1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: node_hash_map.h
17 // -----------------------------------------------------------------------------
18 //
19 // An `absl::node_hash_map<K, V>` is an unordered associative container of
20 // unique keys and associated values designed to be a more efficient replacement
21 // for `std::unordered_map`. Like `unordered_map`, search, insertion, and
22 // deletion of map elements can be done as an `O(1)` operation. However,
23 // `node_hash_map` (and other unordered associative containers known as the
24 // collection of Abseil "Swiss tables") contain other optimizations that result
25 // in both memory and computation advantages.
26 //
27 // In most cases, your default choice for a hash map should be a map of type
28 // `flat_hash_map`. However, if you need pointer stability and cannot store
29 // a `flat_hash_map` with `unique_ptr` elements, a `node_hash_map` may be a
30 // valid alternative. As well, if you are migrating your code from using
31 // `std::unordered_map`, a `node_hash_map` provides a more straightforward
32 // migration, because it guarantees pointer stability. Consider migrating to
33 // `node_hash_map` and perhaps converting to a more efficient `flat_hash_map`
34 // upon further review.
35
36 #ifndef ABSL_CONTAINER_NODE_HASH_MAP_H_
37 #define ABSL_CONTAINER_NODE_HASH_MAP_H_
38
39 #include <tuple>
40 #include <type_traits>
41 #include <utility>
42
43 #include "absl/algorithm/container.h"
44 #include "absl/base/macros.h"
45 #include "absl/container/internal/container_memory.h"
46 #include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export
47 #include "absl/container/internal/node_slot_policy.h"
48 #include "absl/container/internal/raw_hash_map.h" // IWYU pragma: export
49 #include "absl/memory/memory.h"
50
51 namespace absl {
52 ABSL_NAMESPACE_BEGIN
53 namespace container_internal {
54 template <class Key, class Value>
55 class NodeHashMapPolicy;
56 } // namespace container_internal
57
58 // -----------------------------------------------------------------------------
59 // absl::node_hash_map
60 // -----------------------------------------------------------------------------
61 //
62 // An `absl::node_hash_map<K, V>` is an unordered associative container which
63 // has been optimized for both speed and memory footprint in most common use
64 // cases. Its interface is similar to that of `std::unordered_map<K, V>` with
65 // the following notable differences:
66 //
67 // * Supports heterogeneous lookup, through `find()`, `operator[]()` and
68 // `insert()`, provided that the map is provided a compatible heterogeneous
69 // hashing function and equality operator.
70 // * Contains a `capacity()` member function indicating the number of element
71 // slots (open, deleted, and empty) within the hash map.
72 // * Returns `void` from the `erase(iterator)` overload.
73 //
74 // By default, `node_hash_map` uses the `absl::Hash` hashing framework.
75 // All fundamental and Abseil types that support the `absl::Hash` framework have
76 // a compatible equality operator for comparing insertions into `node_hash_map`.
77 // If your type is not yet supported by the `absl::Hash` framework, see
78 // absl/hash/hash.h for information on extending Abseil hashing to user-defined
79 // types.
80 //
81 // Using `absl::node_hash_map` at interface boundaries in dynamically loaded
82 // libraries (e.g. .dll, .so) is unsupported due to way `absl::Hash` values may
83 // be randomized across dynamically loaded libraries.
84 //
85 // Example:
86 //
87 // // Create a node hash map of three strings (that map to strings)
88 // absl::node_hash_map<std::string, std::string> ducks =
89 // {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}};
90 //
91 // // Insert a new element into the node hash map
92 // ducks.insert({"d", "donald"}};
93 //
94 // // Force a rehash of the node hash map
95 // ducks.rehash(0);
96 //
97 // // Find the element with the key "b"
98 // std::string search_key = "b";
99 // auto result = ducks.find(search_key);
100 // if (result != ducks.end()) {
101 // std::cout << "Result: " << result->second << std::endl;
102 // }
103 template <class Key, class Value,
104 class Hash = absl::container_internal::hash_default_hash<Key>,
105 class Eq = absl::container_internal::hash_default_eq<Key>,
106 class Alloc = std::allocator<std::pair<const Key, Value>>>
107 class node_hash_map
108 : public absl::container_internal::raw_hash_map<
109 absl::container_internal::NodeHashMapPolicy<Key, Value>, Hash, Eq,
110 Alloc> {
111 using Base = typename node_hash_map::raw_hash_map;
112
113 public:
114 // Constructors and Assignment Operators
115 //
116 // A node_hash_map supports the same overload set as `std::unordered_map`
117 // for construction and assignment:
118 //
119 // * Default constructor
120 //
121 // // No allocation for the table's elements is made.
122 // absl::node_hash_map<int, std::string> map1;
123 //
124 // * Initializer List constructor
125 //
126 // absl::node_hash_map<int, std::string> map2 =
127 // {{1, "huey"}, {2, "dewey"}, {3, "louie"},};
128 //
129 // * Copy constructor
130 //
131 // absl::node_hash_map<int, std::string> map3(map2);
132 //
133 // * Copy assignment operator
134 //
135 // // Hash functor and Comparator are copied as well
136 // absl::node_hash_map<int, std::string> map4;
137 // map4 = map3;
138 //
139 // * Move constructor
140 //
141 // // Move is guaranteed efficient
142 // absl::node_hash_map<int, std::string> map5(std::move(map4));
143 //
144 // * Move assignment operator
145 //
146 // // May be efficient if allocators are compatible
147 // absl::node_hash_map<int, std::string> map6;
148 // map6 = std::move(map5);
149 //
150 // * Range constructor
151 //
152 // std::vector<std::pair<int, std::string>> v = {{1, "a"}, {2, "b"}};
153 // absl::node_hash_map<int, std::string> map7(v.begin(), v.end());
node_hash_map()154 node_hash_map() {}
155 using Base::Base;
156
157 // node_hash_map::begin()
158 //
159 // Returns an iterator to the beginning of the `node_hash_map`.
160 using Base::begin;
161
162 // node_hash_map::cbegin()
163 //
164 // Returns a const iterator to the beginning of the `node_hash_map`.
165 using Base::cbegin;
166
167 // node_hash_map::cend()
168 //
169 // Returns a const iterator to the end of the `node_hash_map`.
170 using Base::cend;
171
172 // node_hash_map::end()
173 //
174 // Returns an iterator to the end of the `node_hash_map`.
175 using Base::end;
176
177 // node_hash_map::capacity()
178 //
179 // Returns the number of element slots (assigned, deleted, and empty)
180 // available within the `node_hash_map`.
181 //
182 // NOTE: this member function is particular to `absl::node_hash_map` and is
183 // not provided in the `std::unordered_map` API.
184 using Base::capacity;
185
186 // node_hash_map::empty()
187 //
188 // Returns whether or not the `node_hash_map` is empty.
189 using Base::empty;
190
191 // node_hash_map::max_size()
192 //
193 // Returns the largest theoretical possible number of elements within a
194 // `node_hash_map` under current memory constraints. This value can be thought
195 // of as the largest value of `std::distance(begin(), end())` for a
196 // `node_hash_map<K, V>`.
197 using Base::max_size;
198
199 // node_hash_map::size()
200 //
201 // Returns the number of elements currently within the `node_hash_map`.
202 using Base::size;
203
204 // node_hash_map::clear()
205 //
206 // Removes all elements from the `node_hash_map`. Invalidates any references,
207 // pointers, or iterators referring to contained elements.
208 //
209 // NOTE: this operation may shrink the underlying buffer. To avoid shrinking
210 // the underlying buffer call `erase(begin(), end())`.
211 using Base::clear;
212
213 // node_hash_map::erase()
214 //
215 // Erases elements within the `node_hash_map`. Erasing does not trigger a
216 // rehash. Overloads are listed below.
217 //
218 // void erase(const_iterator pos):
219 //
220 // Erases the element at `position` of the `node_hash_map`, returning
221 // `void`.
222 //
223 // NOTE: this return behavior is different than that of STL containers in
224 // general and `std::unordered_map` in particular.
225 //
226 // iterator erase(const_iterator first, const_iterator last):
227 //
228 // Erases the elements in the open interval [`first`, `last`), returning an
229 // iterator pointing to `last`.
230 //
231 // size_type erase(const key_type& key):
232 //
233 // Erases the element with the matching key, if it exists, returning the
234 // number of elements erased (0 or 1).
235 using Base::erase;
236
237 // node_hash_map::insert()
238 //
239 // Inserts an element of the specified value into the `node_hash_map`,
240 // returning an iterator pointing to the newly inserted element, provided that
241 // an element with the given key does not already exist. If rehashing occurs
242 // due to the insertion, all iterators are invalidated. Overloads are listed
243 // below.
244 //
245 // std::pair<iterator,bool> insert(const init_type& value):
246 //
247 // Inserts a value into the `node_hash_map`. Returns a pair consisting of an
248 // iterator to the inserted element (or to the element that prevented the
249 // insertion) and a `bool` denoting whether the insertion took place.
250 //
251 // std::pair<iterator,bool> insert(T&& value):
252 // std::pair<iterator,bool> insert(init_type&& value):
253 //
254 // Inserts a moveable value into the `node_hash_map`. Returns a `std::pair`
255 // consisting of an iterator to the inserted element (or to the element that
256 // prevented the insertion) and a `bool` denoting whether the insertion took
257 // place.
258 //
259 // iterator insert(const_iterator hint, const init_type& value):
260 // iterator insert(const_iterator hint, T&& value):
261 // iterator insert(const_iterator hint, init_type&& value);
262 //
263 // Inserts a value, using the position of `hint` as a non-binding suggestion
264 // for where to begin the insertion search. Returns an iterator to the
265 // inserted element, or to the existing element that prevented the
266 // insertion.
267 //
268 // void insert(InputIterator first, InputIterator last):
269 //
270 // Inserts a range of values [`first`, `last`).
271 //
272 // NOTE: Although the STL does not specify which element may be inserted if
273 // multiple keys compare equivalently, for `node_hash_map` we guarantee the
274 // first match is inserted.
275 //
276 // void insert(std::initializer_list<init_type> ilist):
277 //
278 // Inserts the elements within the initializer list `ilist`.
279 //
280 // NOTE: Although the STL does not specify which element may be inserted if
281 // multiple keys compare equivalently within the initializer list, for
282 // `node_hash_map` we guarantee the first match is inserted.
283 using Base::insert;
284
285 // node_hash_map::insert_or_assign()
286 //
287 // Inserts an element of the specified value into the `node_hash_map` provided
288 // that a value with the given key does not already exist, or replaces it with
289 // the element value if a key for that value already exists, returning an
290 // iterator pointing to the newly inserted element. If rehashing occurs due to
291 // the insertion, all iterators are invalidated. Overloads are listed
292 // below.
293 //
294 // std::pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj):
295 // std::pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj):
296 //
297 // Inserts/Assigns (or moves) the element of the specified key into the
298 // `node_hash_map`.
299 //
300 // iterator insert_or_assign(const_iterator hint,
301 // const init_type& k, T&& obj):
302 // iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj):
303 //
304 // Inserts/Assigns (or moves) the element of the specified key into the
305 // `node_hash_map` using the position of `hint` as a non-binding suggestion
306 // for where to begin the insertion search.
307 using Base::insert_or_assign;
308
309 // node_hash_map::emplace()
310 //
311 // Inserts an element of the specified value by constructing it in-place
312 // within the `node_hash_map`, provided that no element with the given key
313 // already exists.
314 //
315 // The element may be constructed even if there already is an element with the
316 // key in the container, in which case the newly constructed element will be
317 // destroyed immediately. Prefer `try_emplace()` unless your key is not
318 // copyable or moveable.
319 //
320 // If rehashing occurs due to the insertion, all iterators are invalidated.
321 using Base::emplace;
322
323 // node_hash_map::emplace_hint()
324 //
325 // Inserts an element of the specified value by constructing it in-place
326 // within the `node_hash_map`, using the position of `hint` as a non-binding
327 // suggestion for where to begin the insertion search, and only inserts
328 // provided that no element with the given key already exists.
329 //
330 // The element may be constructed even if there already is an element with the
331 // key in the container, in which case the newly constructed element will be
332 // destroyed immediately. Prefer `try_emplace()` unless your key is not
333 // copyable or moveable.
334 //
335 // If rehashing occurs due to the insertion, all iterators are invalidated.
336 using Base::emplace_hint;
337
338 // node_hash_map::try_emplace()
339 //
340 // Inserts an element of the specified value by constructing it in-place
341 // within the `node_hash_map`, provided that no element with the given key
342 // already exists. Unlike `emplace()`, if an element with the given key
343 // already exists, we guarantee that no element is constructed.
344 //
345 // If rehashing occurs due to the insertion, all iterators are invalidated.
346 // Overloads are listed below.
347 //
348 // std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args):
349 // std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args):
350 //
351 // Inserts (via copy or move) the element of the specified key into the
352 // `node_hash_map`.
353 //
354 // iterator try_emplace(const_iterator hint,
355 // const key_type& k, Args&&... args):
356 // iterator try_emplace(const_iterator hint, key_type&& k, Args&&... args):
357 //
358 // Inserts (via copy or move) the element of the specified key into the
359 // `node_hash_map` using the position of `hint` as a non-binding suggestion
360 // for where to begin the insertion search.
361 //
362 // All `try_emplace()` overloads make the same guarantees regarding rvalue
363 // arguments as `std::unordered_map::try_emplace()`, namely that these
364 // functions will not move from rvalue arguments if insertions do not happen.
365 using Base::try_emplace;
366
367 // node_hash_map::extract()
368 //
369 // Extracts the indicated element, erasing it in the process, and returns it
370 // as a C++17-compatible node handle. Overloads are listed below.
371 //
372 // node_type extract(const_iterator position):
373 //
374 // Extracts the key,value pair of the element at the indicated position and
375 // returns a node handle owning that extracted data.
376 //
377 // node_type extract(const key_type& x):
378 //
379 // Extracts the key,value pair of the element with a key matching the passed
380 // key value and returns a node handle owning that extracted data. If the
381 // `node_hash_map` does not contain an element with a matching key, this
382 // function returns an empty node handle.
383 //
384 // NOTE: when compiled in an earlier version of C++ than C++17,
385 // `node_type::key()` returns a const reference to the key instead of a
386 // mutable reference. We cannot safely return a mutable reference without
387 // std::launder (which is not available before C++17).
388 using Base::extract;
389
390 // node_hash_map::merge()
391 //
392 // Extracts elements from a given `source` node hash map into this
393 // `node_hash_map`. If the destination `node_hash_map` already contains an
394 // element with an equivalent key, that element is not extracted.
395 using Base::merge;
396
397 // node_hash_map::swap(node_hash_map& other)
398 //
399 // Exchanges the contents of this `node_hash_map` with those of the `other`
400 // node hash map, avoiding invocation of any move, copy, or swap operations on
401 // individual elements.
402 //
403 // All iterators and references on the `node_hash_map` remain valid, excepting
404 // for the past-the-end iterator, which is invalidated.
405 //
406 // `swap()` requires that the node hash map's hashing and key equivalence
407 // functions be Swappable, and are exchaged using unqualified calls to
408 // non-member `swap()`. If the map's allocator has
409 // `std::allocator_traits<allocator_type>::propagate_on_container_swap::value`
410 // set to `true`, the allocators are also exchanged using an unqualified call
411 // to non-member `swap()`; otherwise, the allocators are not swapped.
412 using Base::swap;
413
414 // node_hash_map::rehash(count)
415 //
416 // Rehashes the `node_hash_map`, setting the number of slots to be at least
417 // the passed value. If the new number of slots increases the load factor more
418 // than the current maximum load factor
419 // (`count` < `size()` / `max_load_factor()`), then the new number of slots
420 // will be at least `size()` / `max_load_factor()`.
421 //
422 // To force a rehash, pass rehash(0).
423 using Base::rehash;
424
425 // node_hash_map::reserve(count)
426 //
427 // Sets the number of slots in the `node_hash_map` to the number needed to
428 // accommodate at least `count` total elements without exceeding the current
429 // maximum load factor, and may rehash the container if needed.
430 using Base::reserve;
431
432 // node_hash_map::at()
433 //
434 // Returns a reference to the mapped value of the element with key equivalent
435 // to the passed key.
436 using Base::at;
437
438 // node_hash_map::contains()
439 //
440 // Determines whether an element with a key comparing equal to the given `key`
441 // exists within the `node_hash_map`, returning `true` if so or `false`
442 // otherwise.
443 using Base::contains;
444
445 // node_hash_map::count(const Key& key) const
446 //
447 // Returns the number of elements with a key comparing equal to the given
448 // `key` within the `node_hash_map`. note that this function will return
449 // either `1` or `0` since duplicate keys are not allowed within a
450 // `node_hash_map`.
451 using Base::count;
452
453 // node_hash_map::equal_range()
454 //
455 // Returns a closed range [first, last], defined by a `std::pair` of two
456 // iterators, containing all elements with the passed key in the
457 // `node_hash_map`.
458 using Base::equal_range;
459
460 // node_hash_map::find()
461 //
462 // Finds an element with the passed `key` within the `node_hash_map`.
463 using Base::find;
464
465 // node_hash_map::operator[]()
466 //
467 // Returns a reference to the value mapped to the passed key within the
468 // `node_hash_map`, performing an `insert()` if the key does not already
469 // exist. If an insertion occurs and results in a rehashing of the container,
470 // all iterators are invalidated. Otherwise iterators are not affected and
471 // references are not invalidated. Overloads are listed below.
472 //
473 // T& operator[](const Key& key):
474 //
475 // Inserts an init_type object constructed in-place if the element with the
476 // given key does not exist.
477 //
478 // T& operator[](Key&& key):
479 //
480 // Inserts an init_type object constructed in-place provided that an element
481 // with the given key does not exist.
482 using Base::operator[];
483
484 // node_hash_map::bucket_count()
485 //
486 // Returns the number of "buckets" within the `node_hash_map`.
487 using Base::bucket_count;
488
489 // node_hash_map::load_factor()
490 //
491 // Returns the current load factor of the `node_hash_map` (the average number
492 // of slots occupied with a value within the hash map).
493 using Base::load_factor;
494
495 // node_hash_map::max_load_factor()
496 //
497 // Manages the maximum load factor of the `node_hash_map`. Overloads are
498 // listed below.
499 //
500 // float node_hash_map::max_load_factor()
501 //
502 // Returns the current maximum load factor of the `node_hash_map`.
503 //
504 // void node_hash_map::max_load_factor(float ml)
505 //
506 // Sets the maximum load factor of the `node_hash_map` to the passed value.
507 //
508 // NOTE: This overload is provided only for API compatibility with the STL;
509 // `node_hash_map` will ignore any set load factor and manage its rehashing
510 // internally as an implementation detail.
511 using Base::max_load_factor;
512
513 // node_hash_map::get_allocator()
514 //
515 // Returns the allocator function associated with this `node_hash_map`.
516 using Base::get_allocator;
517
518 // node_hash_map::hash_function()
519 //
520 // Returns the hashing function used to hash the keys within this
521 // `node_hash_map`.
522 using Base::hash_function;
523
524 // node_hash_map::key_eq()
525 //
526 // Returns the function used for comparing keys equality.
527 using Base::key_eq;
528 };
529
530 // erase_if(node_hash_map<>, Pred)
531 //
532 // Erases all elements that satisfy the predicate `pred` from the container `c`.
533 // Returns the number of erased elements.
534 template <typename K, typename V, typename H, typename E, typename A,
535 typename Predicate>
erase_if(node_hash_map<K,V,H,E,A> & c,Predicate pred)536 typename node_hash_map<K, V, H, E, A>::size_type erase_if(
537 node_hash_map<K, V, H, E, A>& c, Predicate pred) {
538 return container_internal::EraseIf(pred, &c);
539 }
540
541 namespace container_internal {
542
543 template <class Key, class Value>
544 class NodeHashMapPolicy
545 : public absl::container_internal::node_slot_policy<
546 std::pair<const Key, Value>&, NodeHashMapPolicy<Key, Value>> {
547 using value_type = std::pair<const Key, Value>;
548
549 public:
550 using key_type = Key;
551 using mapped_type = Value;
552 using init_type = std::pair</*non const*/ key_type, mapped_type>;
553
554 template <class Allocator, class... Args>
new_element(Allocator * alloc,Args &&...args)555 static value_type* new_element(Allocator* alloc, Args&&... args) {
556 using PairAlloc = typename absl::allocator_traits<
557 Allocator>::template rebind_alloc<value_type>;
558 PairAlloc pair_alloc(*alloc);
559 value_type* res =
560 absl::allocator_traits<PairAlloc>::allocate(pair_alloc, 1);
561 absl::allocator_traits<PairAlloc>::construct(pair_alloc, res,
562 std::forward<Args>(args)...);
563 return res;
564 }
565
566 template <class Allocator>
delete_element(Allocator * alloc,value_type * pair)567 static void delete_element(Allocator* alloc, value_type* pair) {
568 using PairAlloc = typename absl::allocator_traits<
569 Allocator>::template rebind_alloc<value_type>;
570 PairAlloc pair_alloc(*alloc);
571 absl::allocator_traits<PairAlloc>::destroy(pair_alloc, pair);
572 absl::allocator_traits<PairAlloc>::deallocate(pair_alloc, pair, 1);
573 }
574
575 template <class F, class... Args>
decltype(absl::container_internal::DecomposePair (std::declval<F> (),std::declval<Args> ()...))576 static decltype(absl::container_internal::DecomposePair(
577 std::declval<F>(), std::declval<Args>()...))
578 apply(F&& f, Args&&... args) {
579 return absl::container_internal::DecomposePair(std::forward<F>(f),
580 std::forward<Args>(args)...);
581 }
582
element_space_used(const value_type *)583 static size_t element_space_used(const value_type*) {
584 return sizeof(value_type);
585 }
586
value(value_type * elem)587 static Value& value(value_type* elem) { return elem->second; }
value(const value_type * elem)588 static const Value& value(const value_type* elem) { return elem->second; }
589 };
590 } // namespace container_internal
591
592 namespace container_algorithm_internal {
593
594 // Specialization of trait in absl/algorithm/container.h
595 template <class Key, class T, class Hash, class KeyEqual, class Allocator>
596 struct IsUnorderedContainer<
597 absl::node_hash_map<Key, T, Hash, KeyEqual, Allocator>> : std::true_type {};
598
599 } // namespace container_algorithm_internal
600
601 ABSL_NAMESPACE_END
602 } // namespace absl
603
604 #endif // ABSL_CONTAINER_NODE_HASH_MAP_H_
605