1 // Copyright 2016 Google Inc. All Rights Reserved.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 // A library for translating between absolute times (represented by
16 // std::chrono::time_points of the std::chrono::system_clock) and civil
17 // times (represented by cctz::civil_second) using the rules defined by
18 // a time zone (cctz::time_zone).
19
20 #ifndef ABSL_TIME_INTERNAL_CCTZ_TIME_ZONE_H_
21 #define ABSL_TIME_INTERNAL_CCTZ_TIME_ZONE_H_
22
23 #include <chrono>
24 #include <cstdint>
25 #include <limits>
26 #include <string>
27 #include <utility>
28
29 #include "absl/base/config.h"
30 #include "absl/time/internal/cctz/include/cctz/civil_time.h"
31
32 namespace absl {
33 ABSL_NAMESPACE_BEGIN
34 namespace time_internal {
35 namespace cctz {
36
37 // Convenience aliases. Not intended as public API points.
38 template <typename D>
39 using time_point = std::chrono::time_point<std::chrono::system_clock, D>;
40 using seconds = std::chrono::duration<std::int_fast64_t>;
41 using sys_seconds = seconds; // Deprecated. Use cctz::seconds instead.
42
43 namespace detail {
44 template <typename D>
45 std::pair<time_point<seconds>, D> split_seconds(const time_point<D>& tp);
46 std::pair<time_point<seconds>, seconds> split_seconds(
47 const time_point<seconds>& tp);
48 } // namespace detail
49
50 // cctz::time_zone is an opaque, small, value-type class representing a
51 // geo-political region within which particular rules are used for mapping
52 // between absolute and civil times. Time zones are named using the TZ
53 // identifiers from the IANA Time Zone Database, such as "America/Los_Angeles"
54 // or "Australia/Sydney". Time zones are created from factory functions such
55 // as load_time_zone(). Note: strings like "PST" and "EDT" are not valid TZ
56 // identifiers.
57 //
58 // Example:
59 // cctz::time_zone utc = cctz::utc_time_zone();
60 // cctz::time_zone pst = cctz::fixed_time_zone(std::chrono::hours(-8));
61 // cctz::time_zone loc = cctz::local_time_zone();
62 // cctz::time_zone lax;
63 // if (!cctz::load_time_zone("America/Los_Angeles", &lax)) { ... }
64 //
65 // See also:
66 // - http://www.iana.org/time-zones
67 // - https://en.wikipedia.org/wiki/Zoneinfo
68 class time_zone {
69 public:
time_zone()70 time_zone() : time_zone(nullptr) {} // Equivalent to UTC
71 time_zone(const time_zone&) = default;
72 time_zone& operator=(const time_zone&) = default;
73
74 std::string name() const;
75
76 // An absolute_lookup represents the civil time (cctz::civil_second) within
77 // this time_zone at the given absolute time (time_point). There are
78 // additionally a few other fields that may be useful when working with
79 // older APIs, such as std::tm.
80 //
81 // Example:
82 // const cctz::time_zone tz = ...
83 // const auto tp = std::chrono::system_clock::now();
84 // const cctz::time_zone::absolute_lookup al = tz.lookup(tp);
85 struct absolute_lookup {
86 civil_second cs;
87 // Note: The following fields exist for backward compatibility with older
88 // APIs. Accessing these fields directly is a sign of imprudent logic in
89 // the calling code. Modern time-related code should only access this data
90 // indirectly by way of cctz::format().
91 int offset; // civil seconds east of UTC
92 bool is_dst; // is offset non-standard?
93 const char* abbr; // time-zone abbreviation (e.g., "PST")
94 };
95 absolute_lookup lookup(const time_point<seconds>& tp) const;
96 template <typename D>
lookup(const time_point<D> & tp)97 absolute_lookup lookup(const time_point<D>& tp) const {
98 return lookup(detail::split_seconds(tp).first);
99 }
100
101 // A civil_lookup represents the absolute time(s) (time_point) that
102 // correspond to the given civil time (cctz::civil_second) within this
103 // time_zone. Usually the given civil time represents a unique instant
104 // in time, in which case the conversion is unambiguous. However,
105 // within this time zone, the given civil time may be skipped (e.g.,
106 // during a positive UTC offset shift), or repeated (e.g., during a
107 // negative UTC offset shift). To account for these possibilities,
108 // civil_lookup is richer than just a single time_point.
109 //
110 // In all cases the civil_lookup::kind enum will indicate the nature
111 // of the given civil-time argument, and the pre, trans, and post
112 // members will give the absolute time answers using the pre-transition
113 // offset, the transition point itself, and the post-transition offset,
114 // respectively (all three times are equal if kind == UNIQUE). If any
115 // of these three absolute times is outside the representable range of a
116 // time_point<seconds> the field is set to its maximum/minimum value.
117 //
118 // Example:
119 // cctz::time_zone lax;
120 // if (!cctz::load_time_zone("America/Los_Angeles", &lax)) { ... }
121 //
122 // // A unique civil time.
123 // auto jan01 = lax.lookup(cctz::civil_second(2011, 1, 1, 0, 0, 0));
124 // // jan01.kind == cctz::time_zone::civil_lookup::UNIQUE
125 // // jan01.pre is 2011/01/01 00:00:00 -0800
126 // // jan01.trans is 2011/01/01 00:00:00 -0800
127 // // jan01.post is 2011/01/01 00:00:00 -0800
128 //
129 // // A Spring DST transition, when there is a gap in civil time.
130 // auto mar13 = lax.lookup(cctz::civil_second(2011, 3, 13, 2, 15, 0));
131 // // mar13.kind == cctz::time_zone::civil_lookup::SKIPPED
132 // // mar13.pre is 2011/03/13 03:15:00 -0700
133 // // mar13.trans is 2011/03/13 03:00:00 -0700
134 // // mar13.post is 2011/03/13 01:15:00 -0800
135 //
136 // // A Fall DST transition, when civil times are repeated.
137 // auto nov06 = lax.lookup(cctz::civil_second(2011, 11, 6, 1, 15, 0));
138 // // nov06.kind == cctz::time_zone::civil_lookup::REPEATED
139 // // nov06.pre is 2011/11/06 01:15:00 -0700
140 // // nov06.trans is 2011/11/06 01:00:00 -0800
141 // // nov06.post is 2011/11/06 01:15:00 -0800
142 struct civil_lookup {
143 enum civil_kind {
144 UNIQUE, // the civil time was singular (pre == trans == post)
145 SKIPPED, // the civil time did not exist (pre >= trans > post)
146 REPEATED, // the civil time was ambiguous (pre < trans <= post)
147 } kind;
148 time_point<seconds> pre; // uses the pre-transition offset
149 time_point<seconds> trans; // instant of civil-offset change
150 time_point<seconds> post; // uses the post-transition offset
151 };
152 civil_lookup lookup(const civil_second& cs) const;
153
154 // Finds the time of the next/previous offset change in this time zone.
155 //
156 // By definition, next_transition(tp, &trans) returns false when tp has
157 // its maximum value, and prev_transition(tp, &trans) returns false
158 // when tp has its minimum value. If the zone has no transitions, the
159 // result will also be false no matter what the argument.
160 //
161 // Otherwise, when tp has its minimum value, next_transition(tp, &trans)
162 // returns true and sets trans to the first recorded transition. Chains
163 // of calls to next_transition()/prev_transition() will eventually return
164 // false, but it is unspecified exactly when next_transition(tp, &trans)
165 // jumps to false, or what time is set by prev_transition(tp, &trans) for
166 // a very distant tp.
167 //
168 // Note: Enumeration of time-zone transitions is for informational purposes
169 // only. Modern time-related code should not care about when offset changes
170 // occur.
171 //
172 // Example:
173 // cctz::time_zone nyc;
174 // if (!cctz::load_time_zone("America/New_York", &nyc)) { ... }
175 // const auto now = std::chrono::system_clock::now();
176 // auto tp = cctz::time_point<cctz::seconds>::min();
177 // cctz::time_zone::civil_transition trans;
178 // while (tp <= now && nyc.next_transition(tp, &trans)) {
179 // // transition: trans.from -> trans.to
180 // tp = nyc.lookup(trans.to).trans;
181 // }
182 struct civil_transition {
183 civil_second from; // the civil time we jump from
184 civil_second to; // the civil time we jump to
185 };
186 bool next_transition(const time_point<seconds>& tp,
187 civil_transition* trans) const;
188 template <typename D>
next_transition(const time_point<D> & tp,civil_transition * trans)189 bool next_transition(const time_point<D>& tp, civil_transition* trans) const {
190 return next_transition(detail::split_seconds(tp).first, trans);
191 }
192 bool prev_transition(const time_point<seconds>& tp,
193 civil_transition* trans) const;
194 template <typename D>
prev_transition(const time_point<D> & tp,civil_transition * trans)195 bool prev_transition(const time_point<D>& tp, civil_transition* trans) const {
196 return prev_transition(detail::split_seconds(tp).first, trans);
197 }
198
199 // version() and description() provide additional information about the
200 // time zone. The content of each of the returned strings is unspecified,
201 // however, when the IANA Time Zone Database is the underlying data source
202 // the version() string will be in the familar form (e.g, "2018e") or
203 // empty when unavailable.
204 //
205 // Note: These functions are for informational or testing purposes only.
206 std::string version() const; // empty when unknown
207 std::string description() const;
208
209 // Relational operators.
210 friend bool operator==(time_zone lhs, time_zone rhs) {
211 return &lhs.effective_impl() == &rhs.effective_impl();
212 }
213 friend bool operator!=(time_zone lhs, time_zone rhs) { return !(lhs == rhs); }
214
215 template <typename H>
AbslHashValue(H h,time_zone tz)216 friend H AbslHashValue(H h, time_zone tz) {
217 return H::combine(std::move(h), &tz.effective_impl());
218 }
219
220 class Impl;
221
222 private:
time_zone(const Impl * impl)223 explicit time_zone(const Impl* impl) : impl_(impl) {}
224 const Impl& effective_impl() const; // handles implicit UTC
225 const Impl* impl_;
226 };
227
228 // Loads the named time zone. May perform I/O on the initial load.
229 // If the name is invalid, or some other kind of error occurs, returns
230 // false and "*tz" is set to the UTC time zone.
231 bool load_time_zone(const std::string& name, time_zone* tz);
232
233 // Returns a time_zone representing UTC. Cannot fail.
234 time_zone utc_time_zone();
235
236 // Returns a time zone that is a fixed offset (seconds east) from UTC.
237 // Note: If the absolute value of the offset is greater than 24 hours
238 // you'll get UTC (i.e., zero offset) instead.
239 time_zone fixed_time_zone(const seconds& offset);
240
241 // Returns a time zone representing the local time zone. Falls back to UTC.
242 // Note: local_time_zone.name() may only be something like "localtime".
243 time_zone local_time_zone();
244
245 // Returns the civil time (cctz::civil_second) within the given time zone at
246 // the given absolute time (time_point). Since the additional fields provided
247 // by the time_zone::absolute_lookup struct should rarely be needed in modern
248 // code, this convert() function is simpler and should be preferred.
249 template <typename D>
convert(const time_point<D> & tp,const time_zone & tz)250 inline civil_second convert(const time_point<D>& tp, const time_zone& tz) {
251 return tz.lookup(tp).cs;
252 }
253
254 // Returns the absolute time (time_point) that corresponds to the given civil
255 // time within the given time zone. If the civil time is not unique (i.e., if
256 // it was either repeated or non-existent), then the returned time_point is
257 // the best estimate that preserves relative order. That is, this function
258 // guarantees that if cs1 < cs2, then convert(cs1, tz) <= convert(cs2, tz).
convert(const civil_second & cs,const time_zone & tz)259 inline time_point<seconds> convert(const civil_second& cs,
260 const time_zone& tz) {
261 const time_zone::civil_lookup cl = tz.lookup(cs);
262 if (cl.kind == time_zone::civil_lookup::SKIPPED) return cl.trans;
263 return cl.pre;
264 }
265
266 namespace detail {
267 using femtoseconds = std::chrono::duration<std::int_fast64_t, std::femto>;
268 std::string format(const std::string&, const time_point<seconds>&,
269 const femtoseconds&, const time_zone&);
270 bool parse(const std::string&, const std::string&, const time_zone&,
271 time_point<seconds>*, femtoseconds*, std::string* err = nullptr);
272 template <typename Rep, std::intmax_t Denom>
273 bool join_seconds(
274 const time_point<seconds>& sec, const femtoseconds& fs,
275 time_point<std::chrono::duration<Rep, std::ratio<1, Denom>>>* tpp);
276 template <typename Rep, std::intmax_t Num>
277 bool join_seconds(
278 const time_point<seconds>& sec, const femtoseconds& fs,
279 time_point<std::chrono::duration<Rep, std::ratio<Num, 1>>>* tpp);
280 template <typename Rep>
281 bool join_seconds(
282 const time_point<seconds>& sec, const femtoseconds& fs,
283 time_point<std::chrono::duration<Rep, std::ratio<1, 1>>>* tpp);
284 bool join_seconds(const time_point<seconds>& sec, const femtoseconds&,
285 time_point<seconds>* tpp);
286 } // namespace detail
287
288 // Formats the given time_point in the given cctz::time_zone according to
289 // the provided format string. Uses strftime()-like formatting options,
290 // with the following extensions:
291 //
292 // - %Ez - RFC3339-compatible numeric UTC offset (+hh:mm or -hh:mm)
293 // - %E*z - Full-resolution numeric UTC offset (+hh:mm:ss or -hh:mm:ss)
294 // - %E#S - Seconds with # digits of fractional precision
295 // - %E*S - Seconds with full fractional precision (a literal '*')
296 // - %E#f - Fractional seconds with # digits of precision
297 // - %E*f - Fractional seconds with full precision (a literal '*')
298 // - %E4Y - Four-character years (-999 ... -001, 0000, 0001 ... 9999)
299 // - %ET - The RFC3339 "date-time" separator "T"
300 //
301 // Note that %E0S behaves like %S, and %E0f produces no characters. In
302 // contrast %E*f always produces at least one digit, which may be '0'.
303 //
304 // Note that %Y produces as many characters as it takes to fully render the
305 // year. A year outside of [-999:9999] when formatted with %E4Y will produce
306 // more than four characters, just like %Y.
307 //
308 // Tip: Format strings should include the UTC offset (e.g., %z, %Ez, or %E*z)
309 // so that the resulting string uniquely identifies an absolute time.
310 //
311 // Example:
312 // cctz::time_zone lax;
313 // if (!cctz::load_time_zone("America/Los_Angeles", &lax)) { ... }
314 // auto tp = cctz::convert(cctz::civil_second(2013, 1, 2, 3, 4, 5), lax);
315 // std::string f = cctz::format("%H:%M:%S", tp, lax); // "03:04:05"
316 // f = cctz::format("%H:%M:%E3S", tp, lax); // "03:04:05.000"
317 template <typename D>
format(const std::string & fmt,const time_point<D> & tp,const time_zone & tz)318 inline std::string format(const std::string& fmt, const time_point<D>& tp,
319 const time_zone& tz) {
320 const auto p = detail::split_seconds(tp);
321 const auto n = std::chrono::duration_cast<detail::femtoseconds>(p.second);
322 return detail::format(fmt, p.first, n, tz);
323 }
324
325 // Parses an input string according to the provided format string and
326 // returns the corresponding time_point. Uses strftime()-like formatting
327 // options, with the same extensions as cctz::format(), but with the
328 // exceptions that %E#S is interpreted as %E*S, and %E#f as %E*f. %Ez
329 // and %E*z also accept the same inputs, which (along with %z) includes
330 // 'z' and 'Z' as synonyms for +00:00. %ET accepts either 'T' or 't'.
331 //
332 // %Y consumes as many numeric characters as it can, so the matching data
333 // should always be terminated with a non-numeric. %E4Y always consumes
334 // exactly four characters, including any sign.
335 //
336 // Unspecified fields are taken from the default date and time of ...
337 //
338 // "1970-01-01 00:00:00.0 +0000"
339 //
340 // For example, parsing a string of "15:45" (%H:%M) will return a time_point
341 // that represents "1970-01-01 15:45:00.0 +0000".
342 //
343 // Note that parse() returns time instants, so it makes most sense to parse
344 // fully-specified date/time strings that include a UTC offset (%z, %Ez, or
345 // %E*z).
346 //
347 // Note also that parse() only heeds the fields year, month, day, hour,
348 // minute, (fractional) second, and UTC offset. Other fields, like weekday (%a
349 // or %A), while parsed for syntactic validity, are ignored in the conversion.
350 //
351 // Date and time fields that are out-of-range will be treated as errors rather
352 // than normalizing them like cctz::civil_second() would do. For example, it
353 // is an error to parse the date "Oct 32, 2013" because 32 is out of range.
354 //
355 // A second of ":60" is normalized to ":00" of the following minute with
356 // fractional seconds discarded. The following table shows how the given
357 // seconds and subseconds will be parsed:
358 //
359 // "59.x" -> 59.x // exact
360 // "60.x" -> 00.0 // normalized
361 // "00.x" -> 00.x // exact
362 //
363 // Errors are indicated by returning false.
364 //
365 // Example:
366 // const cctz::time_zone tz = ...
367 // std::chrono::system_clock::time_point tp;
368 // if (cctz::parse("%Y-%m-%d", "2015-10-09", tz, &tp)) {
369 // ...
370 // }
371 template <typename D>
parse(const std::string & fmt,const std::string & input,const time_zone & tz,time_point<D> * tpp)372 inline bool parse(const std::string& fmt, const std::string& input,
373 const time_zone& tz, time_point<D>* tpp) {
374 time_point<seconds> sec;
375 detail::femtoseconds fs;
376 return detail::parse(fmt, input, tz, &sec, &fs) &&
377 detail::join_seconds(sec, fs, tpp);
378 }
379
380 namespace detail {
381
382 // Split a time_point<D> into a time_point<seconds> and a D subseconds.
383 // Undefined behavior if time_point<seconds> is not of sufficient range.
384 // Note that this means it is UB to call cctz::time_zone::lookup(tp) or
385 // cctz::format(fmt, tp, tz) with a time_point that is outside the range
386 // of a 64-bit std::time_t.
387 template <typename D>
split_seconds(const time_point<D> & tp)388 std::pair<time_point<seconds>, D> split_seconds(const time_point<D>& tp) {
389 auto sec = std::chrono::time_point_cast<seconds>(tp);
390 auto sub = tp - sec;
391 if (sub.count() < 0) {
392 sec -= seconds(1);
393 sub += seconds(1);
394 }
395 return {sec, std::chrono::duration_cast<D>(sub)};
396 }
397
split_seconds(const time_point<seconds> & tp)398 inline std::pair<time_point<seconds>, seconds> split_seconds(
399 const time_point<seconds>& tp) {
400 return {tp, seconds::zero()};
401 }
402
403 // Join a time_point<seconds> and femto subseconds into a time_point<D>.
404 // Floors to the resolution of time_point<D>. Returns false if time_point<D>
405 // is not of sufficient range.
406 template <typename Rep, std::intmax_t Denom>
join_seconds(const time_point<seconds> & sec,const femtoseconds & fs,time_point<std::chrono::duration<Rep,std::ratio<1,Denom>>> * tpp)407 bool join_seconds(
408 const time_point<seconds>& sec, const femtoseconds& fs,
409 time_point<std::chrono::duration<Rep, std::ratio<1, Denom>>>* tpp) {
410 using D = std::chrono::duration<Rep, std::ratio<1, Denom>>;
411 // TODO(#199): Return false if result unrepresentable as a time_point<D>.
412 *tpp = std::chrono::time_point_cast<D>(sec);
413 *tpp += std::chrono::duration_cast<D>(fs);
414 return true;
415 }
416
417 template <typename Rep, std::intmax_t Num>
join_seconds(const time_point<seconds> & sec,const femtoseconds &,time_point<std::chrono::duration<Rep,std::ratio<Num,1>>> * tpp)418 bool join_seconds(
419 const time_point<seconds>& sec, const femtoseconds&,
420 time_point<std::chrono::duration<Rep, std::ratio<Num, 1>>>* tpp) {
421 using D = std::chrono::duration<Rep, std::ratio<Num, 1>>;
422 auto count = sec.time_since_epoch().count();
423 if (count >= 0 || count % Num == 0) {
424 count /= Num;
425 } else {
426 count /= Num;
427 count -= 1;
428 }
429 if (count > (std::numeric_limits<Rep>::max)()) return false;
430 if (count < (std::numeric_limits<Rep>::min)()) return false;
431 *tpp = time_point<D>() + D{static_cast<Rep>(count)};
432 return true;
433 }
434
435 template <typename Rep>
join_seconds(const time_point<seconds> & sec,const femtoseconds &,time_point<std::chrono::duration<Rep,std::ratio<1,1>>> * tpp)436 bool join_seconds(
437 const time_point<seconds>& sec, const femtoseconds&,
438 time_point<std::chrono::duration<Rep, std::ratio<1, 1>>>* tpp) {
439 using D = std::chrono::duration<Rep, std::ratio<1, 1>>;
440 auto count = sec.time_since_epoch().count();
441 if (count > (std::numeric_limits<Rep>::max)()) return false;
442 if (count < (std::numeric_limits<Rep>::min)()) return false;
443 *tpp = time_point<D>() + D{static_cast<Rep>(count)};
444 return true;
445 }
446
join_seconds(const time_point<seconds> & sec,const femtoseconds &,time_point<seconds> * tpp)447 inline bool join_seconds(const time_point<seconds>& sec, const femtoseconds&,
448 time_point<seconds>* tpp) {
449 *tpp = sec;
450 return true;
451 }
452
453 } // namespace detail
454 } // namespace cctz
455 } // namespace time_internal
456 ABSL_NAMESPACE_END
457 } // namespace absl
458
459 #endif // ABSL_TIME_INTERNAL_CCTZ_TIME_ZONE_H_
460