1 // Copyright 2020 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 
15 #include "absl/strings/cord.h"
16 
17 #include <algorithm>
18 #include <atomic>
19 #include <cstddef>
20 #include <cstdio>
21 #include <cstdlib>
22 #include <iomanip>
23 #include <ios>
24 #include <iostream>
25 #include <limits>
26 #include <ostream>
27 #include <sstream>
28 #include <type_traits>
29 #include <unordered_set>
30 #include <vector>
31 
32 #include "absl/base/casts.h"
33 #include "absl/base/internal/raw_logging.h"
34 #include "absl/base/macros.h"
35 #include "absl/base/port.h"
36 #include "absl/container/fixed_array.h"
37 #include "absl/container/inlined_vector.h"
38 #include "absl/crc/internal/crc_cord_state.h"
39 #include "absl/strings/cord_buffer.h"
40 #include "absl/strings/escaping.h"
41 #include "absl/strings/internal/cord_data_edge.h"
42 #include "absl/strings/internal/cord_internal.h"
43 #include "absl/strings/internal/cord_rep_btree.h"
44 #include "absl/strings/internal/cord_rep_crc.h"
45 #include "absl/strings/internal/cord_rep_flat.h"
46 #include "absl/strings/internal/cordz_statistics.h"
47 #include "absl/strings/internal/cordz_update_scope.h"
48 #include "absl/strings/internal/cordz_update_tracker.h"
49 #include "absl/strings/internal/resize_uninitialized.h"
50 #include "absl/strings/str_cat.h"
51 #include "absl/strings/str_format.h"
52 #include "absl/strings/str_join.h"
53 #include "absl/strings/string_view.h"
54 
55 namespace absl {
56 ABSL_NAMESPACE_BEGIN
57 
58 using ::absl::cord_internal::CordRep;
59 using ::absl::cord_internal::CordRepBtree;
60 using ::absl::cord_internal::CordRepCrc;
61 using ::absl::cord_internal::CordRepExternal;
62 using ::absl::cord_internal::CordRepFlat;
63 using ::absl::cord_internal::CordRepSubstring;
64 using ::absl::cord_internal::CordzUpdateTracker;
65 using ::absl::cord_internal::InlineData;
66 using ::absl::cord_internal::kMaxFlatLength;
67 using ::absl::cord_internal::kMinFlatLength;
68 
69 using ::absl::cord_internal::kInlinedVectorSize;
70 using ::absl::cord_internal::kMaxBytesToCopy;
71 
72 static void DumpNode(CordRep* rep, bool include_data, std::ostream* os,
73                      int indent = 0);
74 static bool VerifyNode(CordRep* root, CordRep* start_node,
75                        bool full_validation);
76 
VerifyTree(CordRep * node)77 static inline CordRep* VerifyTree(CordRep* node) {
78   // Verification is expensive, so only do it in debug mode.
79   // Even in debug mode we normally do only light validation.
80   // If you are debugging Cord itself, you should define the
81   // macro EXTRA_CORD_VALIDATION, e.g. by adding
82   // --copt=-DEXTRA_CORD_VALIDATION to the blaze line.
83 #ifdef EXTRA_CORD_VALIDATION
84   assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/true));
85 #else   // EXTRA_CORD_VALIDATION
86   assert(node == nullptr || VerifyNode(node, node, /*full_validation=*/false));
87 #endif  // EXTRA_CORD_VALIDATION
88   static_cast<void>(&VerifyNode);
89 
90   return node;
91 }
92 
CreateFlat(const char * data,size_t length,size_t alloc_hint)93 static CordRepFlat* CreateFlat(const char* data, size_t length,
94                                size_t alloc_hint) {
95   CordRepFlat* flat = CordRepFlat::New(length + alloc_hint);
96   flat->length = length;
97   memcpy(flat->Data(), data, length);
98   return flat;
99 }
100 
101 // Creates a new flat or Btree out of the specified array.
102 // The returned node has a refcount of 1.
NewBtree(const char * data,size_t length,size_t alloc_hint)103 static CordRep* NewBtree(const char* data, size_t length, size_t alloc_hint) {
104   if (length <= kMaxFlatLength) {
105     return CreateFlat(data, length, alloc_hint);
106   }
107   CordRepFlat* flat = CreateFlat(data, kMaxFlatLength, 0);
108   data += kMaxFlatLength;
109   length -= kMaxFlatLength;
110   auto* root = CordRepBtree::Create(flat);
111   return CordRepBtree::Append(root, {data, length}, alloc_hint);
112 }
113 
114 // Create a new tree out of the specified array.
115 // The returned node has a refcount of 1.
NewTree(const char * data,size_t length,size_t alloc_hint)116 static CordRep* NewTree(const char* data, size_t length, size_t alloc_hint) {
117   if (length == 0) return nullptr;
118   return NewBtree(data, length, alloc_hint);
119 }
120 
121 namespace cord_internal {
122 
InitializeCordRepExternal(absl::string_view data,CordRepExternal * rep)123 void InitializeCordRepExternal(absl::string_view data, CordRepExternal* rep) {
124   assert(!data.empty());
125   rep->length = data.size();
126   rep->tag = EXTERNAL;
127   rep->base = data.data();
128   VerifyTree(rep);
129 }
130 
131 }  // namespace cord_internal
132 
133 // Creates a CordRep from the provided string. If the string is large enough,
134 // and not wasteful, we move the string into an external cord rep, preserving
135 // the already allocated string contents.
136 // Requires the provided string length to be larger than `kMaxInline`.
CordRepFromString(std::string && src)137 static CordRep* CordRepFromString(std::string&& src) {
138   assert(src.length() > cord_internal::kMaxInline);
139   if (
140       // String is short: copy data to avoid external block overhead.
141       src.size() <= kMaxBytesToCopy ||
142       // String is wasteful: copy data to avoid pinning too much unused memory.
143       src.size() < src.capacity() / 2
144   ) {
145     return NewTree(src.data(), src.size(), 0);
146   }
147 
148   struct StringReleaser {
149     void operator()(absl::string_view /* data */) {}
150     std::string data;
151   };
152   const absl::string_view original_data = src;
153   auto* rep =
154       static_cast<::absl::cord_internal::CordRepExternalImpl<StringReleaser>*>(
155           absl::cord_internal::NewExternalRep(original_data,
156                                               StringReleaser{std::move(src)}));
157   // Moving src may have invalidated its data pointer, so adjust it.
158   rep->base = rep->template get<0>().data.data();
159   return rep;
160 }
161 
162 // --------------------------------------------------------------------
163 // Cord::InlineRep functions
164 
165 #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
166 constexpr unsigned char Cord::InlineRep::kMaxInline;
167 #endif
168 
set_data(const char * data,size_t n)169 inline void Cord::InlineRep::set_data(const char* data, size_t n) {
170   static_assert(kMaxInline == 15, "set_data is hard-coded for a length of 15");
171   data_.set_inline_data(data, n);
172 }
173 
set_data(size_t n)174 inline char* Cord::InlineRep::set_data(size_t n) {
175   assert(n <= kMaxInline);
176   ResetToEmpty();
177   set_inline_size(n);
178   return data_.as_chars();
179 }
180 
reduce_size(size_t n)181 inline void Cord::InlineRep::reduce_size(size_t n) {
182   size_t tag = inline_size();
183   assert(tag <= kMaxInline);
184   assert(tag >= n);
185   tag -= n;
186   memset(data_.as_chars() + tag, 0, n);
187   set_inline_size(tag);
188 }
189 
remove_prefix(size_t n)190 inline void Cord::InlineRep::remove_prefix(size_t n) {
191   cord_internal::SmallMemmove(data_.as_chars(), data_.as_chars() + n,
192                               inline_size() - n);
193   reduce_size(n);
194 }
195 
196 // Returns `rep` converted into a CordRepBtree.
197 // Directly returns `rep` if `rep` is already a CordRepBtree.
ForceBtree(CordRep * rep)198 static CordRepBtree* ForceBtree(CordRep* rep) {
199   return rep->IsBtree()
200              ? rep->btree()
201              : CordRepBtree::Create(cord_internal::RemoveCrcNode(rep));
202 }
203 
AppendTreeToInlined(CordRep * tree,MethodIdentifier method)204 void Cord::InlineRep::AppendTreeToInlined(CordRep* tree,
205                                           MethodIdentifier method) {
206   assert(!is_tree());
207   if (!data_.is_empty()) {
208     CordRepFlat* flat = MakeFlatWithExtraCapacity(0);
209     tree = CordRepBtree::Append(CordRepBtree::Create(flat), tree);
210   }
211   EmplaceTree(tree, method);
212 }
213 
AppendTreeToTree(CordRep * tree,MethodIdentifier method)214 void Cord::InlineRep::AppendTreeToTree(CordRep* tree, MethodIdentifier method) {
215   assert(is_tree());
216   const CordzUpdateScope scope(data_.cordz_info(), method);
217   tree = CordRepBtree::Append(ForceBtree(data_.as_tree()), tree);
218   SetTree(tree, scope);
219 }
220 
AppendTree(CordRep * tree,MethodIdentifier method)221 void Cord::InlineRep::AppendTree(CordRep* tree, MethodIdentifier method) {
222   assert(tree != nullptr);
223   assert(tree->length != 0);
224   assert(!tree->IsCrc());
225   if (data_.is_tree()) {
226     AppendTreeToTree(tree, method);
227   } else {
228     AppendTreeToInlined(tree, method);
229   }
230 }
231 
PrependTreeToInlined(CordRep * tree,MethodIdentifier method)232 void Cord::InlineRep::PrependTreeToInlined(CordRep* tree,
233                                            MethodIdentifier method) {
234   assert(!is_tree());
235   if (!data_.is_empty()) {
236     CordRepFlat* flat = MakeFlatWithExtraCapacity(0);
237     tree = CordRepBtree::Prepend(CordRepBtree::Create(flat), tree);
238   }
239   EmplaceTree(tree, method);
240 }
241 
PrependTreeToTree(CordRep * tree,MethodIdentifier method)242 void Cord::InlineRep::PrependTreeToTree(CordRep* tree,
243                                         MethodIdentifier method) {
244   assert(is_tree());
245   const CordzUpdateScope scope(data_.cordz_info(), method);
246   tree = CordRepBtree::Prepend(ForceBtree(data_.as_tree()), tree);
247   SetTree(tree, scope);
248 }
249 
PrependTree(CordRep * tree,MethodIdentifier method)250 void Cord::InlineRep::PrependTree(CordRep* tree, MethodIdentifier method) {
251   assert(tree != nullptr);
252   assert(tree->length != 0);
253   assert(!tree->IsCrc());
254   if (data_.is_tree()) {
255     PrependTreeToTree(tree, method);
256   } else {
257     PrependTreeToInlined(tree, method);
258   }
259 }
260 
261 // Searches for a non-full flat node at the rightmost leaf of the tree. If a
262 // suitable leaf is found, the function will update the length field for all
263 // nodes to account for the size increase. The append region address will be
264 // written to region and the actual size increase will be written to size.
PrepareAppendRegion(CordRep * root,char ** region,size_t * size,size_t max_length)265 static inline bool PrepareAppendRegion(CordRep* root, char** region,
266                                        size_t* size, size_t max_length) {
267   if (root->IsBtree() && root->refcount.IsOne()) {
268     Span<char> span = root->btree()->GetAppendBuffer(max_length);
269     if (!span.empty()) {
270       *region = span.data();
271       *size = span.size();
272       return true;
273     }
274   }
275 
276   CordRep* dst = root;
277   if (!dst->IsFlat() || !dst->refcount.IsOne()) {
278     *region = nullptr;
279     *size = 0;
280     return false;
281   }
282 
283   const size_t in_use = dst->length;
284   const size_t capacity = dst->flat()->Capacity();
285   if (in_use == capacity) {
286     *region = nullptr;
287     *size = 0;
288     return false;
289   }
290 
291   const size_t size_increase = std::min(capacity - in_use, max_length);
292   dst->length += size_increase;
293 
294   *region = dst->flat()->Data() + in_use;
295   *size = size_increase;
296   return true;
297 }
298 
AssignSlow(const Cord::InlineRep & src)299 void Cord::InlineRep::AssignSlow(const Cord::InlineRep& src) {
300   assert(&src != this);
301   assert(is_tree() || src.is_tree());
302   auto constexpr method = CordzUpdateTracker::kAssignCord;
303   if (ABSL_PREDICT_TRUE(!is_tree())) {
304     EmplaceTree(CordRep::Ref(src.as_tree()), src.data_, method);
305     return;
306   }
307 
308   CordRep* tree = as_tree();
309   if (CordRep* src_tree = src.tree()) {
310     // Leave any existing `cordz_info` in place, and let MaybeTrackCord()
311     // decide if this cord should be (or remains to be) sampled or not.
312     data_.set_tree(CordRep::Ref(src_tree));
313     CordzInfo::MaybeTrackCord(data_, src.data_, method);
314   } else {
315     CordzInfo::MaybeUntrackCord(data_.cordz_info());
316     data_ = src.data_;
317   }
318   CordRep::Unref(tree);
319 }
320 
UnrefTree()321 void Cord::InlineRep::UnrefTree() {
322   if (is_tree()) {
323     CordzInfo::MaybeUntrackCord(data_.cordz_info());
324     CordRep::Unref(tree());
325   }
326 }
327 
328 // --------------------------------------------------------------------
329 // Constructors and destructors
330 
Cord(absl::string_view src,MethodIdentifier method)331 Cord::Cord(absl::string_view src, MethodIdentifier method)
332     : contents_(InlineData::kDefaultInit) {
333   const size_t n = src.size();
334   if (n <= InlineRep::kMaxInline) {
335     contents_.set_data(src.data(), n);
336   } else {
337     CordRep* rep = NewTree(src.data(), n, 0);
338     contents_.EmplaceTree(rep, method);
339   }
340 }
341 
342 template <typename T, Cord::EnableIfString<T>>
Cord(T && src)343 Cord::Cord(T&& src) : contents_(InlineData::kDefaultInit) {
344   if (src.size() <= InlineRep::kMaxInline) {
345     contents_.set_data(src.data(), src.size());
346   } else {
347     CordRep* rep = CordRepFromString(std::forward<T>(src));
348     contents_.EmplaceTree(rep, CordzUpdateTracker::kConstructorString);
349   }
350 }
351 
352 template Cord::Cord(std::string&& src);
353 
354 // The destruction code is separate so that the compiler can determine
355 // that it does not need to call the destructor on a moved-from Cord.
DestroyCordSlow()356 void Cord::DestroyCordSlow() {
357   assert(contents_.is_tree());
358   CordzInfo::MaybeUntrackCord(contents_.cordz_info());
359   CordRep::Unref(VerifyTree(contents_.as_tree()));
360 }
361 
362 // --------------------------------------------------------------------
363 // Mutators
364 
Clear()365 void Cord::Clear() {
366   if (CordRep* tree = contents_.clear()) {
367     CordRep::Unref(tree);
368   }
369 }
370 
AssignLargeString(std::string && src)371 Cord& Cord::AssignLargeString(std::string&& src) {
372   auto constexpr method = CordzUpdateTracker::kAssignString;
373   assert(src.size() > kMaxBytesToCopy);
374   CordRep* rep = CordRepFromString(std::move(src));
375   if (CordRep* tree = contents_.tree()) {
376     CordzUpdateScope scope(contents_.cordz_info(), method);
377     contents_.SetTree(rep, scope);
378     CordRep::Unref(tree);
379   } else {
380     contents_.EmplaceTree(rep, method);
381   }
382   return *this;
383 }
384 
operator =(absl::string_view src)385 Cord& Cord::operator=(absl::string_view src) {
386   auto constexpr method = CordzUpdateTracker::kAssignString;
387   const char* data = src.data();
388   size_t length = src.size();
389   CordRep* tree = contents_.tree();
390   if (length <= InlineRep::kMaxInline) {
391     // Embed into this->contents_, which is somewhat subtle:
392     // - MaybeUntrackCord must be called before Unref(tree).
393     // - MaybeUntrackCord must be called before set_data() clobbers cordz_info.
394     // - set_data() must be called before Unref(tree) as it may reference tree.
395     if (tree != nullptr) CordzInfo::MaybeUntrackCord(contents_.cordz_info());
396     contents_.set_data(data, length);
397     if (tree != nullptr) CordRep::Unref(tree);
398     return *this;
399   }
400   if (tree != nullptr) {
401     CordzUpdateScope scope(contents_.cordz_info(), method);
402     if (tree->IsFlat() && tree->flat()->Capacity() >= length &&
403         tree->refcount.IsOne()) {
404       // Copy in place if the existing FLAT node is reusable.
405       memmove(tree->flat()->Data(), data, length);
406       tree->length = length;
407       VerifyTree(tree);
408       return *this;
409     }
410     contents_.SetTree(NewTree(data, length, 0), scope);
411     CordRep::Unref(tree);
412   } else {
413     contents_.EmplaceTree(NewTree(data, length, 0), method);
414   }
415   return *this;
416 }
417 
418 // TODO(sanjay): Move to Cord::InlineRep section of file.  For now,
419 // we keep it here to make diffs easier.
AppendArray(absl::string_view src,MethodIdentifier method)420 void Cord::InlineRep::AppendArray(absl::string_view src,
421                                   MethodIdentifier method) {
422   MaybeRemoveEmptyCrcNode();
423   if (src.empty()) return;  // memcpy(_, nullptr, 0) is undefined.
424 
425   size_t appended = 0;
426   CordRep* rep = tree();
427   const CordRep* const root = rep;
428   CordzUpdateScope scope(root ? cordz_info() : nullptr, method);
429   if (root != nullptr) {
430     rep = cord_internal::RemoveCrcNode(rep);
431     char* region;
432     if (PrepareAppendRegion(rep, &region, &appended, src.size())) {
433       memcpy(region, src.data(), appended);
434     }
435   } else {
436     // Try to fit in the inline buffer if possible.
437     size_t inline_length = inline_size();
438     if (src.size() <= kMaxInline - inline_length) {
439       // Append new data to embedded array
440       set_inline_size(inline_length + src.size());
441       memcpy(data_.as_chars() + inline_length, src.data(), src.size());
442       return;
443     }
444 
445     // Allocate flat to be a perfect fit on first append exceeding inlined size.
446     // Subsequent growth will use amortized growth until we reach maximum flat
447     // size.
448     rep = CordRepFlat::New(inline_length + src.size());
449     appended = std::min(src.size(), rep->flat()->Capacity() - inline_length);
450     memcpy(rep->flat()->Data(), data_.as_chars(), inline_length);
451     memcpy(rep->flat()->Data() + inline_length, src.data(), appended);
452     rep->length = inline_length + appended;
453   }
454 
455   src.remove_prefix(appended);
456   if (src.empty()) {
457     CommitTree(root, rep, scope, method);
458     return;
459   }
460 
461   // TODO(b/192061034): keep legacy 10% growth rate: consider other rates.
462   rep = ForceBtree(rep);
463   const size_t min_growth = std::max<size_t>(rep->length / 10, src.size());
464   rep = CordRepBtree::Append(rep->btree(), src, min_growth - src.size());
465 
466   CommitTree(root, rep, scope, method);
467 }
468 
TakeRep() const469 inline CordRep* Cord::TakeRep() const& {
470   return CordRep::Ref(contents_.tree());
471 }
472 
TakeRep()473 inline CordRep* Cord::TakeRep() && {
474   CordRep* rep = contents_.tree();
475   contents_.clear();
476   return rep;
477 }
478 
479 template <typename C>
AppendImpl(C && src)480 inline void Cord::AppendImpl(C&& src) {
481   auto constexpr method = CordzUpdateTracker::kAppendCord;
482 
483   contents_.MaybeRemoveEmptyCrcNode();
484   if (src.empty()) return;
485 
486   if (empty()) {
487     // Since destination is empty, we can avoid allocating a node,
488     if (src.contents_.is_tree()) {
489       // by taking the tree directly
490       CordRep* rep =
491           cord_internal::RemoveCrcNode(std::forward<C>(src).TakeRep());
492       contents_.EmplaceTree(rep, method);
493     } else {
494       // or copying over inline data
495       contents_.data_ = src.contents_.data_;
496     }
497     return;
498   }
499 
500   // For short cords, it is faster to copy data if there is room in dst.
501   const size_t src_size = src.contents_.size();
502   if (src_size <= kMaxBytesToCopy) {
503     CordRep* src_tree = src.contents_.tree();
504     if (src_tree == nullptr) {
505       // src has embedded data.
506       contents_.AppendArray({src.contents_.data(), src_size}, method);
507       return;
508     }
509     if (src_tree->IsFlat()) {
510       // src tree just has one flat node.
511       contents_.AppendArray({src_tree->flat()->Data(), src_size}, method);
512       return;
513     }
514     if (&src == this) {
515       // ChunkIterator below assumes that src is not modified during traversal.
516       Append(Cord(src));
517       return;
518     }
519     // TODO(mec): Should we only do this if "dst" has space?
520     for (absl::string_view chunk : src.Chunks()) {
521       Append(chunk);
522     }
523     return;
524   }
525 
526   // Guaranteed to be a tree (kMaxBytesToCopy > kInlinedSize)
527   CordRep* rep = cord_internal::RemoveCrcNode(std::forward<C>(src).TakeRep());
528   contents_.AppendTree(rep, CordzUpdateTracker::kAppendCord);
529 }
530 
ExtractAppendBuffer(CordRep * rep,size_t min_capacity)531 static CordRep::ExtractResult ExtractAppendBuffer(CordRep* rep,
532                                                   size_t min_capacity) {
533   switch (rep->tag) {
534     case cord_internal::BTREE:
535       return CordRepBtree::ExtractAppendBuffer(rep->btree(), min_capacity);
536     default:
537       if (rep->IsFlat() && rep->refcount.IsOne() &&
538           rep->flat()->Capacity() - rep->length >= min_capacity) {
539         return {nullptr, rep};
540       }
541       return {rep, nullptr};
542   }
543 }
544 
CreateAppendBuffer(InlineData & data,size_t block_size,size_t capacity)545 static CordBuffer CreateAppendBuffer(InlineData& data, size_t block_size,
546                                      size_t capacity) {
547   // Watch out for overflow, people can ask for size_t::max().
548   const size_t size = data.inline_size();
549   const size_t max_capacity = std::numeric_limits<size_t>::max() - size;
550   capacity = (std::min)(max_capacity, capacity) + size;
551   CordBuffer buffer =
552       block_size ? CordBuffer::CreateWithCustomLimit(block_size, capacity)
553                  : CordBuffer::CreateWithDefaultLimit(capacity);
554   cord_internal::SmallMemmove(buffer.data(), data.as_chars(), size);
555   buffer.SetLength(size);
556   data = {};
557   return buffer;
558 }
559 
GetAppendBufferSlowPath(size_t block_size,size_t capacity,size_t min_capacity)560 CordBuffer Cord::GetAppendBufferSlowPath(size_t block_size, size_t capacity,
561                                          size_t min_capacity) {
562   auto constexpr method = CordzUpdateTracker::kGetAppendBuffer;
563   CordRep* tree = contents_.tree();
564   if (tree != nullptr) {
565     CordzUpdateScope scope(contents_.cordz_info(), method);
566     CordRep::ExtractResult result = ExtractAppendBuffer(tree, min_capacity);
567     if (result.extracted != nullptr) {
568       contents_.SetTreeOrEmpty(result.tree, scope);
569       return CordBuffer(result.extracted->flat());
570     }
571     return block_size ? CordBuffer::CreateWithCustomLimit(block_size, capacity)
572                       : CordBuffer::CreateWithDefaultLimit(capacity);
573   }
574   return CreateAppendBuffer(contents_.data_, block_size, capacity);
575 }
576 
Append(const Cord & src)577 void Cord::Append(const Cord& src) {
578   AppendImpl(src);
579 }
580 
Append(Cord && src)581 void Cord::Append(Cord&& src) {
582   AppendImpl(std::move(src));
583 }
584 
585 template <typename T, Cord::EnableIfString<T>>
Append(T && src)586 void Cord::Append(T&& src) {
587   if (src.size() <= kMaxBytesToCopy) {
588     Append(absl::string_view(src));
589   } else {
590     CordRep* rep = CordRepFromString(std::forward<T>(src));
591     contents_.AppendTree(rep, CordzUpdateTracker::kAppendString);
592   }
593 }
594 
595 template void Cord::Append(std::string&& src);
596 
Prepend(const Cord & src)597 void Cord::Prepend(const Cord& src) {
598   contents_.MaybeRemoveEmptyCrcNode();
599   if (src.empty()) return;
600 
601   CordRep* src_tree = src.contents_.tree();
602   if (src_tree != nullptr) {
603     CordRep::Ref(src_tree);
604     contents_.PrependTree(cord_internal::RemoveCrcNode(src_tree),
605                           CordzUpdateTracker::kPrependCord);
606     return;
607   }
608 
609   // `src` cord is inlined.
610   absl::string_view src_contents(src.contents_.data(), src.contents_.size());
611   return Prepend(src_contents);
612 }
613 
PrependArray(absl::string_view src,MethodIdentifier method)614 void Cord::PrependArray(absl::string_view src, MethodIdentifier method) {
615   contents_.MaybeRemoveEmptyCrcNode();
616   if (src.empty()) return;  // memcpy(_, nullptr, 0) is undefined.
617 
618   if (!contents_.is_tree()) {
619     size_t cur_size = contents_.inline_size();
620     if (cur_size + src.size() <= InlineRep::kMaxInline) {
621       // Use embedded storage.
622       InlineData data;
623       data.set_inline_size(cur_size + src.size());
624       memcpy(data.as_chars(), src.data(), src.size());
625       memcpy(data.as_chars() + src.size(), contents_.data(), cur_size);
626       contents_.data_ = data;
627       return;
628     }
629   }
630   CordRep* rep = NewTree(src.data(), src.size(), 0);
631   contents_.PrependTree(rep, method);
632 }
633 
AppendPrecise(absl::string_view src,MethodIdentifier method)634 void Cord::AppendPrecise(absl::string_view src, MethodIdentifier method) {
635   assert(!src.empty());
636   assert(src.size() <= cord_internal::kMaxFlatLength);
637   if (contents_.remaining_inline_capacity() >= src.size()) {
638     const size_t inline_length = contents_.inline_size();
639     contents_.set_inline_size(inline_length + src.size());
640     memcpy(contents_.data_.as_chars() + inline_length, src.data(), src.size());
641   } else {
642     contents_.AppendTree(CordRepFlat::Create(src), method);
643   }
644 }
645 
PrependPrecise(absl::string_view src,MethodIdentifier method)646 void Cord::PrependPrecise(absl::string_view src, MethodIdentifier method) {
647   assert(!src.empty());
648   assert(src.size() <= cord_internal::kMaxFlatLength);
649   if (contents_.remaining_inline_capacity() >= src.size()) {
650     const size_t cur_size = contents_.inline_size();
651     InlineData data;
652     data.set_inline_size(cur_size + src.size());
653     memcpy(data.as_chars(), src.data(), src.size());
654     memcpy(data.as_chars() + src.size(), contents_.data(), cur_size);
655     contents_.data_ = data;
656   } else {
657     contents_.PrependTree(CordRepFlat::Create(src), method);
658   }
659 }
660 
661 template <typename T, Cord::EnableIfString<T>>
Prepend(T && src)662 inline void Cord::Prepend(T&& src) {
663   if (src.size() <= kMaxBytesToCopy) {
664     Prepend(absl::string_view(src));
665   } else {
666     CordRep* rep = CordRepFromString(std::forward<T>(src));
667     contents_.PrependTree(rep, CordzUpdateTracker::kPrependString);
668   }
669 }
670 
671 template void Cord::Prepend(std::string&& src);
672 
RemovePrefix(size_t n)673 void Cord::RemovePrefix(size_t n) {
674   ABSL_INTERNAL_CHECK(n <= size(),
675                       absl::StrCat("Requested prefix size ", n,
676                                    " exceeds Cord's size ", size()));
677   contents_.MaybeRemoveEmptyCrcNode();
678   CordRep* tree = contents_.tree();
679   if (tree == nullptr) {
680     contents_.remove_prefix(n);
681   } else {
682     auto constexpr method = CordzUpdateTracker::kRemovePrefix;
683     CordzUpdateScope scope(contents_.cordz_info(), method);
684     tree = cord_internal::RemoveCrcNode(tree);
685     if (n >= tree->length) {
686       CordRep::Unref(tree);
687       tree = nullptr;
688     } else if (tree->IsBtree()) {
689       CordRep* old = tree;
690       tree = tree->btree()->SubTree(n, tree->length - n);
691       CordRep::Unref(old);
692     } else if (tree->IsSubstring() && tree->refcount.IsOne()) {
693       tree->substring()->start += n;
694       tree->length -= n;
695     } else {
696       CordRep* rep = CordRepSubstring::Substring(tree, n, tree->length - n);
697       CordRep::Unref(tree);
698       tree = rep;
699     }
700     contents_.SetTreeOrEmpty(tree, scope);
701   }
702 }
703 
RemoveSuffix(size_t n)704 void Cord::RemoveSuffix(size_t n) {
705   ABSL_INTERNAL_CHECK(n <= size(),
706                       absl::StrCat("Requested suffix size ", n,
707                                    " exceeds Cord's size ", size()));
708   contents_.MaybeRemoveEmptyCrcNode();
709   CordRep* tree = contents_.tree();
710   if (tree == nullptr) {
711     contents_.reduce_size(n);
712   } else {
713     auto constexpr method = CordzUpdateTracker::kRemoveSuffix;
714     CordzUpdateScope scope(contents_.cordz_info(), method);
715     tree = cord_internal::RemoveCrcNode(tree);
716     if (n >= tree->length) {
717       CordRep::Unref(tree);
718       tree = nullptr;
719     } else if (tree->IsBtree()) {
720       tree = CordRepBtree::RemoveSuffix(tree->btree(), n);
721     } else if (!tree->IsExternal() && tree->refcount.IsOne()) {
722       assert(tree->IsFlat() || tree->IsSubstring());
723       tree->length -= n;
724     } else {
725       CordRep* rep = CordRepSubstring::Substring(tree, 0, tree->length - n);
726       CordRep::Unref(tree);
727       tree = rep;
728     }
729     contents_.SetTreeOrEmpty(tree, scope);
730   }
731 }
732 
Subcord(size_t pos,size_t new_size) const733 Cord Cord::Subcord(size_t pos, size_t new_size) const {
734   Cord sub_cord;
735   size_t length = size();
736   if (pos > length) pos = length;
737   if (new_size > length - pos) new_size = length - pos;
738   if (new_size == 0) return sub_cord;
739 
740   CordRep* tree = contents_.tree();
741   if (tree == nullptr) {
742     sub_cord.contents_.set_data(contents_.data() + pos, new_size);
743     return sub_cord;
744   }
745 
746   if (new_size <= InlineRep::kMaxInline) {
747     sub_cord.contents_.set_inline_size(new_size);
748     char* dest = sub_cord.contents_.data_.as_chars();
749     Cord::ChunkIterator it = chunk_begin();
750     it.AdvanceBytes(pos);
751     size_t remaining_size = new_size;
752     while (remaining_size > it->size()) {
753       cord_internal::SmallMemmove(dest, it->data(), it->size());
754       remaining_size -= it->size();
755       dest += it->size();
756       ++it;
757     }
758     cord_internal::SmallMemmove(dest, it->data(), remaining_size);
759     return sub_cord;
760   }
761 
762   tree = cord_internal::SkipCrcNode(tree);
763   if (tree->IsBtree()) {
764     tree = tree->btree()->SubTree(pos, new_size);
765   } else {
766     tree = CordRepSubstring::Substring(tree, pos, new_size);
767   }
768   sub_cord.contents_.EmplaceTree(tree, contents_.data_,
769                                  CordzUpdateTracker::kSubCord);
770   return sub_cord;
771 }
772 
773 // --------------------------------------------------------------------
774 // Comparators
775 
776 namespace {
777 
ClampResult(int memcmp_res)778 int ClampResult(int memcmp_res) {
779   return static_cast<int>(memcmp_res > 0) - static_cast<int>(memcmp_res < 0);
780 }
781 
CompareChunks(absl::string_view * lhs,absl::string_view * rhs,size_t * size_to_compare)782 int CompareChunks(absl::string_view* lhs, absl::string_view* rhs,
783                   size_t* size_to_compare) {
784   size_t compared_size = std::min(lhs->size(), rhs->size());
785   assert(*size_to_compare >= compared_size);
786   *size_to_compare -= compared_size;
787 
788   int memcmp_res = ::memcmp(lhs->data(), rhs->data(), compared_size);
789   if (memcmp_res != 0) return memcmp_res;
790 
791   lhs->remove_prefix(compared_size);
792   rhs->remove_prefix(compared_size);
793 
794   return 0;
795 }
796 
797 // This overload set computes comparison results from memcmp result. This
798 // interface is used inside GenericCompare below. Differet implementations
799 // are specialized for int and bool. For int we clamp result to {-1, 0, 1}
800 // set. For bool we just interested in "value == 0".
801 template <typename ResultType>
ComputeCompareResult(int memcmp_res)802 ResultType ComputeCompareResult(int memcmp_res) {
803   return ClampResult(memcmp_res);
804 }
805 template <>
ComputeCompareResult(int memcmp_res)806 bool ComputeCompareResult<bool>(int memcmp_res) {
807   return memcmp_res == 0;
808 }
809 
810 }  // namespace
811 
812 // Helper routine. Locates the first flat or external chunk of the Cord without
813 // initializing the iterator, and returns a string_view referencing the data.
FindFlatStartPiece() const814 inline absl::string_view Cord::InlineRep::FindFlatStartPiece() const {
815   if (!is_tree()) {
816     return absl::string_view(data_.as_chars(), data_.inline_size());
817   }
818 
819   CordRep* node = cord_internal::SkipCrcNode(tree());
820   if (node->IsFlat()) {
821     return absl::string_view(node->flat()->Data(), node->length);
822   }
823 
824   if (node->IsExternal()) {
825     return absl::string_view(node->external()->base, node->length);
826   }
827 
828   if (node->IsBtree()) {
829     CordRepBtree* tree = node->btree();
830     int height = tree->height();
831     while (--height >= 0) {
832       tree = tree->Edge(CordRepBtree::kFront)->btree();
833     }
834     return tree->Data(tree->begin());
835   }
836 
837   // Get the child node if we encounter a SUBSTRING.
838   size_t offset = 0;
839   size_t length = node->length;
840   assert(length != 0);
841 
842   if (node->IsSubstring()) {
843     offset = node->substring()->start;
844     node = node->substring()->child;
845   }
846 
847   if (node->IsFlat()) {
848     return absl::string_view(node->flat()->Data() + offset, length);
849   }
850 
851   assert(node->IsExternal() && "Expect FLAT or EXTERNAL node here");
852 
853   return absl::string_view(node->external()->base + offset, length);
854 }
855 
SetCrcCordState(crc_internal::CrcCordState state)856 void Cord::SetCrcCordState(crc_internal::CrcCordState state) {
857   auto constexpr method = CordzUpdateTracker::kSetExpectedChecksum;
858   if (empty()) {
859     contents_.MaybeRemoveEmptyCrcNode();
860     CordRep* rep = CordRepCrc::New(nullptr, std::move(state));
861     contents_.EmplaceTree(rep, method);
862   } else if (!contents_.is_tree()) {
863     CordRep* rep = contents_.MakeFlatWithExtraCapacity(0);
864     rep = CordRepCrc::New(rep, std::move(state));
865     contents_.EmplaceTree(rep, method);
866   } else {
867     const CordzUpdateScope scope(contents_.data_.cordz_info(), method);
868     CordRep* rep = CordRepCrc::New(contents_.data_.as_tree(), std::move(state));
869     contents_.SetTree(rep, scope);
870   }
871 }
872 
SetExpectedChecksum(uint32_t crc)873 void Cord::SetExpectedChecksum(uint32_t crc) {
874   // Construct a CrcCordState with a single chunk.
875   crc_internal::CrcCordState state;
876   state.mutable_rep()->prefix_crc.push_back(
877       crc_internal::CrcCordState::PrefixCrc(size(), absl::crc32c_t{crc}));
878   SetCrcCordState(std::move(state));
879 }
880 
MaybeGetCrcCordState() const881 const crc_internal::CrcCordState* Cord::MaybeGetCrcCordState() const {
882   if (!contents_.is_tree() || !contents_.tree()->IsCrc()) {
883     return nullptr;
884   }
885   return &contents_.tree()->crc()->crc_cord_state;
886 }
887 
ExpectedChecksum() const888 absl::optional<uint32_t> Cord::ExpectedChecksum() const {
889   if (!contents_.is_tree() || !contents_.tree()->IsCrc()) {
890     return absl::nullopt;
891   }
892   return static_cast<uint32_t>(
893       contents_.tree()->crc()->crc_cord_state.Checksum());
894 }
895 
CompareSlowPath(absl::string_view rhs,size_t compared_size,size_t size_to_compare) const896 inline int Cord::CompareSlowPath(absl::string_view rhs, size_t compared_size,
897                                  size_t size_to_compare) const {
898   auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
899     if (!chunk->empty()) return true;
900     ++*it;
901     if (it->bytes_remaining_ == 0) return false;
902     *chunk = **it;
903     return true;
904   };
905 
906   Cord::ChunkIterator lhs_it = chunk_begin();
907 
908   // compared_size is inside first chunk.
909   absl::string_view lhs_chunk =
910       (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
911   assert(compared_size <= lhs_chunk.size());
912   assert(compared_size <= rhs.size());
913   lhs_chunk.remove_prefix(compared_size);
914   rhs.remove_prefix(compared_size);
915   size_to_compare -= compared_size;  // skip already compared size.
916 
917   while (advance(&lhs_it, &lhs_chunk) && !rhs.empty()) {
918     int comparison_result = CompareChunks(&lhs_chunk, &rhs, &size_to_compare);
919     if (comparison_result != 0) return comparison_result;
920     if (size_to_compare == 0) return 0;
921   }
922 
923   return static_cast<int>(rhs.empty()) - static_cast<int>(lhs_chunk.empty());
924 }
925 
CompareSlowPath(const Cord & rhs,size_t compared_size,size_t size_to_compare) const926 inline int Cord::CompareSlowPath(const Cord& rhs, size_t compared_size,
927                                  size_t size_to_compare) const {
928   auto advance = [](Cord::ChunkIterator* it, absl::string_view* chunk) {
929     if (!chunk->empty()) return true;
930     ++*it;
931     if (it->bytes_remaining_ == 0) return false;
932     *chunk = **it;
933     return true;
934   };
935 
936   Cord::ChunkIterator lhs_it = chunk_begin();
937   Cord::ChunkIterator rhs_it = rhs.chunk_begin();
938 
939   // compared_size is inside both first chunks.
940   absl::string_view lhs_chunk =
941       (lhs_it.bytes_remaining_ != 0) ? *lhs_it : absl::string_view();
942   absl::string_view rhs_chunk =
943       (rhs_it.bytes_remaining_ != 0) ? *rhs_it : absl::string_view();
944   assert(compared_size <= lhs_chunk.size());
945   assert(compared_size <= rhs_chunk.size());
946   lhs_chunk.remove_prefix(compared_size);
947   rhs_chunk.remove_prefix(compared_size);
948   size_to_compare -= compared_size;  // skip already compared size.
949 
950   while (advance(&lhs_it, &lhs_chunk) && advance(&rhs_it, &rhs_chunk)) {
951     int memcmp_res = CompareChunks(&lhs_chunk, &rhs_chunk, &size_to_compare);
952     if (memcmp_res != 0) return memcmp_res;
953     if (size_to_compare == 0) return 0;
954   }
955 
956   return static_cast<int>(rhs_chunk.empty()) -
957          static_cast<int>(lhs_chunk.empty());
958 }
959 
GetFirstChunk(const Cord & c)960 inline absl::string_view Cord::GetFirstChunk(const Cord& c) {
961   if (c.empty()) return {};
962   return c.contents_.FindFlatStartPiece();
963 }
GetFirstChunk(absl::string_view sv)964 inline absl::string_view Cord::GetFirstChunk(absl::string_view sv) {
965   return sv;
966 }
967 
968 // Compares up to 'size_to_compare' bytes of 'lhs' with 'rhs'. It is assumed
969 // that 'size_to_compare' is greater that size of smallest of first chunks.
970 template <typename ResultType, typename RHS>
GenericCompare(const Cord & lhs,const RHS & rhs,size_t size_to_compare)971 ResultType GenericCompare(const Cord& lhs, const RHS& rhs,
972                           size_t size_to_compare) {
973   absl::string_view lhs_chunk = Cord::GetFirstChunk(lhs);
974   absl::string_view rhs_chunk = Cord::GetFirstChunk(rhs);
975 
976   size_t compared_size = std::min(lhs_chunk.size(), rhs_chunk.size());
977   assert(size_to_compare >= compared_size);
978   int memcmp_res = ::memcmp(lhs_chunk.data(), rhs_chunk.data(), compared_size);
979   if (compared_size == size_to_compare || memcmp_res != 0) {
980     return ComputeCompareResult<ResultType>(memcmp_res);
981   }
982 
983   return ComputeCompareResult<ResultType>(
984       lhs.CompareSlowPath(rhs, compared_size, size_to_compare));
985 }
986 
EqualsImpl(absl::string_view rhs,size_t size_to_compare) const987 bool Cord::EqualsImpl(absl::string_view rhs, size_t size_to_compare) const {
988   return GenericCompare<bool>(*this, rhs, size_to_compare);
989 }
990 
EqualsImpl(const Cord & rhs,size_t size_to_compare) const991 bool Cord::EqualsImpl(const Cord& rhs, size_t size_to_compare) const {
992   return GenericCompare<bool>(*this, rhs, size_to_compare);
993 }
994 
995 template <typename RHS>
SharedCompareImpl(const Cord & lhs,const RHS & rhs)996 inline int SharedCompareImpl(const Cord& lhs, const RHS& rhs) {
997   size_t lhs_size = lhs.size();
998   size_t rhs_size = rhs.size();
999   if (lhs_size == rhs_size) {
1000     return GenericCompare<int>(lhs, rhs, lhs_size);
1001   }
1002   if (lhs_size < rhs_size) {
1003     auto data_comp_res = GenericCompare<int>(lhs, rhs, lhs_size);
1004     return data_comp_res == 0 ? -1 : data_comp_res;
1005   }
1006 
1007   auto data_comp_res = GenericCompare<int>(lhs, rhs, rhs_size);
1008   return data_comp_res == 0 ? +1 : data_comp_res;
1009 }
1010 
Compare(absl::string_view rhs) const1011 int Cord::Compare(absl::string_view rhs) const {
1012   return SharedCompareImpl(*this, rhs);
1013 }
1014 
CompareImpl(const Cord & rhs) const1015 int Cord::CompareImpl(const Cord& rhs) const {
1016   return SharedCompareImpl(*this, rhs);
1017 }
1018 
EndsWith(absl::string_view rhs) const1019 bool Cord::EndsWith(absl::string_view rhs) const {
1020   size_t my_size = size();
1021   size_t rhs_size = rhs.size();
1022 
1023   if (my_size < rhs_size) return false;
1024 
1025   Cord tmp(*this);
1026   tmp.RemovePrefix(my_size - rhs_size);
1027   return tmp.EqualsImpl(rhs, rhs_size);
1028 }
1029 
EndsWith(const Cord & rhs) const1030 bool Cord::EndsWith(const Cord& rhs) const {
1031   size_t my_size = size();
1032   size_t rhs_size = rhs.size();
1033 
1034   if (my_size < rhs_size) return false;
1035 
1036   Cord tmp(*this);
1037   tmp.RemovePrefix(my_size - rhs_size);
1038   return tmp.EqualsImpl(rhs, rhs_size);
1039 }
1040 
1041 // --------------------------------------------------------------------
1042 // Misc.
1043 
operator std::string() const1044 Cord::operator std::string() const {
1045   std::string s;
1046   absl::CopyCordToString(*this, &s);
1047   return s;
1048 }
1049 
CopyCordToString(const Cord & src,std::string * dst)1050 void CopyCordToString(const Cord& src, std::string* dst) {
1051   if (!src.contents_.is_tree()) {
1052     src.contents_.CopyTo(dst);
1053   } else {
1054     absl::strings_internal::STLStringResizeUninitialized(dst, src.size());
1055     src.CopyToArraySlowPath(&(*dst)[0]);
1056   }
1057 }
1058 
CopyToArraySlowPath(char * dst) const1059 void Cord::CopyToArraySlowPath(char* dst) const {
1060   assert(contents_.is_tree());
1061   absl::string_view fragment;
1062   if (GetFlatAux(contents_.tree(), &fragment)) {
1063     memcpy(dst, fragment.data(), fragment.size());
1064     return;
1065   }
1066   for (absl::string_view chunk : Chunks()) {
1067     memcpy(dst, chunk.data(), chunk.size());
1068     dst += chunk.size();
1069   }
1070 }
1071 
AdvanceAndReadBytes(size_t n)1072 Cord Cord::ChunkIterator::AdvanceAndReadBytes(size_t n) {
1073   ABSL_HARDENING_ASSERT(bytes_remaining_ >= n &&
1074                         "Attempted to iterate past `end()`");
1075   Cord subcord;
1076   auto constexpr method = CordzUpdateTracker::kCordReader;
1077 
1078   if (n <= InlineRep::kMaxInline) {
1079     // Range to read fits in inline data. Flatten it.
1080     char* data = subcord.contents_.set_data(n);
1081     while (n > current_chunk_.size()) {
1082       memcpy(data, current_chunk_.data(), current_chunk_.size());
1083       data += current_chunk_.size();
1084       n -= current_chunk_.size();
1085       ++*this;
1086     }
1087     memcpy(data, current_chunk_.data(), n);
1088     if (n < current_chunk_.size()) {
1089       RemoveChunkPrefix(n);
1090     } else if (n > 0) {
1091       ++*this;
1092     }
1093     return subcord;
1094   }
1095 
1096   if (btree_reader_) {
1097     size_t chunk_size = current_chunk_.size();
1098     if (n <= chunk_size && n <= kMaxBytesToCopy) {
1099       subcord = Cord(current_chunk_.substr(0, n), method);
1100       if (n < chunk_size) {
1101         current_chunk_.remove_prefix(n);
1102       } else {
1103         current_chunk_ = btree_reader_.Next();
1104       }
1105     } else {
1106       CordRep* rep;
1107       current_chunk_ = btree_reader_.Read(n, chunk_size, rep);
1108       subcord.contents_.EmplaceTree(rep, method);
1109     }
1110     bytes_remaining_ -= n;
1111     return subcord;
1112   }
1113 
1114   // Short circuit if reading the entire data edge.
1115   assert(current_leaf_ != nullptr);
1116   if (n == current_leaf_->length) {
1117     bytes_remaining_ = 0;
1118     current_chunk_ = {};
1119     CordRep* tree = CordRep::Ref(current_leaf_);
1120     subcord.contents_.EmplaceTree(VerifyTree(tree), method);
1121     return subcord;
1122   }
1123 
1124   // From this point on, we need a partial substring node.
1125   // Get pointer to the underlying flat or external data payload and
1126   // compute data pointer and offset into current flat or external.
1127   CordRep* payload = current_leaf_->IsSubstring()
1128                          ? current_leaf_->substring()->child
1129                          : current_leaf_;
1130   const char* data = payload->IsExternal() ? payload->external()->base
1131                                            : payload->flat()->Data();
1132   const size_t offset = static_cast<size_t>(current_chunk_.data() - data);
1133 
1134   auto* tree = CordRepSubstring::Substring(payload, offset, n);
1135   subcord.contents_.EmplaceTree(VerifyTree(tree), method);
1136   bytes_remaining_ -= n;
1137   current_chunk_.remove_prefix(n);
1138   return subcord;
1139 }
1140 
operator [](size_t i) const1141 char Cord::operator[](size_t i) const {
1142   ABSL_HARDENING_ASSERT(i < size());
1143   size_t offset = i;
1144   const CordRep* rep = contents_.tree();
1145   if (rep == nullptr) {
1146     return contents_.data()[i];
1147   }
1148   rep = cord_internal::SkipCrcNode(rep);
1149   while (true) {
1150     assert(rep != nullptr);
1151     assert(offset < rep->length);
1152     if (rep->IsFlat()) {
1153       // Get the "i"th character directly from the flat array.
1154       return rep->flat()->Data()[offset];
1155     } else if (rep->IsBtree()) {
1156       return rep->btree()->GetCharacter(offset);
1157     } else if (rep->IsExternal()) {
1158       // Get the "i"th character from the external array.
1159       return rep->external()->base[offset];
1160     } else {
1161       // This must be a substring a node, so bypass it to get to the child.
1162       assert(rep->IsSubstring());
1163       offset += rep->substring()->start;
1164       rep = rep->substring()->child;
1165     }
1166   }
1167 }
1168 
FlattenSlowPath()1169 absl::string_view Cord::FlattenSlowPath() {
1170   assert(contents_.is_tree());
1171   size_t total_size = size();
1172   CordRep* new_rep;
1173   char* new_buffer;
1174 
1175   // Try to put the contents into a new flat rep. If they won't fit in the
1176   // biggest possible flat node, use an external rep instead.
1177   if (total_size <= kMaxFlatLength) {
1178     new_rep = CordRepFlat::New(total_size);
1179     new_rep->length = total_size;
1180     new_buffer = new_rep->flat()->Data();
1181     CopyToArraySlowPath(new_buffer);
1182   } else {
1183     new_buffer = std::allocator<char>().allocate(total_size);
1184     CopyToArraySlowPath(new_buffer);
1185     new_rep = absl::cord_internal::NewExternalRep(
1186         absl::string_view(new_buffer, total_size), [](absl::string_view s) {
1187           std::allocator<char>().deallocate(const_cast<char*>(s.data()),
1188                                             s.size());
1189         });
1190   }
1191   CordzUpdateScope scope(contents_.cordz_info(), CordzUpdateTracker::kFlatten);
1192   CordRep::Unref(contents_.as_tree());
1193   contents_.SetTree(new_rep, scope);
1194   return absl::string_view(new_buffer, total_size);
1195 }
1196 
GetFlatAux(CordRep * rep,absl::string_view * fragment)1197 /* static */ bool Cord::GetFlatAux(CordRep* rep, absl::string_view* fragment) {
1198   assert(rep != nullptr);
1199   if (rep->length == 0) {
1200     *fragment = absl::string_view();
1201     return true;
1202   }
1203   rep = cord_internal::SkipCrcNode(rep);
1204   if (rep->IsFlat()) {
1205     *fragment = absl::string_view(rep->flat()->Data(), rep->length);
1206     return true;
1207   } else if (rep->IsExternal()) {
1208     *fragment = absl::string_view(rep->external()->base, rep->length);
1209     return true;
1210   } else if (rep->IsBtree()) {
1211     return rep->btree()->IsFlat(fragment);
1212   } else if (rep->IsSubstring()) {
1213     CordRep* child = rep->substring()->child;
1214     if (child->IsFlat()) {
1215       *fragment = absl::string_view(
1216           child->flat()->Data() + rep->substring()->start, rep->length);
1217       return true;
1218     } else if (child->IsExternal()) {
1219       *fragment = absl::string_view(
1220           child->external()->base + rep->substring()->start, rep->length);
1221       return true;
1222     } else if (child->IsBtree()) {
1223       return child->btree()->IsFlat(rep->substring()->start, rep->length,
1224                                     fragment);
1225     }
1226   }
1227   return false;
1228 }
1229 
ForEachChunkAux(absl::cord_internal::CordRep * rep,absl::FunctionRef<void (absl::string_view)> callback)1230 /* static */ void Cord::ForEachChunkAux(
1231     absl::cord_internal::CordRep* rep,
1232     absl::FunctionRef<void(absl::string_view)> callback) {
1233   assert(rep != nullptr);
1234   if (rep->length == 0) return;
1235   rep = cord_internal::SkipCrcNode(rep);
1236 
1237   if (rep->IsBtree()) {
1238     ChunkIterator it(rep), end;
1239     while (it != end) {
1240       callback(*it);
1241       ++it;
1242     }
1243     return;
1244   }
1245 
1246   // This is a leaf node, so invoke our callback.
1247   absl::cord_internal::CordRep* current_node = cord_internal::SkipCrcNode(rep);
1248   absl::string_view chunk;
1249   bool success = GetFlatAux(current_node, &chunk);
1250   assert(success);
1251   if (success) {
1252     callback(chunk);
1253   }
1254 }
1255 
DumpNode(CordRep * rep,bool include_data,std::ostream * os,int indent)1256 static void DumpNode(CordRep* rep, bool include_data, std::ostream* os,
1257                      int indent) {
1258   const int kIndentStep = 1;
1259   absl::InlinedVector<CordRep*, kInlinedVectorSize> stack;
1260   absl::InlinedVector<int, kInlinedVectorSize> indents;
1261   for (;;) {
1262     *os << std::setw(3) << rep->refcount.Get();
1263     *os << " " << std::setw(7) << rep->length;
1264     *os << " [";
1265     if (include_data) *os << static_cast<void*>(rep);
1266     *os << "]";
1267     *os << " " << std::setw(indent) << "";
1268     bool leaf = false;
1269     if (rep == nullptr) {
1270       *os << "NULL\n";
1271       leaf = true;
1272     } else if (rep->IsCrc()) {
1273       *os << "CRC crc=" << rep->crc()->crc_cord_state.Checksum() << "\n";
1274       indent += kIndentStep;
1275       rep = rep->crc()->child;
1276     } else if (rep->IsSubstring()) {
1277       *os << "SUBSTRING @ " << rep->substring()->start << "\n";
1278       indent += kIndentStep;
1279       rep = rep->substring()->child;
1280     } else {  // Leaf or ring
1281       leaf = true;
1282       if (rep->IsExternal()) {
1283         *os << "EXTERNAL [";
1284         if (include_data)
1285           *os << absl::CEscape(std::string(rep->external()->base, rep->length));
1286         *os << "]\n";
1287       } else if (rep->IsFlat()) {
1288         *os << "FLAT cap=" << rep->flat()->Capacity() << " [";
1289         if (include_data)
1290           *os << absl::CEscape(std::string(rep->flat()->Data(), rep->length));
1291         *os << "]\n";
1292       } else {
1293         CordRepBtree::Dump(rep, /*label=*/ "", include_data, *os);
1294       }
1295     }
1296     if (leaf) {
1297       if (stack.empty()) break;
1298       rep = stack.back();
1299       stack.pop_back();
1300       indent = indents.back();
1301       indents.pop_back();
1302     }
1303   }
1304   ABSL_INTERNAL_CHECK(indents.empty(), "");
1305 }
1306 
ReportError(CordRep * root,CordRep * node)1307 static std::string ReportError(CordRep* root, CordRep* node) {
1308   std::ostringstream buf;
1309   buf << "Error at node " << node << " in:";
1310   DumpNode(root, true, &buf);
1311   return buf.str();
1312 }
1313 
VerifyNode(CordRep * root,CordRep * start_node,bool)1314 static bool VerifyNode(CordRep* root, CordRep* start_node,
1315                        bool /* full_validation */) {
1316   absl::InlinedVector<CordRep*, 2> worklist;
1317   worklist.push_back(start_node);
1318   do {
1319     CordRep* node = worklist.back();
1320     worklist.pop_back();
1321 
1322     ABSL_INTERNAL_CHECK(node != nullptr, ReportError(root, node));
1323     if (node != root) {
1324       ABSL_INTERNAL_CHECK(node->length != 0, ReportError(root, node));
1325       ABSL_INTERNAL_CHECK(!node->IsCrc(), ReportError(root, node));
1326     }
1327 
1328     if (node->IsFlat()) {
1329       ABSL_INTERNAL_CHECK(node->length <= node->flat()->Capacity(),
1330                           ReportError(root, node));
1331     } else if (node->IsExternal()) {
1332       ABSL_INTERNAL_CHECK(node->external()->base != nullptr,
1333                           ReportError(root, node));
1334     } else if (node->IsSubstring()) {
1335       ABSL_INTERNAL_CHECK(
1336           node->substring()->start < node->substring()->child->length,
1337           ReportError(root, node));
1338       ABSL_INTERNAL_CHECK(node->substring()->start + node->length <=
1339                               node->substring()->child->length,
1340                           ReportError(root, node));
1341     } else if (node->IsCrc()) {
1342       ABSL_INTERNAL_CHECK(
1343           node->crc()->child != nullptr || node->crc()->length == 0,
1344           ReportError(root, node));
1345       if (node->crc()->child != nullptr) {
1346         ABSL_INTERNAL_CHECK(node->crc()->length == node->crc()->child->length,
1347                             ReportError(root, node));
1348         worklist.push_back(node->crc()->child);
1349       }
1350     }
1351   } while (!worklist.empty());
1352   return true;
1353 }
1354 
operator <<(std::ostream & out,const Cord & cord)1355 std::ostream& operator<<(std::ostream& out, const Cord& cord) {
1356   for (absl::string_view chunk : cord.Chunks()) {
1357     out.write(chunk.data(), static_cast<std::streamsize>(chunk.size()));
1358   }
1359   return out;
1360 }
1361 
1362 namespace strings_internal {
FlatOverhead()1363 size_t CordTestAccess::FlatOverhead() { return cord_internal::kFlatOverhead; }
MaxFlatLength()1364 size_t CordTestAccess::MaxFlatLength() { return cord_internal::kMaxFlatLength; }
FlatTagToLength(uint8_t tag)1365 size_t CordTestAccess::FlatTagToLength(uint8_t tag) {
1366   return cord_internal::TagToLength(tag);
1367 }
LengthToTag(size_t s)1368 uint8_t CordTestAccess::LengthToTag(size_t s) {
1369   ABSL_INTERNAL_CHECK(s <= kMaxFlatLength, absl::StrCat("Invalid length ", s));
1370   return cord_internal::AllocatedSizeToTag(s + cord_internal::kFlatOverhead);
1371 }
SizeofCordRepExternal()1372 size_t CordTestAccess::SizeofCordRepExternal() {
1373   return sizeof(CordRepExternal);
1374 }
SizeofCordRepSubstring()1375 size_t CordTestAccess::SizeofCordRepSubstring() {
1376   return sizeof(CordRepSubstring);
1377 }
1378 }  // namespace strings_internal
1379 ABSL_NAMESPACE_END
1380 }  // namespace absl
1381