310 	unsigned long recovered;
1311 };
1312 #endif
1313 
1314 /*
1315  * On NUMA machines, each NUMA node would have a pg_data_t to describe
1316  * it's memory layout. On UMA machines there is a single pglist_data which
1317  * describes the whole memory.
1318  *
1319  * Memory statistics and page replacement data structures are maintained on a
1320  * per-zone basis.
1321  */
1322 typedef struct pglist_data {
1323 	/*
1324 	 * node_zones contains just the zones for THIS node. Not all of the
1325 	 * zones may be populated, but it is the full list. It is referenced by
1326 	 * this node's node_zonelists as well as other node's node_zonelists.
1327 	 */
1328 	struct zone node_zones[MAX_NR_ZONES];
1329 
1330 	/*
1331 	 * node_zonelists contains references to all zones in all nodes.
1332 	 * Generally the first zones will be references to this node's
1333 	 * node_zones.
1334 	 */
1335 	struct zonelist node_zonelists[MAX_ZONELISTS];
1336 
1337 	int nr_zones; /* number of populated zones in this node */
1338 #ifdef CONFIG_FLATMEM	/* means !SPARSEMEM */
1339 	struct page *node_mem_map;
1340 #ifdef CONFIG_PAGE_EXTENSION
1341 	struct page_ext *node_page_ext;
1342 #endif
1343 #endif
1344 #if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT)
1345 	/*
1346 	 * Must be held any time you expect node_start_pfn,
1347 	 * node_present_pages, node_spanned_pages or nr_zones to stay constant.
1348 	 * Also synchronizes pgdat->first_deferred_pfn during deferred page
1349 	 * init.
1350 	 *
1351 	 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to
1352 	 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG
1353 	 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT.
1354 	 *
1355 	 * Nests above zone->lock and zone->span_seqlock
1356 	 */
1357 	spinlock_t node_size_lock;
1358 #endif
1359 	unsigned long node_start_pfn;
1360 	unsigned long node_present_pages; /* total number of physical pages */
1361 	unsigned long node_spanned_pages; /* total size of physical page
1362 					     range, including holes */
1363 	int node_id;
1364 	wait_queue_head_t kswapd_wait;
1365 	wait_queue_head_t pfmemalloc_wait;
1366 
1367 	/* workqueues for throttling reclaim for different reasons. */
1368 	wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE];
1369 
1370 	atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */
1371 	unsigned long nr_reclaim_start;	/* nr pages written while throttled
1372 					 * when throttling started. */
1373 #ifdef CONFIG_MEMORY_HOTPLUG
1374 	struct mutex kswapd_lock;
1375 #endif
1376 	struct task_struct *kswapd;	/* Protected by kswapd_lock */
1377 	int kswapd_order;
1378 	enum zone_type kswapd_highest_zoneidx;
1379 
1380 	int kswapd_failures;		/* Number of 'reclaimed == 0' runs */
1381 
1382 #ifdef CONFIG_COMPACTION
1383 	int kcompactd_max_order;
1384 	enum zone_type kcompactd_highest_zoneidx;
1385 	wait_queue_head_t kcompactd_wait;
1386 	struct task_struct *kcompactd;
1387 	bool proactive_compact_trigger;
1388 #endif
1389 	/*
1390 	 * This is a per-node reserve of pages that are not available
1391 	 * to userspace allocations.
1392 	 */
1393 	unsigned long		totalreserve_pages;
1394 
1395 #ifdef CONFIG_NUMA
1396 	/*
1397 	 * node reclaim becomes active if more unmapped pages exist.
1398 	 */
1399 	unsigned long		min_unmapped_pages;
1400 	unsigned long		min_slab_pages;
1401 #endif /* CONFIG_NUMA */
1402 
1403 	/* Write-intensive fields used by page reclaim */
1404 	CACHELINE_PADDING(_pad1_);
1405 
1406 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1407 	/*
1408 	 * If memory initialisation on large machines is deferred then this
1409 	 * is the first PFN that needs to be initialised.
1410 	 */
1411 	unsigned long first_deferred_pfn;
1412 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1413 
1414 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1415 	struct deferred_split deferred_split_queue;
1416 #endif
1417 
1418 #ifdef CONFIG_NUMA_BALANCING
1419 	/* start time in ms of current promote rate limit period */
1420 	unsigned int nbp_rl_start;
1421 	/* number of promote candidate pages at start time of current rate limit period */
1422 	unsigned long nbp_rl_nr_cand;
1423 	/* promote threshold in ms */
1424 	unsigned int nbp_threshold;
1425 	/* start time in ms of current promote threshold adjustment period */
1426 	unsigned int nbp_th_start;
1427 	/*
1428 	 * number of promote candidate pages at start time of current promote
1429 	 * threshold adjustment period
1430 	 */
1431 	unsigned long nbp_th_nr_cand;
1432 #endif
1433 	/* Fields commonly accessed by the page reclaim scanner */
1434 
1435 	/*
1436 	 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED.
1437 	 *
1438 	 * Use mem_cgroup_lruvec() to look up lruvecs.
1439 	 */
1440 	struct lruvec		__lruvec;
1441 
1442 	unsigned long		flags;
1443 
1444 #ifdef CONFIG_LRU_GEN
1445 	/* kswap mm walk data */
1446 	struct lru_gen_mm_walk mm_walk;
1447 	/* lru_gen_folio list */
1448 	struct lru_gen_memcg memcg_lru;
1449 #endif
1450 
1451 	CACHELINE_PADDING(_pad2_);
1452 
1453 	/* Per-node vmstats */
1454 	struct per_cpu_nodestat __percpu *per_cpu_nodestats;
1455 	atomic_long_t		vm_stat[NR_VM_NODE_STAT_ITEMS];
1456 #ifdef CONFIG_NUMA
1457 	struct memory_tier __rcu *memtier;
1458 #endif
1459 #ifdef CONFIG_MEMORY_FAILURE
1460 	struct memory_failure_stats mf_stats;
1461 #endif
1462 } pg_data_t;
1463 
1464 #define node_present_pages(nid)	(NODE_DATA(nid)->node_present_pages)
1465 #define node_spanned_pages(nid)	(NODE_DATA(nid)->node_spanned_pages)
1466 
1467 #define node_start_pfn(nid)	(NODE_DATA(nid)->node_start_pfn)
1468 #define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid))
1469 
pgdat_end_pfn(pg_data_t * pgdat)1470 static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat)
1471 {
1472 	return pgdat->node_start_pfn + pgdat->node_spanned_pages;
1473 }
1474 
1475 #include <linux/memory_hotplug.h>
1476 
1477 void build_all_zonelists(pg_data_t *pgdat);
1478 void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order,
1479 		   enum zone_type highest_zoneidx);
1480 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
1481 			 int highest_zoneidx, unsigned int alloc_flags,
1482 			 long free_pages);
1483 bool zone_watermark_ok(struct zone *z, unsigned int order,
1484 		unsigned long mark, int highest_zoneidx,
1485 		unsigned int alloc_flags);
1486 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
1487 		unsigned long mark, int highest_zoneidx);
1488 /*
1489  * Memory initialization context, use to differentiate memory added by
1490  * the platform statically or via memory hotplug interface.
1491  */
1492 enum meminit_context {
1493 	MEMINIT_EARLY,
1494 	MEMINIT_HOTPLUG,
1495 };
1496 
1497 extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
1498 				     unsigned long size);
1499 
1500 extern void lruvec_init(struct lruvec *lruvec);
1501 
lruvec_pgdat(struct lruvec * lruvec)1502 static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec)
1503 {
1504 #ifdef CONFIG_MEMCG
1505 	return lruvec->pgdat;
1506 #else
1507 	return container_of(lruvec, struct pglist_data, __lruvec);
1508 #endif
1509 }
1510 
1511 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
1512 int local_memory_node(int node_id);
1513 #else
local_memory_node(int node_id)1514 static inline int local_memory_node(int node_id) { return node_id; };
1515 #endif
1516 
1517 /*
1518  * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
1519  */
1520 #define zone_idx(zone)		((zone) - (zone)->zone_pgdat->node_zones)
1521 
1522 #ifdef CONFIG_ZONE_DEVICE
zone_is_zone_device(struct zone * zone)1523 static inline bool zone_is_zone_device(struct zone *zone)
1524 {
1525 	return zone_idx(zone) == ZONE_DEVICE;
1526 }
1527 #else
zone_is_zone_device(struct zone * zone)1528 static inline bool zone_is_zone_device(struct zone *zone)
1529 {
1530 	return false;
1531 }
1532 #endif
1533 
1534 /*
1535  * Returns true if a zone has pages managed by the buddy allocator.
1536  * All the reclaim decisions have to use this function rather than
1537  * populated_zone(). If the whole zone is reserved then we can easily
1538  * end up with populated_zone() && !managed_zone().
1539  */
managed_zone(struct zone * zone)1540 static inline bool managed_zone(struct zone *zone)
1541 {
1542 	return zone_managed_pages(zone);
1543 }
1544 
1545 /* Returns true if a zone has memory */
populated_zone(struct zone * zone)1546 static inline bool populated_zone(struct zone *zone)
1547 {
1548 	return zone->present_pages;
1549 }
1550 
1551 #ifdef CONFIG_NUMA
zone_to_nid(struct zone * zone)1552 static inline int zone_to_nid(struct zone *zone)
1553 {
1554 	return zone->node;
1555 }
1556 
zone_set_nid(struct zone * zone,int nid)1557 static inline void zone_set_nid(struct zone *zone, int nid)
1558 {
1559 	zone->node = nid;
1560 }
1561 #else
zone_to_nid(struct zone * zone)1562 static inline int zone_to_nid(struct zone *zone)
1563 {
1564 	return 0;
1565 }
1566 
zone_set_nid(struct zone * zone,int nid)1567 static inline void zone_set_nid(struct zone *zone, int nid) {}
1568 #endif
1569 
1570 extern int movable_zone;
1571 
is_highmem_idx(enum zone_type idx)1572 static inline int is_highmem_idx(enum zone_type idx)
1573 {
1574 #ifdef CONFIG_HIGHMEM
1575 	return (idx == ZONE_HIGHMEM ||
1576 		(idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM));
1577 #else
1578 	return 0;
1579 #endif
1580 }
1581 
1582 /**
1583  * is_highmem - helper function to quickly check if a struct zone is a
1584  *              highmem zone or not.  This is an attempt to keep references
1585  *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
1586  * @zone: pointer to struct zone variable
1587  * Return: 1 for a highmem zone, 0 otherwise
1588  */
is_highmem(struct zone * zone)1589 static inline int is_highmem(struct zone *zone)
1590 {
1591 	return is_highmem_idx(zone_idx(zone));
1592 }
1593 
1594 #ifdef CONFIG_ZONE_DMA
1595 bool has_managed_dma(void);
1596 #else
has_managed_dma(void)1597 static inline bool has_managed_dma(void)
1598 {
1599 	return false;
1600 }
1601 #endif
1602 
1603 
1604 #ifndef CONFIG_NUMA
1605 
1606 extern struct pglist_data contig_page_data;
NODE_DATA(int nid)1607 static inline struct pglist_data *NODE_DATA(int nid)
1608 {
1609 	return &contig_page_data;
1610 }
1611 
1612 #else /* CONFIG_NUMA */
1613 
1614 #include <asm/mmzone.h>
1615 
1616 #endif /* !CONFIG_NUMA */
1617 
1618 extern struct pglist_data *first_online_pgdat(void);
1619 extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
1620 extern struct zone *next_zone(struct zone *zone);
1621 
1622 /**
1623  * for_each_online_pgdat - helper macro to iterate over all online nodes
1624  * @pgdat: pointer to a pg_data_t variable
1625  */
1626 #define for_each_online_pgdat(pgdat)			\
1627 	for (pgdat = first_online_pgdat();		\
1628 	     pgdat;					\
1629 	     pgdat = next_online_pgdat(pgdat))
1630 /**
1631  * for_each_zone - helper macro to iterate over all memory zones
1632  * @zone: pointer to struct zone variable
1633  *
1634  * The user only needs to declare the zone variable, for_each_zone
1635  * fills it in.
1636  */
1637 #define for_each_zone(zone)			        \
1638 	for (zone = (first_online_pgdat())->node_zones; \
1639 	     zone;					\
1640 	     zone = next_zone(zone))
1641 
1642 #define for_each_populated_zone(zone)		        \
1643 	for (zone = (first_online_pgdat())->node_zones; \
1644 	     zone;					\
1645 	     zone = next_zone(zone))			\
1646 		if (!populated_zone(zone))		\
1647 			; /* do nothing */		\
1648 		else
1649 
zonelist_zone(struct zoneref * zoneref)1650 static inline struct zone *zonelist_zone(struct zoneref *zoneref)
1651 {
1652 	return zoneref->zone;
1653 }
1654 
zonelist_zone_idx(struct zoneref * zoneref)1655 static inline int zonelist_zone_idx(struct zoneref *zoneref)
1656 {
1657 	return zoneref->zone_idx;
1658 }
1659 
zonelist_node_idx(struct zoneref * zoneref)1660 static inline int zonelist_node_idx(struct zoneref *zoneref)
1661 {
1662 	return zone_to_nid(zoneref->zone);
1663 }
1664 
1665 struct zoneref *__next_zones_zonelist(struct zoneref *z,
1666 					enum zone_type highest_zoneidx,
1667 					nodemask_t *nodes);
1668 
1669 /**
1670  * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
1671  * @z: The cursor used as a starting point for the search
1672  * @highest_zoneidx: The zone index of the highest zone to return
1673  * @nodes: An optional nodemask to filter the zonelist with
1674  *
1675  * This function returns the next zone at or below a given zone index that is
1676  * within the allowed nodemask using a cursor as the starting point for the
1677  * search. The zoneref returned is a cursor that represents the current zone
1678  * being examined. It should be advanced by one before calling
1679  * next_zones_zonelist again.
1680  *
1681  * Return: the next zone at or below highest_zoneidx within the allowed
1682  * nodemask using a cursor within a zonelist as a starting point
1683  */
next_zones_zonelist(struct zoneref * z,enum zone_type highest_zoneidx,nodemask_t * nodes)1684 static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z,
1685 					enum zone_type highest_zoneidx,
1686 					nodemask_t *nodes)
1687 {
1688 	if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx))
1689 		return z;
1690 	return __next_zones_zonelist(z, highest_zoneidx, nodes);
1691 }
1692 
1693 /**
1694  * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
1695  * @zonelist: The zonelist to search for a suitable zone
1696  * @highest_zoneidx: The zone index of the highest zone to return
1697  * @nodes: An optional nodemask to filter the zonelist with
1698  *
1699  * This function returns the first zone at or below a given zone index that is
1700  * within the allowed nodemask. The zoneref returned is a cursor that can be
1701  * used to iterate the zonelist with next_zones_zonelist by advancing it by
1702  * one before calling.
1703  *
1704  * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is
1705  * never NULL). This may happen either genuinely, or due to concurrent nodemask
1706  * update due to cpuset modification.
1707  *
1708  * Return: Zoneref pointer for the first suitable zone found
1709  */
first_zones_zonelist(struct zonelist * zonelist,enum zone_type highest_zoneidx,nodemask_t * nodes)1710 static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
1711 					enum zone_type highest_zoneidx,
1712 					nodemask_t *nodes)
1713 {
1714 	return next_zones_zonelist(zonelist->_zonerefs,
1715 							highest_zoneidx, nodes);
1716 }
1717 
1718 /**
1719  * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
1720  * @zone: The current zone in the iterator
1721  * @z: The current pointer within zonelist->_zonerefs being iterated
1722  * @zlist: The zonelist being iterated
1723  * @highidx: The zone index of the highest zone to return
1724  * @nodemask: Nodemask allowed by the allocator
1725  *
1726  * This iterator iterates though all zones at or below a given zone index and
1727  * within a given nodemask
1728  */
1729 #define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
1730 	for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z);	\
1731 		zone;							\
1732 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1733 			zone = zonelist_zone(z))
1734 
1735 #define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \
1736 	for (zone = zonelist_zone(z);	\
1737 		zone;							\
1738 		z = next_zones_zonelist(++z, highidx, nodemask),	\
1739 			zone = zonelist_zone(z))
1740 
1741 
1742 /**
1743  * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
1744  * @zone: The current zone in the iterator
1745  * @z: The current pointer within zonelist->zones being iterated
1746  * @zlist: The zonelist being iterated
1747  * @highidx: The zone index of the highest zone to return
1748  *
1749  * This iterator iterates though all zones at or below a given zone index.
1750  */
1751 #define for_each_zone_zonelist(zone, z, zlist, highidx) \
1752 	for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
1753 
1754 /* Whether the 'nodes' are all movable nodes */
movable_only_nodes(nodemask_t * nodes)1755 static inline bool movable_only_nodes(nodemask_t *nodes)
1756 {
1757 	struct zonelist *zonelist;
1758 	struct zoneref *z;
1759 	int nid;
1760 
1761 	if (nodes_empty(*nodes))
1762 		return false;
1763 
1764 	/*
1765 	 * We can chose arbitrary node from the nodemask to get a
1766 	 * zonelist as they are interlinked. We just need to find
1767 	 * at least one zone that can satisfy kernel allocations.
1768 	 */
1769 	nid = first_node(*nodes);
1770 	zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
1771 	z = first_zones_zonelist(zonelist, ZONE_NORMAL,	nodes);
1772 	return (!zonelist_zone(z)) ? true : false;
1773 }
1774 
1775 
1776 #ifdef CONFIG_SPARSEMEM
1777 #include <asm/sparsemem.h>
1778 #endif
1779 
1780 #ifdef CONFIG_FLATMEM
1781 #define pfn_to_nid(pfn)		(0)
1782 #endif
1783 
1784 #ifdef CONFIG_SPARSEMEM
1785 
1786 /*
1787  * PA_SECTION_SHIFT		physical address to/from section number
1788  * PFN_SECTION_SHIFT		pfn to/from section number
1789  */
1790 #define PA_SECTION_SHIFT	(SECTION_SIZE_BITS)
1791 #define PFN_SECTION_SHIFT	(SECTION_SIZE_BITS - PAGE_SHIFT)
1792 
1793 #define NR_MEM_SECTIONS		(1UL << SECTIONS_SHIFT)
1794 
1795 #define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
1796 #define PAGE_SECTION_MASK	(~(PAGES_PER_SECTION-1))
1797 
1798 #define SECTION_BLOCKFLAGS_BITS \
1799 	((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
1800 
1801 #if (MAX_PAGE_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS
1802 #error Allocator MAX_PAGE_ORDER exceeds SECTION_SIZE
1803 #endif
1804 
pfn_to_section_nr(unsigned long pfn)1805 static inline unsigned long pfn_to_section_nr(unsigned long pfn)
1806 {
1807 	return pfn >> PFN_SECTION_SHIFT;
1808 }
section_nr_to_pfn(unsigned long sec)1809 static inline unsigned long section_nr_to_pfn(unsigned long sec)
1810 {
1811 	return sec << PFN_SECTION_SHIFT;
1812 }
1813 
1814 #define SECTION_ALIGN_UP(pfn)	(((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
1815 #define SECTION_ALIGN_DOWN(pfn)	((pfn) & PAGE_SECTION_MASK)
1816 
1817 #define SUBSECTION_SHIFT 21
1818 #define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT)
1819 
1820 #define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT)
1821 #define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT)
1822 #define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1))
1823 
1824 #if SUBSECTION_SHIFT > SECTION_SIZE_BITS
1825 #error Subsection size exceeds section size
1826 #else
1827 #define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT))
1828 #endif
1829 
1830 #define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION)
1831 #define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK)
1832 
1833 struct mem_section_usage {
1834 	struct rcu_head rcu;
1835 #ifdef CONFIG_SPARSEMEM_VMEMMAP
1836 	DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION);
1837 #endif
1838 	/* See declaration of similar field in struct zone */
1839 	unsigned long pageblock_flags[0];
1840 };
1841 
1842 void subsection_map_init(unsigned long pfn, unsigned long nr_pages);
1843 
1844 struct page;
1845 struct page_ext;
1846 struct mem_section {
1847 	/*
1848 	 * This is, logically, a pointer to an array of struct
1849 	 * pages.  However, it is stored with some other magic.
1850 	 * (see sparse.c::sparse_init_one_section())
1851 	 *
1852 	 * Additionally during early boot we encode node id of
1853 	 * the location of the section here to guide allocation.
1854 	 * (see sparse.c::memory_present())
1855 	 *
1856 	 * Making it a UL at least makes someone do a cast
1857 	 * before using it wrong.
1858 	 */
1859 	unsigned long section_mem_map;
1860 
1861 	struct mem_section_usage *usage;
1862 #ifdef CONFIG_PAGE_EXTENSION
1863 	/*
1864 	 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use
1865 	 * section. (see page_ext.h about this.)
1866 	 */
1867 	struct page_ext *page_ext;
1868 	unsigned long pad;
1869 #endif
1870 	/*
1871 	 * WARNING: mem_section must be a power-of-2 in size for the
1872 	 * calculation and use of SECTION_ROOT_MASK to make sense.
1873 	 */
1874 };
1875 
1876 #ifdef CONFIG_SPARSEMEM_EXTREME
1877 #define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1878 #else
1879 #define SECTIONS_PER_ROOT	1
1880 #endif
1881 
1882 #define SECTION_NR_TO_ROOT(sec)	((sec) / SECTIONS_PER_ROOT)
1883 #define NR_SECTION_ROOTS	DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1884 #define SECTION_ROOT_MASK	(SECTIONS_PER_ROOT - 1)
1885 
1886 #ifdef CONFIG_SPARSEMEM_EXTREME
1887 extern struct mem_section **mem_section;
1888 #else
1889 extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1890 #endif
1891 
section_to_usemap(struct mem_section * ms)1892 static inline unsigned long *section_to_usemap(struct mem_section *ms)
1893 {
1894 	return ms->usage->pageblock_flags;
1895 }
1896 
__nr_to_section(unsigned long nr)1897 static inline struct mem_section *__nr_to_section(unsigned long nr)
1898 {
1899 	unsigned long root = SECTION_NR_TO_ROOT(nr);
1900 
1901 	if (unlikely(root >= NR_SECTION_ROOTS))
1902 		return NULL;
1903 
1904 #ifdef CONFIG_SPARSEMEM_EXTREME
1905 	if (!mem_section || !mem_section[root])
1906 		return NULL;
1907 #endif
1908 	return &mem_section[root][nr & SECTION_ROOT_MASK];
1909 }
1910 extern size_t mem_section_usage_size(void);
1911 
1912 /*
1913  * We use the lower bits of the mem_map pointer to store
1914  * a little bit of information.  The pointer is calculated
1915  * as mem_map - section_nr_to_pfn(pnum).  The result is
1916  * aligned to the minimum alignment of the two values:
1917  *   1. All mem_map arrays are page-aligned.
1918  *   2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT
1919  *      lowest bits.  PFN_SECTION_SHIFT is arch-specific
1920  *      (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the
1921  *      worst combination is powerpc with 256k pages,
1922  *      which results in PFN_SECTION_SHIFT equal 6.
1923  * To sum it up, at least 6 bits are available on all architectures.
1924  * However, we can exceed 6 bits on some other architectures except
1925  * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available
1926  * with the worst case of 64K pages on arm64) if we make sure the
1927  * exceeded bit is not applicable to powerpc.
1928  */
1929 enum {
1930 	SECTION_MARKED_PRESENT_BIT,
1931 	SECTION_HAS_MEM_MAP_BIT,
1932 	SECTION_IS_ONLINE_BIT,
1933 	SECTION_IS_EARLY_BIT,
1934 #ifdef CONFIG_ZONE_DEVICE
1935 	SECTION_TAINT_ZONE_DEVICE_BIT,
1936 #endif
1937 	SECTION_MAP_LAST_BIT,
1938 };
1939 
1940 #define SECTION_MARKED_PRESENT		BIT(SECTION_MARKED_PRESENT_BIT)
1941 #define SECTION_HAS_MEM_MAP		BIT(SECTION_HAS_MEM_MAP_BIT)
1942 #define SECTION_IS_ONLINE		BIT(SECTION_IS_ONLINE_BIT)
1943 #define SECTION_IS_EARLY		BIT(SECTION_IS_EARLY_BIT)
1944 #ifdef CONFIG_ZONE_DEVICE
1945 #define SECTION_TAINT_ZONE_DEVICE	BIT(SECTION_TAINT_ZONE_DEVICE_BIT)
1946 #endif
1947 #define SECTION_MAP_MASK		(~(BIT(SECTION_MAP_LAST_BIT) - 1))
1948 #define SECTION_NID_SHIFT		SECTION_MAP_LAST_BIT
1949 
__section_mem_map_addr(struct mem_section * section)1950 static inline struct page *__section_mem_map_addr(struct mem_section *section)
1951 {
1952 	unsigned long map = section->section_mem_map;
1953 	map &= SECTION_MAP_MASK;
1954 	return (struct page *)map;
1955 }
1956 
present_section(struct mem_section * section)1957 static inline int present_section(struct mem_section *section)
1958 {
1959 	return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1960 }
1961 
present_section_nr(unsigned long nr)1962 static inline int present_section_nr(unsigned long nr)
1963 {
1964 	return present_section(__nr_to_section(nr));
1965 }
1966 
valid_section(struct mem_section * section)1967 static inline int valid_section(struct mem_section *section)
1968 {
1969 	return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1970 }
1971 
early_section(struct mem_section * section)1972 static inline int early_section(struct mem_section *section)
1973 {
1974 	return (section && (section->section_mem_map & SECTION_IS_EARLY));
1975 }
1976 
valid_section_nr(unsigned long nr)1977 static inline int valid_section_nr(unsigned long nr)
1978 {
1979 	return valid_section(__nr_to_section(nr));
1980 }
1981 
online_section(struct mem_section * section)1982 static inline int online_section(struct mem_section *section)
1983 {
1984 	return (section && (section->section_mem_map & SECTION_IS_ONLINE));
1985 }
1986 
1987 #ifdef CONFIG_ZONE_DEVICE
online_device_section(struct mem_section * section)1988 static inline int online_device_section(struct mem_section *section)
1989 {
1990 	unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE;
1991 
1992 	return section && ((section->section_mem_map & flags) == flags);
1993 }
1994 #else
online_device_section(struct mem_section * section)1995 static inline int online_device_section(struct mem_section *section)
1996 {
1997 	return 0;
1998 }
1999 #endif
2000 
online_section_nr(unsigned long nr)2001 static inline int online_section_nr(unsigned long nr)
2002 {
2003 	return online_section(__nr_to_section(nr));
2004 }
2005 
2006 #ifdef CONFIG_MEMORY_HOTPLUG
2007 void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2008 void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn);
2009 #endif
2010 
__pfn_to_section(unsigned long pfn)2011 static inline struct mem_section *__pfn_to_section(unsigned long pfn)
2012 {
2013 	return __nr_to_section(pfn_to_section_nr(pfn));
2014 }
2015 
2016 extern unsigned long __highest_present_section_nr;
2017 
subsection_map_index(unsigned long pfn)2018 static inline int subsection_map_index(unsigned long pfn)
2019 {
2020 	return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION;
2021 }
2022 
2023 #ifdef CONFIG_SPARSEMEM_VMEMMAP
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2024 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2025 {
2026 	int idx = subsection_map_index(pfn);
2027 	struct mem_section_usage *usage = READ_ONCE(ms->usage);
2028 
2029 	return usage ? test_bit(idx, usage->subsection_map) : 0;
2030 }
2031 #else
pfn_section_valid(struct mem_section * ms,unsigned long pfn)2032 static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn)
2033 {
2034 	return 1;
2035 }
2036 #endif
2037 
2038 #ifndef CONFIG_HAVE_ARCH_PFN_VALID
2039 /**
2040  * pfn_valid - check if there is a valid memory map entry for a PFN
2041  * @pfn: the page frame number to check
2042  *
2043  * Check if there is a valid memory map entry aka struct page for the @pfn.
2044  * Note, that availability of the memory map entry does not imply that
2045  * there is actual usable memory at that @pfn. The struct page may
2046  * represent a hole or an unusable page frame.
2047  *
2048  * Return: 1 for PFNs that have memory map entries and 0 otherwise
2049  */
pfn_valid(unsigned long pfn)2050 static inline int pfn_valid(unsigned long pfn)
2051 {
2052 	struct mem_section *ms;
2053 	int ret;
2054 
2055 	/*
2056 	 * Ensure the upper PAGE_SHIFT bits are clear in the
2057 	 * pfn. Else it might lead to false positives when
2058 	 * some of the upper bits are set, but the lower bits
2059 	 * match a valid pfn.
2060 	 */
2061 	if (PHYS_PFN(PFN_PHYS(pfn)) != pfn)
2062 		return 0;
2063 
2064 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2065 		return 0;
2066 	ms = __pfn_to_section(pfn);
2067 	rcu_read_lock_sched();
2068 	if (!valid_section(ms)) {
2069 		rcu_read_unlock_sched();
2070 		return 0;
2071 	}
2072 	/*
2073 	 * Traditionally early sections always returned pfn_valid() for
2074 	 * the entire section-sized span.
2075 	 */
2076 	ret = early_section(ms) || pfn_section_valid(ms, pfn);
2077 	rcu_read_unlock_sched();
2078 
2079 	return ret;
2080 }
2081 #endif
2082 
pfn_in_present_section(unsigned long pfn)2083 static inline int pfn_in_present_section(unsigned long pfn)
2084 {
2085 	if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
2086 		return 0;
2087 	return present_section(__pfn_to_section(pfn));
2088 }
2089 
next_present_section_nr(unsigned long section_nr)2090 static inline unsigned long next_present_section_nr(unsigned long section_nr)
2091 {
2092 	while (++section_nr <= __highest_present_section_nr) {
2093 		if (present_section_nr(section_nr))
2094 			return section_nr;
2095 	}
2096 
2097 	return -1;
2098 }
2099 
2100 /*
2101  * These are _only_ used during initialisation, therefore they
2102  * can use __initdata ...  They could have names to indicate
2103  * this restriction.
2104  */
2105 #ifdef CONFIG_NUMA
2106 #define pfn_to_nid(pfn)							\
2107 ({									\
2108 	unsigned long __pfn_to_nid_pfn = (pfn);				\
2109 	page_to_nid(pfn_to_page(__pfn_to_nid_pfn));			\
2110 })
2111 #else
2112 #define pfn_to_nid(pfn)		(0)
2113 #endif
2114 
2115 void sparse_init(void);
2116 #else
2117 #define sparse_init()	do {} while (0)
2118 #define sparse_index_init(_sec, _nid)  do {} while (0)
2119 #define pfn_in_present_section pfn_valid
2120 #define subsection_map_init(_pfn, _nr_pages) do {} while (0)
2121 #endif /* CONFIG_SPARSEMEM */
2122 
2123 #endif /* !__GENERATING_BOUNDS.H */
2124 #endif /* !__ASSEMBLY__ */
2125 #endif /* _LINUX_MMZONE_H */
2126