1 // Copyright 2017 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #ifndef ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_
16 #define ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_
17
18 #include <cstddef>
19 #include <cstdint>
20 #include <limits>
21 #include <type_traits>
22
23 #include "absl/base/config.h"
24 #include "absl/meta/type_traits.h"
25 #include "absl/random/internal/traits.h"
26
27 namespace absl {
28 ABSL_NAMESPACE_BEGIN
29 namespace random_internal {
30 // Returns true if the input value is zero or a power of two. Useful for
31 // determining if the range of output values in a URBG
32 template <typename UIntType>
IsPowerOfTwoOrZero(UIntType n)33 constexpr bool IsPowerOfTwoOrZero(UIntType n) {
34 return (n == 0) || ((n & (n - 1)) == 0);
35 }
36
37 // Computes the length of the range of values producible by the URBG, or returns
38 // zero if that would encompass the entire range of representable values in
39 // URBG::result_type.
40 template <typename URBG>
RangeSize()41 constexpr typename URBG::result_type RangeSize() {
42 using result_type = typename URBG::result_type;
43 static_assert((URBG::max)() != (URBG::min)(), "URBG range cannot be 0.");
44 return ((URBG::max)() == (std::numeric_limits<result_type>::max)() &&
45 (URBG::min)() == std::numeric_limits<result_type>::lowest())
46 ? result_type{0}
47 : ((URBG::max)() - (URBG::min)() + result_type{1});
48 }
49
50 // Computes the floor of the log. (i.e., std::floor(std::log2(N));
51 template <typename UIntType>
IntegerLog2(UIntType n)52 constexpr UIntType IntegerLog2(UIntType n) {
53 return (n <= 1) ? 0 : 1 + IntegerLog2(n >> 1);
54 }
55
56 // Returns the number of bits of randomness returned through
57 // `PowerOfTwoVariate(urbg)`.
58 template <typename URBG>
NumBits()59 constexpr size_t NumBits() {
60 return RangeSize<URBG>() == 0
61 ? std::numeric_limits<typename URBG::result_type>::digits
62 : IntegerLog2(RangeSize<URBG>());
63 }
64
65 // Given a shift value `n`, constructs a mask with exactly the low `n` bits set.
66 // If `n == 0`, all bits are set.
67 template <typename UIntType>
MaskFromShift(size_t n)68 constexpr UIntType MaskFromShift(size_t n) {
69 return ((n % std::numeric_limits<UIntType>::digits) == 0)
70 ? ~UIntType{0}
71 : (UIntType{1} << n) - UIntType{1};
72 }
73
74 // Tags used to dispatch FastUniformBits::generate to the simple or more complex
75 // entropy extraction algorithm.
76 struct SimplifiedLoopTag {};
77 struct RejectionLoopTag {};
78
79 // FastUniformBits implements a fast path to acquire uniform independent bits
80 // from a type which conforms to the [rand.req.urbg] concept.
81 // Parameterized by:
82 // `UIntType`: the result (output) type
83 //
84 // The std::independent_bits_engine [rand.adapt.ibits] adaptor can be
85 // instantiated from an existing generator through a copy or a move. It does
86 // not, however, facilitate the production of pseudorandom bits from an un-owned
87 // generator that will outlive the std::independent_bits_engine instance.
88 template <typename UIntType = uint64_t>
89 class FastUniformBits {
90 public:
91 using result_type = UIntType;
92
result_type(min)93 static constexpr result_type(min)() { return 0; }
result_type(max)94 static constexpr result_type(max)() {
95 return (std::numeric_limits<result_type>::max)();
96 }
97
98 template <typename URBG>
99 result_type operator()(URBG& g); // NOLINT(runtime/references)
100
101 private:
102 static_assert(IsUnsigned<UIntType>::value,
103 "Class-template FastUniformBits<> must be parameterized using "
104 "an unsigned type.");
105
106 // Generate() generates a random value, dispatched on whether
107 // the underlying URBG must use rejection sampling to generate a value,
108 // or whether a simplified loop will suffice.
109 template <typename URBG>
110 result_type Generate(URBG& g, // NOLINT(runtime/references)
111 SimplifiedLoopTag);
112
113 template <typename URBG>
114 result_type Generate(URBG& g, // NOLINT(runtime/references)
115 RejectionLoopTag);
116 };
117
118 template <typename UIntType>
119 template <typename URBG>
120 typename FastUniformBits<UIntType>::result_type
operator()121 FastUniformBits<UIntType>::operator()(URBG& g) { // NOLINT(runtime/references)
122 // kRangeMask is the mask used when sampling variates from the URBG when the
123 // width of the URBG range is not a power of 2.
124 // Y = (2 ^ kRange) - 1
125 static_assert((URBG::max)() > (URBG::min)(),
126 "URBG::max and URBG::min may not be equal.");
127
128 using tag = absl::conditional_t<IsPowerOfTwoOrZero(RangeSize<URBG>()),
129 SimplifiedLoopTag, RejectionLoopTag>;
130 return Generate(g, tag{});
131 }
132
133 template <typename UIntType>
134 template <typename URBG>
135 typename FastUniformBits<UIntType>::result_type
Generate(URBG & g,SimplifiedLoopTag)136 FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references)
137 SimplifiedLoopTag) {
138 // The simplified version of FastUniformBits works only on URBGs that have
139 // a range that is a power of 2. In this case we simply loop and shift without
140 // attempting to balance the bits across calls.
141 static_assert(IsPowerOfTwoOrZero(RangeSize<URBG>()),
142 "incorrect Generate tag for URBG instance");
143
144 static constexpr size_t kResultBits =
145 std::numeric_limits<result_type>::digits;
146 static constexpr size_t kUrbgBits = NumBits<URBG>();
147 static constexpr size_t kIters =
148 (kResultBits / kUrbgBits) + (kResultBits % kUrbgBits != 0);
149 static constexpr size_t kShift = (kIters == 1) ? 0 : kUrbgBits;
150 static constexpr auto kMin = (URBG::min)();
151
152 result_type r = static_cast<result_type>(g() - kMin);
153 for (size_t n = 1; n < kIters; ++n) {
154 r = static_cast<result_type>(r << kShift) +
155 static_cast<result_type>(g() - kMin);
156 }
157 return r;
158 }
159
160 template <typename UIntType>
161 template <typename URBG>
162 typename FastUniformBits<UIntType>::result_type
Generate(URBG & g,RejectionLoopTag)163 FastUniformBits<UIntType>::Generate(URBG& g, // NOLINT(runtime/references)
164 RejectionLoopTag) {
165 static_assert(!IsPowerOfTwoOrZero(RangeSize<URBG>()),
166 "incorrect Generate tag for URBG instance");
167 using urbg_result_type = typename URBG::result_type;
168
169 // See [rand.adapt.ibits] for more details on the constants calculated below.
170 //
171 // It is preferable to use roughly the same number of bits from each generator
172 // call, however this is only possible when the number of bits provided by the
173 // URBG is a divisor of the number of bits in `result_type`. In all other
174 // cases, the number of bits used cannot always be the same, but it can be
175 // guaranteed to be off by at most 1. Thus we run two loops, one with a
176 // smaller bit-width size (`kSmallWidth`) and one with a larger width size
177 // (satisfying `kLargeWidth == kSmallWidth + 1`). The loops are run
178 // `kSmallIters` and `kLargeIters` times respectively such
179 // that
180 //
181 // `kResultBits == kSmallIters * kSmallBits
182 // + kLargeIters * kLargeBits`
183 //
184 // where `kResultBits` is the total number of bits in `result_type`.
185 //
186 static constexpr size_t kResultBits =
187 std::numeric_limits<result_type>::digits; // w
188 static constexpr urbg_result_type kUrbgRange = RangeSize<URBG>(); // R
189 static constexpr size_t kUrbgBits = NumBits<URBG>(); // m
190
191 // compute the initial estimate of the bits used.
192 // [rand.adapt.ibits] 2 (c)
193 static constexpr size_t kA = // ceil(w/m)
194 (kResultBits / kUrbgBits) + ((kResultBits % kUrbgBits) != 0); // n'
195
196 static constexpr size_t kABits = kResultBits / kA; // w0'
197 static constexpr urbg_result_type kARejection =
198 ((kUrbgRange >> kABits) << kABits); // y0'
199
200 // refine the selection to reduce the rejection frequency.
201 static constexpr size_t kTotalIters =
202 ((kUrbgRange - kARejection) <= (kARejection / kA)) ? kA : (kA + 1); // n
203
204 // [rand.adapt.ibits] 2 (b)
205 static constexpr size_t kSmallIters =
206 kTotalIters - (kResultBits % kTotalIters); // n0
207 static constexpr size_t kSmallBits = kResultBits / kTotalIters; // w0
208 static constexpr urbg_result_type kSmallRejection =
209 ((kUrbgRange >> kSmallBits) << kSmallBits); // y0
210
211 static constexpr size_t kLargeBits = kSmallBits + 1; // w0+1
212 static constexpr urbg_result_type kLargeRejection =
213 ((kUrbgRange >> kLargeBits) << kLargeBits); // y1
214
215 //
216 // Because `kLargeBits == kSmallBits + 1`, it follows that
217 //
218 // `kResultBits == kSmallIters * kSmallBits + kLargeIters`
219 //
220 // and therefore
221 //
222 // `kLargeIters == kTotalWidth % kSmallWidth`
223 //
224 // Intuitively, each iteration with the large width accounts for one unit
225 // of the remainder when `kTotalWidth` is divided by `kSmallWidth`. As
226 // mentioned above, if the URBG width is a divisor of `kTotalWidth`, then
227 // there would be no need for any large iterations (i.e., one loop would
228 // suffice), and indeed, in this case, `kLargeIters` would be zero.
229 static_assert(kResultBits == kSmallIters * kSmallBits +
230 (kTotalIters - kSmallIters) * kLargeBits,
231 "Error in looping constant calculations.");
232
233 // The small shift is essentially small bits, but due to the potential
234 // of generating a smaller result_type from a larger urbg type, the actual
235 // shift might be 0.
236 static constexpr size_t kSmallShift = kSmallBits % kResultBits;
237 static constexpr auto kSmallMask =
238 MaskFromShift<urbg_result_type>(kSmallShift);
239 static constexpr size_t kLargeShift = kLargeBits % kResultBits;
240 static constexpr auto kLargeMask =
241 MaskFromShift<urbg_result_type>(kLargeShift);
242
243 static constexpr auto kMin = (URBG::min)();
244
245 result_type s = 0;
246 for (size_t n = 0; n < kSmallIters; ++n) {
247 urbg_result_type v;
248 do {
249 v = g() - kMin;
250 } while (v >= kSmallRejection);
251
252 s = (s << kSmallShift) + static_cast<result_type>(v & kSmallMask);
253 }
254
255 for (size_t n = kSmallIters; n < kTotalIters; ++n) {
256 urbg_result_type v;
257 do {
258 v = g() - kMin;
259 } while (v >= kLargeRejection);
260
261 s = (s << kLargeShift) + static_cast<result_type>(v & kLargeMask);
262 }
263 return s;
264 }
265
266 } // namespace random_internal
267 ABSL_NAMESPACE_END
268 } // namespace absl
269
270 #endif // ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_
271