1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* memcontrol.h - Memory Controller
3  *
4  * Copyright IBM Corporation, 2007
5  * Author Balbir Singh <[email protected]>
6  *
7  * Copyright 2007 OpenVZ SWsoft Inc
8  * Author: Pavel Emelianov <[email protected]>
9  */
10 
11 #ifndef _LINUX_MEMCONTROL_H
12 #define _LINUX_MEMCONTROL_H
13 #include <linux/cgroup.h>
14 #include <linux/vm_event_item.h>
15 #include <linux/hardirq.h>
16 #include <linux/jump_label.h>
17 #include <linux/kernel.h>
18 #include <linux/page_counter.h>
19 #include <linux/vmpressure.h>
20 #include <linux/eventfd.h>
21 #include <linux/mm.h>
22 #include <linux/vmstat.h>
23 #include <linux/writeback.h>
24 #include <linux/page-flags.h>
25 #include <linux/shrinker.h>
26 
27 struct mem_cgroup;
28 struct obj_cgroup;
29 struct page;
30 struct mm_struct;
31 struct kmem_cache;
32 
33 /* Cgroup-specific page state, on top of universal node page state */
34 enum memcg_stat_item {
35 	MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
36 	MEMCG_SOCK,
37 	MEMCG_PERCPU_B,
38 	MEMCG_VMALLOC,
39 	MEMCG_KMEM,
40 	MEMCG_ZSWAP_B,
41 	MEMCG_ZSWAPPED,
42 	MEMCG_NR_STAT,
43 };
44 
45 enum memcg_memory_event {
46 	MEMCG_LOW,
47 	MEMCG_HIGH,
48 	MEMCG_MAX,
49 	MEMCG_OOM,
50 	MEMCG_OOM_KILL,
51 	MEMCG_OOM_GROUP_KILL,
52 	MEMCG_SWAP_HIGH,
53 	MEMCG_SWAP_MAX,
54 	MEMCG_SWAP_FAIL,
55 	MEMCG_NR_MEMORY_EVENTS,
56 };
57 
58 struct mem_cgroup_reclaim_cookie {
59 	pg_data_t *pgdat;
60 	int generation;
61 };
62 
63 #ifdef CONFIG_MEMCG
64 
65 #define MEM_CGROUP_ID_SHIFT	16
66 
67 struct mem_cgroup_id {
68 	int id;
69 	refcount_t ref;
70 };
71 
72 struct memcg_vmstats_percpu;
73 struct memcg1_events_percpu;
74 struct memcg_vmstats;
75 struct lruvec_stats_percpu;
76 struct lruvec_stats;
77 
78 struct mem_cgroup_reclaim_iter {
79 	struct mem_cgroup *position;
80 	/* scan generation, increased every round-trip */
81 	atomic_t generation;
82 };
83 
84 /*
85  * per-node information in memory controller.
86  */
87 struct mem_cgroup_per_node {
88 	/* Keep the read-only fields at the start */
89 	struct mem_cgroup	*memcg;		/* Back pointer, we cannot */
90 						/* use container_of	   */
91 
92 	struct lruvec_stats_percpu __percpu	*lruvec_stats_percpu;
93 	struct lruvec_stats			*lruvec_stats;
94 	struct shrinker_info __rcu	*shrinker_info;
95 
96 #ifdef CONFIG_MEMCG_V1
97 	/*
98 	 * Memcg-v1 only stuff in middle as buffer between read mostly fields
99 	 * and update often fields to avoid false sharing. If v1 stuff is
100 	 * not present, an explicit padding is needed.
101 	 */
102 
103 	struct rb_node		tree_node;	/* RB tree node */
104 	unsigned long		usage_in_excess;/* Set to the value by which */
105 						/* the soft limit is exceeded*/
106 	bool			on_tree;
107 #else
108 	CACHELINE_PADDING(_pad1_);
109 #endif
110 
111 	/* Fields which get updated often at the end. */
112 	struct lruvec		lruvec;
113 	CACHELINE_PADDING(_pad2_);
114 	unsigned long		lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
115 	struct mem_cgroup_reclaim_iter	iter;
116 };
117 
118 struct mem_cgroup_threshold {
119 	struct eventfd_ctx *eventfd;
120 	unsigned long threshold;
121 };
122 
123 /* For threshold */
124 struct mem_cgroup_threshold_ary {
125 	/* An array index points to threshold just below or equal to usage. */
126 	int current_threshold;
127 	/* Size of entries[] */
128 	unsigned int size;
129 	/* Array of thresholds */
130 	struct mem_cgroup_threshold entries[] __counted_by(size);
131 };
132 
133 struct mem_cgroup_thresholds {
134 	/* Primary thresholds array */
135 	struct mem_cgroup_threshold_ary *primary;
136 	/*
137 	 * Spare threshold array.
138 	 * This is needed to make mem_cgroup_unregister_event() "never fail".
139 	 * It must be able to store at least primary->size - 1 entries.
140 	 */
141 	struct mem_cgroup_threshold_ary *spare;
142 };
143 
144 /*
145  * Remember four most recent foreign writebacks with dirty pages in this
146  * cgroup.  Inode sharing is expected to be uncommon and, even if we miss
147  * one in a given round, we're likely to catch it later if it keeps
148  * foreign-dirtying, so a fairly low count should be enough.
149  *
150  * See mem_cgroup_track_foreign_dirty_slowpath() for details.
151  */
152 #define MEMCG_CGWB_FRN_CNT	4
153 
154 struct memcg_cgwb_frn {
155 	u64 bdi_id;			/* bdi->id of the foreign inode */
156 	int memcg_id;			/* memcg->css.id of foreign inode */
157 	u64 at;				/* jiffies_64 at the time of dirtying */
158 	struct wb_completion done;	/* tracks in-flight foreign writebacks */
159 };
160 
161 /*
162  * Bucket for arbitrarily byte-sized objects charged to a memory
163  * cgroup. The bucket can be reparented in one piece when the cgroup
164  * is destroyed, without having to round up the individual references
165  * of all live memory objects in the wild.
166  */
167 struct obj_cgroup {
168 	struct percpu_ref refcnt;
169 	struct mem_cgroup *memcg;
170 	atomic_t nr_charged_bytes;
171 	union {
172 		struct list_head list; /* protected by objcg_lock */
173 		struct rcu_head rcu;
174 	};
175 };
176 
177 /*
178  * The memory controller data structure. The memory controller controls both
179  * page cache and RSS per cgroup. We would eventually like to provide
180  * statistics based on the statistics developed by Rik Van Riel for clock-pro,
181  * to help the administrator determine what knobs to tune.
182  */
183 struct mem_cgroup {
184 	struct cgroup_subsys_state css;
185 
186 	/* Private memcg ID. Used to ID objects that outlive the cgroup */
187 	struct mem_cgroup_id id;
188 
189 	/* Accounted resources */
190 	struct page_counter memory;		/* Both v1 & v2 */
191 
192 	union {
193 		struct page_counter swap;	/* v2 only */
194 		struct page_counter memsw;	/* v1 only */
195 	};
196 
197 	/* registered local peak watchers */
198 	struct list_head memory_peaks;
199 	struct list_head swap_peaks;
200 	spinlock_t	 peaks_lock;
201 
202 	/* Range enforcement for interrupt charges */
203 	struct work_struct high_work;
204 
205 #ifdef CONFIG_ZSWAP
206 	unsigned long zswap_max;
207 
208 	/*
209 	 * Prevent pages from this memcg from being written back from zswap to
210 	 * swap, and from being swapped out on zswap store failures.
211 	 */
212 	bool zswap_writeback;
213 #endif
214 
215 	/* vmpressure notifications */
216 	struct vmpressure vmpressure;
217 
218 	/*
219 	 * Should the OOM killer kill all belonging tasks, had it kill one?
220 	 */
221 	bool oom_group;
222 
223 	int swappiness;
224 
225 	/* memory.events and memory.events.local */
226 	struct cgroup_file events_file;
227 	struct cgroup_file events_local_file;
228 
229 	/* handle for "memory.swap.events" */
230 	struct cgroup_file swap_events_file;
231 
232 	/* memory.stat */
233 	struct memcg_vmstats	*vmstats;
234 
235 	/* memory.events */
236 	atomic_long_t		memory_events[MEMCG_NR_MEMORY_EVENTS];
237 	atomic_long_t		memory_events_local[MEMCG_NR_MEMORY_EVENTS];
238 
239 	/*
240 	 * Hint of reclaim pressure for socket memroy management. Note
241 	 * that this indicator should NOT be used in legacy cgroup mode
242 	 * where socket memory is accounted/charged separately.
243 	 */
244 	unsigned long		socket_pressure;
245 
246 	int kmemcg_id;
247 	/*
248 	 * memcg->objcg is wiped out as a part of the objcg repaprenting
249 	 * process. memcg->orig_objcg preserves a pointer (and a reference)
250 	 * to the original objcg until the end of live of memcg.
251 	 */
252 	struct obj_cgroup __rcu	*objcg;
253 	struct obj_cgroup	*orig_objcg;
254 	/* list of inherited objcgs, protected by objcg_lock */
255 	struct list_head objcg_list;
256 
257 	struct memcg_vmstats_percpu __percpu *vmstats_percpu;
258 
259 #ifdef CONFIG_CGROUP_WRITEBACK
260 	struct list_head cgwb_list;
261 	struct wb_domain cgwb_domain;
262 	struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
263 #endif
264 
265 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
266 	struct deferred_split deferred_split_queue;
267 #endif
268 
269 #ifdef CONFIG_LRU_GEN_WALKS_MMU
270 	/* per-memcg mm_struct list */
271 	struct lru_gen_mm_list mm_list;
272 #endif
273 
274 #ifdef CONFIG_MEMCG_V1
275 	/* Legacy consumer-oriented counters */
276 	struct page_counter kmem;		/* v1 only */
277 	struct page_counter tcpmem;		/* v1 only */
278 
279 	struct memcg1_events_percpu __percpu *events_percpu;
280 
281 	unsigned long soft_limit;
282 
283 	/* protected by memcg_oom_lock */
284 	bool oom_lock;
285 	int under_oom;
286 
287 	/* OOM-Killer disable */
288 	int oom_kill_disable;
289 
290 	/* protect arrays of thresholds */
291 	struct mutex thresholds_lock;
292 
293 	/* thresholds for memory usage. RCU-protected */
294 	struct mem_cgroup_thresholds thresholds;
295 
296 	/* thresholds for mem+swap usage. RCU-protected */
297 	struct mem_cgroup_thresholds memsw_thresholds;
298 
299 	/* For oom notifier event fd */
300 	struct list_head oom_notify;
301 
302 	/* Legacy tcp memory accounting */
303 	bool tcpmem_active;
304 	int tcpmem_pressure;
305 
306 	/* List of events which userspace want to receive */
307 	struct list_head event_list;
308 	spinlock_t event_list_lock;
309 #endif /* CONFIG_MEMCG_V1 */
310 
311 	struct mem_cgroup_per_node *nodeinfo[];
312 };
313 
314 /*
315  * size of first charge trial.
316  * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
317  * workload.
318  */
319 #define MEMCG_CHARGE_BATCH 64U
320 
321 extern struct mem_cgroup *root_mem_cgroup;
322 
323 enum page_memcg_data_flags {
324 	/* page->memcg_data is a pointer to an slabobj_ext vector */
325 	MEMCG_DATA_OBJEXTS = (1UL << 0),
326 	/* page has been accounted as a non-slab kernel page */
327 	MEMCG_DATA_KMEM = (1UL << 1),
328 	/* the next bit after the last actual flag */
329 	__NR_MEMCG_DATA_FLAGS  = (1UL << 2),
330 };
331 
332 #define __FIRST_OBJEXT_FLAG	__NR_MEMCG_DATA_FLAGS
333 
334 #else /* CONFIG_MEMCG */
335 
336 #define __FIRST_OBJEXT_FLAG	(1UL << 0)
337 
338 #endif /* CONFIG_MEMCG */
339 
340 enum objext_flags {
341 	/* slabobj_ext vector failed to allocate */
342 	OBJEXTS_ALLOC_FAIL = __FIRST_OBJEXT_FLAG,
343 	/* the next bit after the last actual flag */
344 	__NR_OBJEXTS_FLAGS  = (__FIRST_OBJEXT_FLAG << 1),
345 };
346 
347 #define OBJEXTS_FLAGS_MASK (__NR_OBJEXTS_FLAGS - 1)
348 
349 #ifdef CONFIG_MEMCG
350 
351 static inline bool folio_memcg_kmem(struct folio *folio);
352 
353 /*
354  * After the initialization objcg->memcg is always pointing at
355  * a valid memcg, but can be atomically swapped to the parent memcg.
356  *
357  * The caller must ensure that the returned memcg won't be released.
358  */
obj_cgroup_memcg(struct obj_cgroup * objcg)359 static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
360 {
361 	lockdep_assert_once(rcu_read_lock_held() || lockdep_is_held(&cgroup_mutex));
362 	return READ_ONCE(objcg->memcg);
363 }
364 
365 /*
366  * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
367  * @folio: Pointer to the folio.
368  *
369  * Returns a pointer to the memory cgroup associated with the folio,
370  * or NULL. This function assumes that the folio is known to have a
371  * proper memory cgroup pointer. It's not safe to call this function
372  * against some type of folios, e.g. slab folios or ex-slab folios or
373  * kmem folios.
374  */
__folio_memcg(struct folio * folio)375 static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
376 {
377 	unsigned long memcg_data = folio->memcg_data;
378 
379 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
380 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
381 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
382 
383 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
384 }
385 
386 /*
387  * __folio_objcg - get the object cgroup associated with a kmem folio.
388  * @folio: Pointer to the folio.
389  *
390  * Returns a pointer to the object cgroup associated with the folio,
391  * or NULL. This function assumes that the folio is known to have a
392  * proper object cgroup pointer. It's not safe to call this function
393  * against some type of folios, e.g. slab folios or ex-slab folios or
394  * LRU folios.
395  */
__folio_objcg(struct folio * folio)396 static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
397 {
398 	unsigned long memcg_data = folio->memcg_data;
399 
400 	VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
401 	VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJEXTS, folio);
402 	VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
403 
404 	return (struct obj_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
405 }
406 
407 /*
408  * folio_memcg - Get the memory cgroup associated with a folio.
409  * @folio: Pointer to the folio.
410  *
411  * Returns a pointer to the memory cgroup associated with the folio,
412  * or NULL. This function assumes that the folio is known to have a
413  * proper memory cgroup pointer. It's not safe to call this function
414  * against some type of folios, e.g. slab folios or ex-slab folios.
415  *
416  * For a non-kmem folio any of the following ensures folio and memcg binding
417  * stability:
418  *
419  * - the folio lock
420  * - LRU isolation
421  * - exclusive reference
422  *
423  * For a kmem folio a caller should hold an rcu read lock to protect memcg
424  * associated with a kmem folio from being released.
425  */
folio_memcg(struct folio * folio)426 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
427 {
428 	if (folio_memcg_kmem(folio))
429 		return obj_cgroup_memcg(__folio_objcg(folio));
430 	return __folio_memcg(folio);
431 }
432 
433 /*
434  * folio_memcg_charged - If a folio is charged to a memory cgroup.
435  * @folio: Pointer to the folio.
436  *
437  * Returns true if folio is charged to a memory cgroup, otherwise returns false.
438  */
folio_memcg_charged(struct folio * folio)439 static inline bool folio_memcg_charged(struct folio *folio)
440 {
441 	if (folio_memcg_kmem(folio))
442 		return __folio_objcg(folio) != NULL;
443 	return __folio_memcg(folio) != NULL;
444 }
445 
446 /*
447  * folio_memcg_check - Get the memory cgroup associated with a folio.
448  * @folio: Pointer to the folio.
449  *
450  * Returns a pointer to the memory cgroup associated with the folio,
451  * or NULL. This function unlike folio_memcg() can take any folio
452  * as an argument. It has to be used in cases when it's not known if a folio
453  * has an associated memory cgroup pointer or an object cgroups vector or
454  * an object cgroup.
455  *
456  * For a non-kmem folio any of the following ensures folio and memcg binding
457  * stability:
458  *
459  * - the folio lock
460  * - LRU isolation
461  * - exclusive reference
462  *
463  * For a kmem folio a caller should hold an rcu read lock to protect memcg
464  * associated with a kmem folio from being released.
465  */
folio_memcg_check(struct folio * folio)466 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
467 {
468 	/*
469 	 * Because folio->memcg_data might be changed asynchronously
470 	 * for slabs, READ_ONCE() should be used here.
471 	 */
472 	unsigned long memcg_data = READ_ONCE(folio->memcg_data);
473 
474 	if (memcg_data & MEMCG_DATA_OBJEXTS)
475 		return NULL;
476 
477 	if (memcg_data & MEMCG_DATA_KMEM) {
478 		struct obj_cgroup *objcg;
479 
480 		objcg = (void *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
481 		return obj_cgroup_memcg(objcg);
482 	}
483 
484 	return (struct mem_cgroup *)(memcg_data & ~OBJEXTS_FLAGS_MASK);
485 }
486 
page_memcg_check(struct page * page)487 static inline struct mem_cgroup *page_memcg_check(struct page *page)
488 {
489 	if (PageTail(page))
490 		return NULL;
491 	return folio_memcg_check((struct folio *)page);
492 }
493 
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)494 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
495 {
496 	struct mem_cgroup *memcg;
497 
498 	rcu_read_lock();
499 retry:
500 	memcg = obj_cgroup_memcg(objcg);
501 	if (unlikely(!css_tryget(&memcg->css)))
502 		goto retry;
503 	rcu_read_unlock();
504 
505 	return memcg;
506 }
507 
508 /*
509  * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
510  * @folio: Pointer to the folio.
511  *
512  * Checks if the folio has MemcgKmem flag set. The caller must ensure
513  * that the folio has an associated memory cgroup. It's not safe to call
514  * this function against some types of folios, e.g. slab folios.
515  */
folio_memcg_kmem(struct folio * folio)516 static inline bool folio_memcg_kmem(struct folio *folio)
517 {
518 	VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
519 	VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJEXTS, folio);
520 	return folio->memcg_data & MEMCG_DATA_KMEM;
521 }
522 
PageMemcgKmem(struct page * page)523 static inline bool PageMemcgKmem(struct page *page)
524 {
525 	return folio_memcg_kmem(page_folio(page));
526 }
527 
mem_cgroup_is_root(struct mem_cgroup * memcg)528 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
529 {
530 	return (memcg == root_mem_cgroup);
531 }
532 
mem_cgroup_disabled(void)533 static inline bool mem_cgroup_disabled(void)
534 {
535 	return !cgroup_subsys_enabled(memory_cgrp_subsys);
536 }
537 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)538 static inline void mem_cgroup_protection(struct mem_cgroup *root,
539 					 struct mem_cgroup *memcg,
540 					 unsigned long *min,
541 					 unsigned long *low)
542 {
543 	*min = *low = 0;
544 
545 	if (mem_cgroup_disabled())
546 		return;
547 
548 	/*
549 	 * There is no reclaim protection applied to a targeted reclaim.
550 	 * We are special casing this specific case here because
551 	 * mem_cgroup_calculate_protection is not robust enough to keep
552 	 * the protection invariant for calculated effective values for
553 	 * parallel reclaimers with different reclaim target. This is
554 	 * especially a problem for tail memcgs (as they have pages on LRU)
555 	 * which would want to have effective values 0 for targeted reclaim
556 	 * but a different value for external reclaim.
557 	 *
558 	 * Example
559 	 * Let's have global and A's reclaim in parallel:
560 	 *  |
561 	 *  A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
562 	 *  |\
563 	 *  | C (low = 1G, usage = 2.5G)
564 	 *  B (low = 1G, usage = 0.5G)
565 	 *
566 	 * For the global reclaim
567 	 * A.elow = A.low
568 	 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
569 	 * C.elow = min(C.usage, C.low)
570 	 *
571 	 * With the effective values resetting we have A reclaim
572 	 * A.elow = 0
573 	 * B.elow = B.low
574 	 * C.elow = C.low
575 	 *
576 	 * If the global reclaim races with A's reclaim then
577 	 * B.elow = C.elow = 0 because children_low_usage > A.elow)
578 	 * is possible and reclaiming B would be violating the protection.
579 	 *
580 	 */
581 	if (root == memcg)
582 		return;
583 
584 	*min = READ_ONCE(memcg->memory.emin);
585 	*low = READ_ONCE(memcg->memory.elow);
586 }
587 
588 void mem_cgroup_calculate_protection(struct mem_cgroup *root,
589 				     struct mem_cgroup *memcg);
590 
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)591 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
592 					  struct mem_cgroup *memcg)
593 {
594 	/*
595 	 * The root memcg doesn't account charges, and doesn't support
596 	 * protection. The target memcg's protection is ignored, see
597 	 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
598 	 */
599 	return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
600 		memcg == target;
601 }
602 
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)603 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
604 					struct mem_cgroup *memcg)
605 {
606 	if (mem_cgroup_unprotected(target, memcg))
607 		return false;
608 
609 	return READ_ONCE(memcg->memory.elow) >=
610 		page_counter_read(&memcg->memory);
611 }
612 
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)613 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
614 					struct mem_cgroup *memcg)
615 {
616 	if (mem_cgroup_unprotected(target, memcg))
617 		return false;
618 
619 	return READ_ONCE(memcg->memory.emin) >=
620 		page_counter_read(&memcg->memory);
621 }
622 
623 int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
624 
625 /**
626  * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
627  * @folio: Folio to charge.
628  * @mm: mm context of the allocating task.
629  * @gfp: Reclaim mode.
630  *
631  * Try to charge @folio to the memcg that @mm belongs to, reclaiming
632  * pages according to @gfp if necessary.  If @mm is NULL, try to
633  * charge to the active memcg.
634  *
635  * Do not use this for folios allocated for swapin.
636  *
637  * Return: 0 on success. Otherwise, an error code is returned.
638  */
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)639 static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
640 				    gfp_t gfp)
641 {
642 	if (mem_cgroup_disabled())
643 		return 0;
644 	return __mem_cgroup_charge(folio, mm, gfp);
645 }
646 
647 int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp);
648 
649 int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
650 				  gfp_t gfp, swp_entry_t entry);
651 
652 void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr_pages);
653 
654 void __mem_cgroup_uncharge(struct folio *folio);
655 
656 /**
657  * mem_cgroup_uncharge - Uncharge a folio.
658  * @folio: Folio to uncharge.
659  *
660  * Uncharge a folio previously charged with mem_cgroup_charge().
661  */
mem_cgroup_uncharge(struct folio * folio)662 static inline void mem_cgroup_uncharge(struct folio *folio)
663 {
664 	if (mem_cgroup_disabled())
665 		return;
666 	__mem_cgroup_uncharge(folio);
667 }
668 
669 void __mem_cgroup_uncharge_folios(struct folio_batch *folios);
mem_cgroup_uncharge_folios(struct folio_batch * folios)670 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
671 {
672 	if (mem_cgroup_disabled())
673 		return;
674 	__mem_cgroup_uncharge_folios(folios);
675 }
676 
677 void mem_cgroup_replace_folio(struct folio *old, struct folio *new);
678 void mem_cgroup_migrate(struct folio *old, struct folio *new);
679 
680 /**
681  * mem_cgroup_lruvec - get the lru list vector for a memcg & node
682  * @memcg: memcg of the wanted lruvec
683  * @pgdat: pglist_data
684  *
685  * Returns the lru list vector holding pages for a given @memcg &
686  * @pgdat combination. This can be the node lruvec, if the memory
687  * controller is disabled.
688  */
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)689 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
690 					       struct pglist_data *pgdat)
691 {
692 	struct mem_cgroup_per_node *mz;
693 	struct lruvec *lruvec;
694 
695 	if (mem_cgroup_disabled()) {
696 		lruvec = &pgdat->__lruvec;
697 		goto out;
698 	}
699 
700 	if (!memcg)
701 		memcg = root_mem_cgroup;
702 
703 	mz = memcg->nodeinfo[pgdat->node_id];
704 	lruvec = &mz->lruvec;
705 out:
706 	/*
707 	 * Since a node can be onlined after the mem_cgroup was created,
708 	 * we have to be prepared to initialize lruvec->pgdat here;
709 	 * and if offlined then reonlined, we need to reinitialize it.
710 	 */
711 	if (unlikely(lruvec->pgdat != pgdat))
712 		lruvec->pgdat = pgdat;
713 	return lruvec;
714 }
715 
716 /**
717  * folio_lruvec - return lruvec for isolating/putting an LRU folio
718  * @folio: Pointer to the folio.
719  *
720  * This function relies on folio->mem_cgroup being stable.
721  */
folio_lruvec(struct folio * folio)722 static inline struct lruvec *folio_lruvec(struct folio *folio)
723 {
724 	struct mem_cgroup *memcg = folio_memcg(folio);
725 
726 	VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
727 	return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
728 }
729 
730 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
731 
732 struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
733 
734 struct mem_cgroup *get_mem_cgroup_from_current(void);
735 
736 struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio);
737 
738 struct lruvec *folio_lruvec_lock(struct folio *folio);
739 struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
740 struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
741 						unsigned long *flags);
742 
743 #ifdef CONFIG_DEBUG_VM
744 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
745 #else
746 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)747 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
748 {
749 }
750 #endif
751 
752 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)753 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
754 	return css ? container_of(css, struct mem_cgroup, css) : NULL;
755 }
756 
obj_cgroup_tryget(struct obj_cgroup * objcg)757 static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
758 {
759 	return percpu_ref_tryget(&objcg->refcnt);
760 }
761 
obj_cgroup_get(struct obj_cgroup * objcg)762 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
763 {
764 	percpu_ref_get(&objcg->refcnt);
765 }
766 
obj_cgroup_get_many(struct obj_cgroup * objcg,unsigned long nr)767 static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
768 				       unsigned long nr)
769 {
770 	percpu_ref_get_many(&objcg->refcnt, nr);
771 }
772 
obj_cgroup_put(struct obj_cgroup * objcg)773 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
774 {
775 	if (objcg)
776 		percpu_ref_put(&objcg->refcnt);
777 }
778 
mem_cgroup_tryget(struct mem_cgroup * memcg)779 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
780 {
781 	return !memcg || css_tryget(&memcg->css);
782 }
783 
mem_cgroup_tryget_online(struct mem_cgroup * memcg)784 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
785 {
786 	return !memcg || css_tryget_online(&memcg->css);
787 }
788 
mem_cgroup_put(struct mem_cgroup * memcg)789 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
790 {
791 	if (memcg)
792 		css_put(&memcg->css);
793 }
794 
795 #define mem_cgroup_from_counter(counter, member)	\
796 	container_of(counter, struct mem_cgroup, member)
797 
798 struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
799 				   struct mem_cgroup *,
800 				   struct mem_cgroup_reclaim_cookie *);
801 void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
802 void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
803 			   int (*)(struct task_struct *, void *), void *arg);
804 
mem_cgroup_id(struct mem_cgroup * memcg)805 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
806 {
807 	if (mem_cgroup_disabled())
808 		return 0;
809 
810 	return memcg->id.id;
811 }
812 struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
813 
814 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)815 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
816 {
817 	return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
818 }
819 
820 struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
821 #endif
822 
mem_cgroup_from_seq(struct seq_file * m)823 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
824 {
825 	return mem_cgroup_from_css(seq_css(m));
826 }
827 
lruvec_memcg(struct lruvec * lruvec)828 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
829 {
830 	struct mem_cgroup_per_node *mz;
831 
832 	if (mem_cgroup_disabled())
833 		return NULL;
834 
835 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
836 	return mz->memcg;
837 }
838 
839 /**
840  * parent_mem_cgroup - find the accounting parent of a memcg
841  * @memcg: memcg whose parent to find
842  *
843  * Returns the parent memcg, or NULL if this is the root.
844  */
parent_mem_cgroup(struct mem_cgroup * memcg)845 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
846 {
847 	return mem_cgroup_from_css(memcg->css.parent);
848 }
849 
mem_cgroup_is_descendant(struct mem_cgroup * memcg,struct mem_cgroup * root)850 static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
851 			      struct mem_cgroup *root)
852 {
853 	if (root == memcg)
854 		return true;
855 	return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
856 }
857 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)858 static inline bool mm_match_cgroup(struct mm_struct *mm,
859 				   struct mem_cgroup *memcg)
860 {
861 	struct mem_cgroup *task_memcg;
862 	bool match = false;
863 
864 	rcu_read_lock();
865 	task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
866 	if (task_memcg)
867 		match = mem_cgroup_is_descendant(task_memcg, memcg);
868 	rcu_read_unlock();
869 	return match;
870 }
871 
872 struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
873 ino_t page_cgroup_ino(struct page *page);
874 
mem_cgroup_online(struct mem_cgroup * memcg)875 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
876 {
877 	if (mem_cgroup_disabled())
878 		return true;
879 	return !!(memcg->css.flags & CSS_ONLINE);
880 }
881 
882 void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
883 		int zid, int nr_pages);
884 
885 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)886 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
887 		enum lru_list lru, int zone_idx)
888 {
889 	struct mem_cgroup_per_node *mz;
890 
891 	mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
892 	return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
893 }
894 
895 void mem_cgroup_handle_over_high(gfp_t gfp_mask);
896 
897 unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
898 
899 unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
900 
901 void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
902 				struct task_struct *p);
903 
904 void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
905 
906 struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
907 					    struct mem_cgroup *oom_domain);
908 void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
909 
910 void __mod_memcg_state(struct mem_cgroup *memcg, enum memcg_stat_item idx,
911 		       int val);
912 
913 /* idx can be of type enum memcg_stat_item or node_stat_item */
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int val)914 static inline void mod_memcg_state(struct mem_cgroup *memcg,
915 				   enum memcg_stat_item idx, int val)
916 {
917 	unsigned long flags;
918 
919 	local_irq_save(flags);
920 	__mod_memcg_state(memcg, idx, val);
921 	local_irq_restore(flags);
922 }
923 
mod_memcg_page_state(struct page * page,enum memcg_stat_item idx,int val)924 static inline void mod_memcg_page_state(struct page *page,
925 					enum memcg_stat_item idx, int val)
926 {
927 	struct mem_cgroup *memcg;
928 
929 	if (mem_cgroup_disabled())
930 		return;
931 
932 	rcu_read_lock();
933 	memcg = folio_memcg(page_folio(page));
934 	if (memcg)
935 		mod_memcg_state(memcg, idx, val);
936 	rcu_read_unlock();
937 }
938 
939 unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
940 unsigned long lruvec_page_state(struct lruvec *lruvec, enum node_stat_item idx);
941 unsigned long lruvec_page_state_local(struct lruvec *lruvec,
942 				      enum node_stat_item idx);
943 
944 void mem_cgroup_flush_stats(struct mem_cgroup *memcg);
945 void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg);
946 
947 void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
948 
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)949 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
950 					 int val)
951 {
952 	unsigned long flags;
953 
954 	local_irq_save(flags);
955 	__mod_lruvec_kmem_state(p, idx, val);
956 	local_irq_restore(flags);
957 }
958 
959 void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
960 			  unsigned long count);
961 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)962 static inline void count_memcg_events(struct mem_cgroup *memcg,
963 				      enum vm_event_item idx,
964 				      unsigned long count)
965 {
966 	unsigned long flags;
967 
968 	local_irq_save(flags);
969 	__count_memcg_events(memcg, idx, count);
970 	local_irq_restore(flags);
971 }
972 
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)973 static inline void count_memcg_folio_events(struct folio *folio,
974 		enum vm_event_item idx, unsigned long nr)
975 {
976 	struct mem_cgroup *memcg = folio_memcg(folio);
977 
978 	if (memcg)
979 		count_memcg_events(memcg, idx, nr);
980 }
981 
count_memcg_events_mm(struct mm_struct * mm,enum vm_event_item idx,unsigned long count)982 static inline void count_memcg_events_mm(struct mm_struct *mm,
983 					enum vm_event_item idx, unsigned long count)
984 {
985 	struct mem_cgroup *memcg;
986 
987 	if (mem_cgroup_disabled())
988 		return;
989 
990 	rcu_read_lock();
991 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
992 	if (likely(memcg))
993 		count_memcg_events(memcg, idx, count);
994 	rcu_read_unlock();
995 }
996 
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)997 static inline void count_memcg_event_mm(struct mm_struct *mm,
998 					enum vm_event_item idx)
999 {
1000 	count_memcg_events_mm(mm, idx, 1);
1001 }
1002 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1003 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1004 				      enum memcg_memory_event event)
1005 {
1006 	bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1007 			  event == MEMCG_SWAP_FAIL;
1008 
1009 	atomic_long_inc(&memcg->memory_events_local[event]);
1010 	if (!swap_event)
1011 		cgroup_file_notify(&memcg->events_local_file);
1012 
1013 	do {
1014 		atomic_long_inc(&memcg->memory_events[event]);
1015 		if (swap_event)
1016 			cgroup_file_notify(&memcg->swap_events_file);
1017 		else
1018 			cgroup_file_notify(&memcg->events_file);
1019 
1020 		if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1021 			break;
1022 		if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1023 			break;
1024 	} while ((memcg = parent_mem_cgroup(memcg)) &&
1025 		 !mem_cgroup_is_root(memcg));
1026 }
1027 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1028 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1029 					 enum memcg_memory_event event)
1030 {
1031 	struct mem_cgroup *memcg;
1032 
1033 	if (mem_cgroup_disabled())
1034 		return;
1035 
1036 	rcu_read_lock();
1037 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1038 	if (likely(memcg))
1039 		memcg_memory_event(memcg, event);
1040 	rcu_read_unlock();
1041 }
1042 
1043 void split_page_memcg(struct page *head, int old_order, int new_order);
1044 
cgroup_id_from_mm(struct mm_struct * mm)1045 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1046 {
1047 	struct mem_cgroup *memcg;
1048 	u64 id;
1049 
1050 	if (mem_cgroup_disabled())
1051 		return 0;
1052 
1053 	rcu_read_lock();
1054 	memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1055 	if (!memcg)
1056 		memcg = root_mem_cgroup;
1057 	id = cgroup_id(memcg->css.cgroup);
1058 	rcu_read_unlock();
1059 	return id;
1060 }
1061 
1062 #else /* CONFIG_MEMCG */
1063 
1064 #define MEM_CGROUP_ID_SHIFT	0
1065 
folio_memcg(struct folio * folio)1066 static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1067 {
1068 	return NULL;
1069 }
1070 
folio_memcg_charged(struct folio * folio)1071 static inline bool folio_memcg_charged(struct folio *folio)
1072 {
1073 	return false;
1074 }
1075 
folio_memcg_check(struct folio * folio)1076 static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1077 {
1078 	return NULL;
1079 }
1080 
page_memcg_check(struct page * page)1081 static inline struct mem_cgroup *page_memcg_check(struct page *page)
1082 {
1083 	return NULL;
1084 }
1085 
get_mem_cgroup_from_objcg(struct obj_cgroup * objcg)1086 static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
1087 {
1088 	return NULL;
1089 }
1090 
folio_memcg_kmem(struct folio * folio)1091 static inline bool folio_memcg_kmem(struct folio *folio)
1092 {
1093 	return false;
1094 }
1095 
PageMemcgKmem(struct page * page)1096 static inline bool PageMemcgKmem(struct page *page)
1097 {
1098 	return false;
1099 }
1100 
mem_cgroup_is_root(struct mem_cgroup * memcg)1101 static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1102 {
1103 	return true;
1104 }
1105 
mem_cgroup_disabled(void)1106 static inline bool mem_cgroup_disabled(void)
1107 {
1108 	return true;
1109 }
1110 
memcg_memory_event(struct mem_cgroup * memcg,enum memcg_memory_event event)1111 static inline void memcg_memory_event(struct mem_cgroup *memcg,
1112 				      enum memcg_memory_event event)
1113 {
1114 }
1115 
memcg_memory_event_mm(struct mm_struct * mm,enum memcg_memory_event event)1116 static inline void memcg_memory_event_mm(struct mm_struct *mm,
1117 					 enum memcg_memory_event event)
1118 {
1119 }
1120 
mem_cgroup_protection(struct mem_cgroup * root,struct mem_cgroup * memcg,unsigned long * min,unsigned long * low)1121 static inline void mem_cgroup_protection(struct mem_cgroup *root,
1122 					 struct mem_cgroup *memcg,
1123 					 unsigned long *min,
1124 					 unsigned long *low)
1125 {
1126 	*min = *low = 0;
1127 }
1128 
mem_cgroup_calculate_protection(struct mem_cgroup * root,struct mem_cgroup * memcg)1129 static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1130 						   struct mem_cgroup *memcg)
1131 {
1132 }
1133 
mem_cgroup_unprotected(struct mem_cgroup * target,struct mem_cgroup * memcg)1134 static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1135 					  struct mem_cgroup *memcg)
1136 {
1137 	return true;
1138 }
mem_cgroup_below_low(struct mem_cgroup * target,struct mem_cgroup * memcg)1139 static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1140 					struct mem_cgroup *memcg)
1141 {
1142 	return false;
1143 }
1144 
mem_cgroup_below_min(struct mem_cgroup * target,struct mem_cgroup * memcg)1145 static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1146 					struct mem_cgroup *memcg)
1147 {
1148 	return false;
1149 }
1150 
mem_cgroup_charge(struct folio * folio,struct mm_struct * mm,gfp_t gfp)1151 static inline int mem_cgroup_charge(struct folio *folio,
1152 		struct mm_struct *mm, gfp_t gfp)
1153 {
1154 	return 0;
1155 }
1156 
mem_cgroup_charge_hugetlb(struct folio * folio,gfp_t gfp)1157 static inline int mem_cgroup_charge_hugetlb(struct folio* folio, gfp_t gfp)
1158 {
1159         return 0;
1160 }
1161 
mem_cgroup_swapin_charge_folio(struct folio * folio,struct mm_struct * mm,gfp_t gfp,swp_entry_t entry)1162 static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1163 			struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1164 {
1165 	return 0;
1166 }
1167 
mem_cgroup_swapin_uncharge_swap(swp_entry_t entry,unsigned int nr)1168 static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry, unsigned int nr)
1169 {
1170 }
1171 
mem_cgroup_uncharge(struct folio * folio)1172 static inline void mem_cgroup_uncharge(struct folio *folio)
1173 {
1174 }
1175 
mem_cgroup_uncharge_folios(struct folio_batch * folios)1176 static inline void mem_cgroup_uncharge_folios(struct folio_batch *folios)
1177 {
1178 }
1179 
mem_cgroup_replace_folio(struct folio * old,struct folio * new)1180 static inline void mem_cgroup_replace_folio(struct folio *old,
1181 		struct folio *new)
1182 {
1183 }
1184 
mem_cgroup_migrate(struct folio * old,struct folio * new)1185 static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1186 {
1187 }
1188 
mem_cgroup_lruvec(struct mem_cgroup * memcg,struct pglist_data * pgdat)1189 static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1190 					       struct pglist_data *pgdat)
1191 {
1192 	return &pgdat->__lruvec;
1193 }
1194 
folio_lruvec(struct folio * folio)1195 static inline struct lruvec *folio_lruvec(struct folio *folio)
1196 {
1197 	struct pglist_data *pgdat = folio_pgdat(folio);
1198 	return &pgdat->__lruvec;
1199 }
1200 
1201 static inline
lruvec_memcg_debug(struct lruvec * lruvec,struct folio * folio)1202 void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1203 {
1204 }
1205 
parent_mem_cgroup(struct mem_cgroup * memcg)1206 static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1207 {
1208 	return NULL;
1209 }
1210 
mm_match_cgroup(struct mm_struct * mm,struct mem_cgroup * memcg)1211 static inline bool mm_match_cgroup(struct mm_struct *mm,
1212 		struct mem_cgroup *memcg)
1213 {
1214 	return true;
1215 }
1216 
get_mem_cgroup_from_mm(struct mm_struct * mm)1217 static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1218 {
1219 	return NULL;
1220 }
1221 
get_mem_cgroup_from_current(void)1222 static inline struct mem_cgroup *get_mem_cgroup_from_current(void)
1223 {
1224 	return NULL;
1225 }
1226 
get_mem_cgroup_from_folio(struct folio * folio)1227 static inline struct mem_cgroup *get_mem_cgroup_from_folio(struct folio *folio)
1228 {
1229 	return NULL;
1230 }
1231 
1232 static inline
mem_cgroup_from_css(struct cgroup_subsys_state * css)1233 struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1234 {
1235 	return NULL;
1236 }
1237 
obj_cgroup_get(struct obj_cgroup * objcg)1238 static inline void obj_cgroup_get(struct obj_cgroup *objcg)
1239 {
1240 }
1241 
obj_cgroup_put(struct obj_cgroup * objcg)1242 static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1243 {
1244 }
1245 
mem_cgroup_tryget(struct mem_cgroup * memcg)1246 static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1247 {
1248 	return true;
1249 }
1250 
mem_cgroup_tryget_online(struct mem_cgroup * memcg)1251 static inline bool mem_cgroup_tryget_online(struct mem_cgroup *memcg)
1252 {
1253 	return true;
1254 }
1255 
mem_cgroup_put(struct mem_cgroup * memcg)1256 static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1257 {
1258 }
1259 
folio_lruvec_lock(struct folio * folio)1260 static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1261 {
1262 	struct pglist_data *pgdat = folio_pgdat(folio);
1263 
1264 	spin_lock(&pgdat->__lruvec.lru_lock);
1265 	return &pgdat->__lruvec;
1266 }
1267 
folio_lruvec_lock_irq(struct folio * folio)1268 static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1269 {
1270 	struct pglist_data *pgdat = folio_pgdat(folio);
1271 
1272 	spin_lock_irq(&pgdat->__lruvec.lru_lock);
1273 	return &pgdat->__lruvec;
1274 }
1275 
folio_lruvec_lock_irqsave(struct folio * folio,unsigned long * flagsp)1276 static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1277 		unsigned long *flagsp)
1278 {
1279 	struct pglist_data *pgdat = folio_pgdat(folio);
1280 
1281 	spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1282 	return &pgdat->__lruvec;
1283 }
1284 
1285 static inline struct mem_cgroup *
mem_cgroup_iter(struct mem_cgroup * root,struct mem_cgroup * prev,struct mem_cgroup_reclaim_cookie * reclaim)1286 mem_cgroup_iter(struct mem_cgroup *root,
1287 		struct mem_cgroup *prev,
1288 		struct mem_cgroup_reclaim_cookie *reclaim)
1289 {
1290 	return NULL;
1291 }
1292 
mem_cgroup_iter_break(struct mem_cgroup * root,struct mem_cgroup * prev)1293 static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1294 					 struct mem_cgroup *prev)
1295 {
1296 }
1297 
mem_cgroup_scan_tasks(struct mem_cgroup * memcg,int (* fn)(struct task_struct *,void *),void * arg)1298 static inline void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1299 		int (*fn)(struct task_struct *, void *), void *arg)
1300 {
1301 }
1302 
mem_cgroup_id(struct mem_cgroup * memcg)1303 static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1304 {
1305 	return 0;
1306 }
1307 
mem_cgroup_from_id(unsigned short id)1308 static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1309 {
1310 	WARN_ON_ONCE(id);
1311 	/* XXX: This should always return root_mem_cgroup */
1312 	return NULL;
1313 }
1314 
1315 #ifdef CONFIG_SHRINKER_DEBUG
mem_cgroup_ino(struct mem_cgroup * memcg)1316 static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1317 {
1318 	return 0;
1319 }
1320 
mem_cgroup_get_from_ino(unsigned long ino)1321 static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1322 {
1323 	return NULL;
1324 }
1325 #endif
1326 
mem_cgroup_from_seq(struct seq_file * m)1327 static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1328 {
1329 	return NULL;
1330 }
1331 
lruvec_memcg(struct lruvec * lruvec)1332 static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1333 {
1334 	return NULL;
1335 }
1336 
mem_cgroup_online(struct mem_cgroup * memcg)1337 static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1338 {
1339 	return true;
1340 }
1341 
1342 static inline
mem_cgroup_get_zone_lru_size(struct lruvec * lruvec,enum lru_list lru,int zone_idx)1343 unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1344 		enum lru_list lru, int zone_idx)
1345 {
1346 	return 0;
1347 }
1348 
mem_cgroup_get_max(struct mem_cgroup * memcg)1349 static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1350 {
1351 	return 0;
1352 }
1353 
mem_cgroup_size(struct mem_cgroup * memcg)1354 static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1355 {
1356 	return 0;
1357 }
1358 
1359 static inline void
mem_cgroup_print_oom_context(struct mem_cgroup * memcg,struct task_struct * p)1360 mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1361 {
1362 }
1363 
1364 static inline void
mem_cgroup_print_oom_meminfo(struct mem_cgroup * memcg)1365 mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1366 {
1367 }
1368 
mem_cgroup_handle_over_high(gfp_t gfp_mask)1369 static inline void mem_cgroup_handle_over_high(gfp_t gfp_mask)
1370 {
1371 }
1372 
mem_cgroup_get_oom_group(struct task_struct * victim,struct mem_cgroup * oom_domain)1373 static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1374 	struct task_struct *victim, struct mem_cgroup *oom_domain)
1375 {
1376 	return NULL;
1377 }
1378 
mem_cgroup_print_oom_group(struct mem_cgroup * memcg)1379 static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1380 {
1381 }
1382 
__mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int nr)1383 static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1384 				     enum memcg_stat_item idx,
1385 				     int nr)
1386 {
1387 }
1388 
mod_memcg_state(struct mem_cgroup * memcg,enum memcg_stat_item idx,int nr)1389 static inline void mod_memcg_state(struct mem_cgroup *memcg,
1390 				   enum memcg_stat_item idx,
1391 				   int nr)
1392 {
1393 }
1394 
mod_memcg_page_state(struct page * page,enum memcg_stat_item idx,int val)1395 static inline void mod_memcg_page_state(struct page *page,
1396 					enum memcg_stat_item idx, int val)
1397 {
1398 }
1399 
memcg_page_state(struct mem_cgroup * memcg,int idx)1400 static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1401 {
1402 	return 0;
1403 }
1404 
lruvec_page_state(struct lruvec * lruvec,enum node_stat_item idx)1405 static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1406 					      enum node_stat_item idx)
1407 {
1408 	return node_page_state(lruvec_pgdat(lruvec), idx);
1409 }
1410 
lruvec_page_state_local(struct lruvec * lruvec,enum node_stat_item idx)1411 static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1412 						    enum node_stat_item idx)
1413 {
1414 	return node_page_state(lruvec_pgdat(lruvec), idx);
1415 }
1416 
mem_cgroup_flush_stats(struct mem_cgroup * memcg)1417 static inline void mem_cgroup_flush_stats(struct mem_cgroup *memcg)
1418 {
1419 }
1420 
mem_cgroup_flush_stats_ratelimited(struct mem_cgroup * memcg)1421 static inline void mem_cgroup_flush_stats_ratelimited(struct mem_cgroup *memcg)
1422 {
1423 }
1424 
__mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1425 static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1426 					   int val)
1427 {
1428 	struct page *page = virt_to_head_page(p);
1429 
1430 	__mod_node_page_state(page_pgdat(page), idx, val);
1431 }
1432 
mod_lruvec_kmem_state(void * p,enum node_stat_item idx,int val)1433 static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1434 					 int val)
1435 {
1436 	struct page *page = virt_to_head_page(p);
1437 
1438 	mod_node_page_state(page_pgdat(page), idx, val);
1439 }
1440 
count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1441 static inline void count_memcg_events(struct mem_cgroup *memcg,
1442 				      enum vm_event_item idx,
1443 				      unsigned long count)
1444 {
1445 }
1446 
__count_memcg_events(struct mem_cgroup * memcg,enum vm_event_item idx,unsigned long count)1447 static inline void __count_memcg_events(struct mem_cgroup *memcg,
1448 					enum vm_event_item idx,
1449 					unsigned long count)
1450 {
1451 }
1452 
count_memcg_folio_events(struct folio * folio,enum vm_event_item idx,unsigned long nr)1453 static inline void count_memcg_folio_events(struct folio *folio,
1454 		enum vm_event_item idx, unsigned long nr)
1455 {
1456 }
1457 
count_memcg_events_mm(struct mm_struct * mm,enum vm_event_item idx,unsigned long count)1458 static inline void count_memcg_events_mm(struct mm_struct *mm,
1459 					enum vm_event_item idx, unsigned long count)
1460 {
1461 }
1462 
1463 static inline
count_memcg_event_mm(struct mm_struct * mm,enum vm_event_item idx)1464 void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1465 {
1466 }
1467 
split_page_memcg(struct page * head,int old_order,int new_order)1468 static inline void split_page_memcg(struct page *head, int old_order, int new_order)
1469 {
1470 }
1471 
cgroup_id_from_mm(struct mm_struct * mm)1472 static inline u64 cgroup_id_from_mm(struct mm_struct *mm)
1473 {
1474 	return 0;
1475 }
1476 #endif /* CONFIG_MEMCG */
1477 
1478 /*
1479  * Extended information for slab objects stored as an array in page->memcg_data
1480  * if MEMCG_DATA_OBJEXTS is set.
1481  */
1482 struct slabobj_ext {
1483 #ifdef CONFIG_MEMCG
1484 	struct obj_cgroup *objcg;
1485 #endif
1486 #ifdef CONFIG_MEM_ALLOC_PROFILING
1487 	union codetag_ref ref;
1488 #endif
1489 } __aligned(8);
1490 
__inc_lruvec_kmem_state(void * p,enum node_stat_item idx)1491 static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1492 {
1493 	__mod_lruvec_kmem_state(p, idx, 1);
1494 }
1495 
__dec_lruvec_kmem_state(void * p,enum node_stat_item idx)1496 static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1497 {
1498 	__mod_lruvec_kmem_state(p, idx, -1);
1499 }
1500 
parent_lruvec(struct lruvec * lruvec)1501 static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1502 {
1503 	struct mem_cgroup *memcg;
1504 
1505 	memcg = lruvec_memcg(lruvec);
1506 	if (!memcg)
1507 		return NULL;
1508 	memcg = parent_mem_cgroup(memcg);
1509 	if (!memcg)
1510 		return NULL;
1511 	return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1512 }
1513 
unlock_page_lruvec(struct lruvec * lruvec)1514 static inline void unlock_page_lruvec(struct lruvec *lruvec)
1515 {
1516 	spin_unlock(&lruvec->lru_lock);
1517 }
1518 
unlock_page_lruvec_irq(struct lruvec * lruvec)1519 static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1520 {
1521 	spin_unlock_irq(&lruvec->lru_lock);
1522 }
1523 
unlock_page_lruvec_irqrestore(struct lruvec * lruvec,unsigned long flags)1524 static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1525 		unsigned long flags)
1526 {
1527 	spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1528 }
1529 
1530 /* Test requires a stable folio->memcg binding, see folio_memcg() */
folio_matches_lruvec(struct folio * folio,struct lruvec * lruvec)1531 static inline bool folio_matches_lruvec(struct folio *folio,
1532 		struct lruvec *lruvec)
1533 {
1534 	return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1535 	       lruvec_memcg(lruvec) == folio_memcg(folio);
1536 }
1537 
1538 /* Don't lock again iff page's lruvec locked */
folio_lruvec_relock_irq(struct folio * folio,struct lruvec * locked_lruvec)1539 static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1540 		struct lruvec *locked_lruvec)
1541 {
1542 	if (locked_lruvec) {
1543 		if (folio_matches_lruvec(folio, locked_lruvec))
1544 			return locked_lruvec;
1545 
1546 		unlock_page_lruvec_irq(locked_lruvec);
1547 	}
1548 
1549 	return folio_lruvec_lock_irq(folio);
1550 }
1551 
1552 /* Don't lock again iff folio's lruvec locked */
folio_lruvec_relock_irqsave(struct folio * folio,struct lruvec ** lruvecp,unsigned long * flags)1553 static inline void folio_lruvec_relock_irqsave(struct folio *folio,
1554 		struct lruvec **lruvecp, unsigned long *flags)
1555 {
1556 	if (*lruvecp) {
1557 		if (folio_matches_lruvec(folio, *lruvecp))
1558 			return;
1559 
1560 		unlock_page_lruvec_irqrestore(*lruvecp, *flags);
1561 	}
1562 
1563 	*lruvecp = folio_lruvec_lock_irqsave(folio, flags);
1564 }
1565 
1566 #ifdef CONFIG_CGROUP_WRITEBACK
1567 
1568 struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1569 void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1570 			 unsigned long *pheadroom, unsigned long *pdirty,
1571 			 unsigned long *pwriteback);
1572 
1573 void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1574 					     struct bdi_writeback *wb);
1575 
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1576 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1577 						  struct bdi_writeback *wb)
1578 {
1579 	struct mem_cgroup *memcg;
1580 
1581 	if (mem_cgroup_disabled())
1582 		return;
1583 
1584 	memcg = folio_memcg(folio);
1585 	if (unlikely(memcg && &memcg->css != wb->memcg_css))
1586 		mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1587 }
1588 
1589 void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1590 
1591 #else	/* CONFIG_CGROUP_WRITEBACK */
1592 
mem_cgroup_wb_domain(struct bdi_writeback * wb)1593 static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1594 {
1595 	return NULL;
1596 }
1597 
mem_cgroup_wb_stats(struct bdi_writeback * wb,unsigned long * pfilepages,unsigned long * pheadroom,unsigned long * pdirty,unsigned long * pwriteback)1598 static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1599 				       unsigned long *pfilepages,
1600 				       unsigned long *pheadroom,
1601 				       unsigned long *pdirty,
1602 				       unsigned long *pwriteback)
1603 {
1604 }
1605 
mem_cgroup_track_foreign_dirty(struct folio * folio,struct bdi_writeback * wb)1606 static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1607 						  struct bdi_writeback *wb)
1608 {
1609 }
1610 
mem_cgroup_flush_foreign(struct bdi_writeback * wb)1611 static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1612 {
1613 }
1614 
1615 #endif	/* CONFIG_CGROUP_WRITEBACK */
1616 
1617 struct sock;
1618 bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1619 			     gfp_t gfp_mask);
1620 void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1621 #ifdef CONFIG_MEMCG
1622 extern struct static_key_false memcg_sockets_enabled_key;
1623 #define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1624 void mem_cgroup_sk_alloc(struct sock *sk);
1625 void mem_cgroup_sk_free(struct sock *sk);
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1626 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1627 {
1628 #ifdef CONFIG_MEMCG_V1
1629 	if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1630 		return !!memcg->tcpmem_pressure;
1631 #endif /* CONFIG_MEMCG_V1 */
1632 	do {
1633 		if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1634 			return true;
1635 	} while ((memcg = parent_mem_cgroup(memcg)));
1636 	return false;
1637 }
1638 
1639 int alloc_shrinker_info(struct mem_cgroup *memcg);
1640 void free_shrinker_info(struct mem_cgroup *memcg);
1641 void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1642 void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1643 #else
1644 #define mem_cgroup_sockets_enabled 0
mem_cgroup_sk_alloc(struct sock * sk)1645 static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
mem_cgroup_sk_free(struct sock * sk)1646 static inline void mem_cgroup_sk_free(struct sock *sk) { };
mem_cgroup_under_socket_pressure(struct mem_cgroup * memcg)1647 static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1648 {
1649 	return false;
1650 }
1651 
set_shrinker_bit(struct mem_cgroup * memcg,int nid,int shrinker_id)1652 static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1653 				    int nid, int shrinker_id)
1654 {
1655 }
1656 #endif
1657 
1658 #ifdef CONFIG_MEMCG
1659 bool mem_cgroup_kmem_disabled(void);
1660 int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1661 void __memcg_kmem_uncharge_page(struct page *page, int order);
1662 
1663 /*
1664  * The returned objcg pointer is safe to use without additional
1665  * protection within a scope. The scope is defined either by
1666  * the current task (similar to the "current" global variable)
1667  * or by set_active_memcg() pair.
1668  * Please, use obj_cgroup_get() to get a reference if the pointer
1669  * needs to be used outside of the local scope.
1670  */
1671 struct obj_cgroup *current_obj_cgroup(void);
1672 struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio);
1673 
get_obj_cgroup_from_current(void)1674 static inline struct obj_cgroup *get_obj_cgroup_from_current(void)
1675 {
1676 	struct obj_cgroup *objcg = current_obj_cgroup();
1677 
1678 	if (objcg)
1679 		obj_cgroup_get(objcg);
1680 
1681 	return objcg;
1682 }
1683 
1684 int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1685 void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1686 
1687 extern struct static_key_false memcg_bpf_enabled_key;
memcg_bpf_enabled(void)1688 static inline bool memcg_bpf_enabled(void)
1689 {
1690 	return static_branch_likely(&memcg_bpf_enabled_key);
1691 }
1692 
1693 extern struct static_key_false memcg_kmem_online_key;
1694 
memcg_kmem_online(void)1695 static inline bool memcg_kmem_online(void)
1696 {
1697 	return static_branch_likely(&memcg_kmem_online_key);
1698 }
1699 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1700 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1701 					 int order)
1702 {
1703 	if (memcg_kmem_online())
1704 		return __memcg_kmem_charge_page(page, gfp, order);
1705 	return 0;
1706 }
1707 
memcg_kmem_uncharge_page(struct page * page,int order)1708 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1709 {
1710 	if (memcg_kmem_online())
1711 		__memcg_kmem_uncharge_page(page, order);
1712 }
1713 
1714 /*
1715  * A helper for accessing memcg's kmem_id, used for getting
1716  * corresponding LRU lists.
1717  */
memcg_kmem_id(struct mem_cgroup * memcg)1718 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1719 {
1720 	return memcg ? memcg->kmemcg_id : -1;
1721 }
1722 
1723 struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1724 
count_objcg_events(struct obj_cgroup * objcg,enum vm_event_item idx,unsigned long count)1725 static inline void count_objcg_events(struct obj_cgroup *objcg,
1726 				      enum vm_event_item idx,
1727 				      unsigned long count)
1728 {
1729 	struct mem_cgroup *memcg;
1730 
1731 	if (!memcg_kmem_online())
1732 		return;
1733 
1734 	rcu_read_lock();
1735 	memcg = obj_cgroup_memcg(objcg);
1736 	count_memcg_events(memcg, idx, count);
1737 	rcu_read_unlock();
1738 }
1739 
1740 #else
mem_cgroup_kmem_disabled(void)1741 static inline bool mem_cgroup_kmem_disabled(void)
1742 {
1743 	return true;
1744 }
1745 
memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1746 static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1747 					 int order)
1748 {
1749 	return 0;
1750 }
1751 
memcg_kmem_uncharge_page(struct page * page,int order)1752 static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1753 {
1754 }
1755 
__memcg_kmem_charge_page(struct page * page,gfp_t gfp,int order)1756 static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1757 					   int order)
1758 {
1759 	return 0;
1760 }
1761 
__memcg_kmem_uncharge_page(struct page * page,int order)1762 static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1763 {
1764 }
1765 
get_obj_cgroup_from_folio(struct folio * folio)1766 static inline struct obj_cgroup *get_obj_cgroup_from_folio(struct folio *folio)
1767 {
1768 	return NULL;
1769 }
1770 
memcg_bpf_enabled(void)1771 static inline bool memcg_bpf_enabled(void)
1772 {
1773 	return false;
1774 }
1775 
memcg_kmem_online(void)1776 static inline bool memcg_kmem_online(void)
1777 {
1778 	return false;
1779 }
1780 
memcg_kmem_id(struct mem_cgroup * memcg)1781 static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1782 {
1783 	return -1;
1784 }
1785 
mem_cgroup_from_slab_obj(void * p)1786 static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1787 {
1788 	return NULL;
1789 }
1790 
count_objcg_events(struct obj_cgroup * objcg,enum vm_event_item idx,unsigned long count)1791 static inline void count_objcg_events(struct obj_cgroup *objcg,
1792 				      enum vm_event_item idx,
1793 				      unsigned long count)
1794 {
1795 }
1796 
1797 #endif /* CONFIG_MEMCG */
1798 
1799 #if defined(CONFIG_MEMCG) && defined(CONFIG_ZSWAP)
1800 bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1801 void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1802 void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1803 bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg);
1804 #else
obj_cgroup_may_zswap(struct obj_cgroup * objcg)1805 static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1806 {
1807 	return true;
1808 }
obj_cgroup_charge_zswap(struct obj_cgroup * objcg,size_t size)1809 static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1810 					   size_t size)
1811 {
1812 }
obj_cgroup_uncharge_zswap(struct obj_cgroup * objcg,size_t size)1813 static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1814 					     size_t size)
1815 {
1816 }
mem_cgroup_zswap_writeback_enabled(struct mem_cgroup * memcg)1817 static inline bool mem_cgroup_zswap_writeback_enabled(struct mem_cgroup *memcg)
1818 {
1819 	/* if zswap is disabled, do not block pages going to the swapping device */
1820 	return true;
1821 }
1822 #endif
1823 
1824 
1825 /* Cgroup v1-related declarations */
1826 
1827 #ifdef CONFIG_MEMCG_V1
1828 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1829 					gfp_t gfp_mask,
1830 					unsigned long *total_scanned);
1831 
1832 bool mem_cgroup_oom_synchronize(bool wait);
1833 
task_in_memcg_oom(struct task_struct * p)1834 static inline bool task_in_memcg_oom(struct task_struct *p)
1835 {
1836 	return p->memcg_in_oom;
1837 }
1838 
mem_cgroup_enter_user_fault(void)1839 static inline void mem_cgroup_enter_user_fault(void)
1840 {
1841 	WARN_ON(current->in_user_fault);
1842 	current->in_user_fault = 1;
1843 }
1844 
mem_cgroup_exit_user_fault(void)1845 static inline void mem_cgroup_exit_user_fault(void)
1846 {
1847 	WARN_ON(!current->in_user_fault);
1848 	current->in_user_fault = 0;
1849 }
1850 
1851 #else /* CONFIG_MEMCG_V1 */
1852 static inline
memcg1_soft_limit_reclaim(pg_data_t * pgdat,int order,gfp_t gfp_mask,unsigned long * total_scanned)1853 unsigned long memcg1_soft_limit_reclaim(pg_data_t *pgdat, int order,
1854 					gfp_t gfp_mask,
1855 					unsigned long *total_scanned)
1856 {
1857 	return 0;
1858 }
1859 
task_in_memcg_oom(struct task_struct * p)1860 static inline bool task_in_memcg_oom(struct task_struct *p)
1861 {
1862 	return false;
1863 }
1864 
mem_cgroup_oom_synchronize(bool wait)1865 static inline bool mem_cgroup_oom_synchronize(bool wait)
1866 {
1867 	return false;
1868 }
1869 
mem_cgroup_enter_user_fault(void)1870 static inline void mem_cgroup_enter_user_fault(void)
1871 {
1872 }
1873 
mem_cgroup_exit_user_fault(void)1874 static inline void mem_cgroup_exit_user_fault(void)
1875 {
1876 }
1877 
1878 #endif /* CONFIG_MEMCG_V1 */
1879 
1880 #endif /* _LINUX_MEMCONTROL_H */
1881