1 // Copyright 2018 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 //      https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14 //
15 // -----------------------------------------------------------------------------
16 // File: fixed_array.h
17 // -----------------------------------------------------------------------------
18 //
19 // A `FixedArray<T>` represents a non-resizable array of `T` where the length of
20 // the array can be determined at run-time. It is a good replacement for
21 // non-standard and deprecated uses of `alloca()` and variable length arrays
22 // within the GCC extension. (See
23 // https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html).
24 //
25 // `FixedArray` allocates small arrays inline, keeping performance fast by
26 // avoiding heap operations. It also helps reduce the chances of
27 // accidentally overflowing your stack if large input is passed to
28 // your function.
29 
30 #ifndef ABSL_CONTAINER_FIXED_ARRAY_H_
31 #define ABSL_CONTAINER_FIXED_ARRAY_H_
32 
33 #include <algorithm>
34 #include <cassert>
35 #include <cstddef>
36 #include <initializer_list>
37 #include <iterator>
38 #include <limits>
39 #include <memory>
40 #include <new>
41 #include <type_traits>
42 
43 #include "absl/algorithm/algorithm.h"
44 #include "absl/base/config.h"
45 #include "absl/base/dynamic_annotations.h"
46 #include "absl/base/internal/throw_delegate.h"
47 #include "absl/base/macros.h"
48 #include "absl/base/optimization.h"
49 #include "absl/base/port.h"
50 #include "absl/container/internal/compressed_tuple.h"
51 #include "absl/memory/memory.h"
52 
53 namespace absl {
54 ABSL_NAMESPACE_BEGIN
55 
56 constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1);
57 
58 // -----------------------------------------------------------------------------
59 // FixedArray
60 // -----------------------------------------------------------------------------
61 //
62 // A `FixedArray` provides a run-time fixed-size array, allocating a small array
63 // inline for efficiency.
64 //
65 // Most users should not specify the `N` template parameter and let `FixedArray`
66 // automatically determine the number of elements to store inline based on
67 // `sizeof(T)`. If `N` is specified, the `FixedArray` implementation will use
68 // inline storage for arrays with a length <= `N`.
69 //
70 // Note that a `FixedArray` constructed with a `size_type` argument will
71 // default-initialize its values by leaving trivially constructible types
72 // uninitialized (e.g. int, int[4], double), and others default-constructed.
73 // This matches the behavior of c-style arrays and `std::array`, but not
74 // `std::vector`.
75 template <typename T, size_t N = kFixedArrayUseDefault,
76           typename A = std::allocator<T>>
77 class FixedArray {
78   static_assert(!std::is_array<T>::value || std::extent<T>::value > 0,
79                 "Arrays with unknown bounds cannot be used with FixedArray.");
80 
81   static constexpr size_t kInlineBytesDefault = 256;
82 
83   using AllocatorTraits = std::allocator_traits<A>;
84   // std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17,
85   // but this seems to be mostly pedantic.
86   template <typename Iterator>
87   using EnableIfForwardIterator = absl::enable_if_t<std::is_convertible<
88       typename std::iterator_traits<Iterator>::iterator_category,
89       std::forward_iterator_tag>::value>;
NoexceptCopyable()90   static constexpr bool NoexceptCopyable() {
91     return std::is_nothrow_copy_constructible<StorageElement>::value &&
92            absl::allocator_is_nothrow<allocator_type>::value;
93   }
NoexceptMovable()94   static constexpr bool NoexceptMovable() {
95     return std::is_nothrow_move_constructible<StorageElement>::value &&
96            absl::allocator_is_nothrow<allocator_type>::value;
97   }
DefaultConstructorIsNonTrivial()98   static constexpr bool DefaultConstructorIsNonTrivial() {
99     return !absl::is_trivially_default_constructible<StorageElement>::value;
100   }
101 
102  public:
103   using allocator_type = typename AllocatorTraits::allocator_type;
104   using value_type = typename AllocatorTraits::value_type;
105   using pointer = typename AllocatorTraits::pointer;
106   using const_pointer = typename AllocatorTraits::const_pointer;
107   using reference = value_type&;
108   using const_reference = const value_type&;
109   using size_type = typename AllocatorTraits::size_type;
110   using difference_type = typename AllocatorTraits::difference_type;
111   using iterator = pointer;
112   using const_iterator = const_pointer;
113   using reverse_iterator = std::reverse_iterator<iterator>;
114   using const_reverse_iterator = std::reverse_iterator<const_iterator>;
115 
116   static constexpr size_type inline_elements =
117       (N == kFixedArrayUseDefault ? kInlineBytesDefault / sizeof(value_type)
118                                   : static_cast<size_type>(N));
119 
120   FixedArray(
121       const FixedArray& other,
noexcept(NoexceptCopyable ())122       const allocator_type& a = allocator_type()) noexcept(NoexceptCopyable())
123       : FixedArray(other.begin(), other.end(), a) {}
124 
125   FixedArray(
126       FixedArray&& other,
noexcept(NoexceptMovable ())127       const allocator_type& a = allocator_type()) noexcept(NoexceptMovable())
128       : FixedArray(std::make_move_iterator(other.begin()),
129                    std::make_move_iterator(other.end()), a) {}
130 
131   // Creates an array object that can store `n` elements.
132   // Note that trivially constructible elements will be uninitialized.
133   explicit FixedArray(size_type n, const allocator_type& a = allocator_type())
storage_(n,a)134       : storage_(n, a) {
135     if (DefaultConstructorIsNonTrivial()) {
136       memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
137                                       storage_.end());
138     }
139   }
140 
141   // Creates an array initialized with `n` copies of `val`.
142   FixedArray(size_type n, const value_type& val,
143              const allocator_type& a = allocator_type())
storage_(n,a)144       : storage_(n, a) {
145     memory_internal::ConstructRange(storage_.alloc(), storage_.begin(),
146                                     storage_.end(), val);
147   }
148 
149   // Creates an array initialized with the size and contents of `init_list`.
150   FixedArray(std::initializer_list<value_type> init_list,
151              const allocator_type& a = allocator_type())
152       : FixedArray(init_list.begin(), init_list.end(), a) {}
153 
154   // Creates an array initialized with the elements from the input
155   // range. The array's size will always be `std::distance(first, last)`.
156   // REQUIRES: Iterator must be a forward_iterator or better.
157   template <typename Iterator, EnableIfForwardIterator<Iterator>* = nullptr>
158   FixedArray(Iterator first, Iterator last,
159              const allocator_type& a = allocator_type())
storage_(std::distance (first,last),a)160       : storage_(std::distance(first, last), a) {
161     memory_internal::CopyRange(storage_.alloc(), storage_.begin(), first, last);
162   }
163 
~FixedArray()164   ~FixedArray() noexcept {
165     for (auto* cur = storage_.begin(); cur != storage_.end(); ++cur) {
166       AllocatorTraits::destroy(storage_.alloc(), cur);
167     }
168   }
169 
170   // Assignments are deleted because they break the invariant that the size of a
171   // `FixedArray` never changes.
172   void operator=(FixedArray&&) = delete;
173   void operator=(const FixedArray&) = delete;
174 
175   // FixedArray::size()
176   //
177   // Returns the length of the fixed array.
size()178   size_type size() const { return storage_.size(); }
179 
180   // FixedArray::max_size()
181   //
182   // Returns the largest possible value of `std::distance(begin(), end())` for a
183   // `FixedArray<T>`. This is equivalent to the most possible addressable bytes
184   // over the number of bytes taken by T.
max_size()185   constexpr size_type max_size() const {
186     return (std::numeric_limits<difference_type>::max)() / sizeof(value_type);
187   }
188 
189   // FixedArray::empty()
190   //
191   // Returns whether or not the fixed array is empty.
empty()192   bool empty() const { return size() == 0; }
193 
194   // FixedArray::memsize()
195   //
196   // Returns the memory size of the fixed array in bytes.
memsize()197   size_t memsize() const { return size() * sizeof(value_type); }
198 
199   // FixedArray::data()
200   //
201   // Returns a const T* pointer to elements of the `FixedArray`. This pointer
202   // can be used to access (but not modify) the contained elements.
data()203   const_pointer data() const { return AsValueType(storage_.begin()); }
204 
205   // Overload of FixedArray::data() to return a T* pointer to elements of the
206   // fixed array. This pointer can be used to access and modify the contained
207   // elements.
data()208   pointer data() { return AsValueType(storage_.begin()); }
209 
210   // FixedArray::operator[]
211   //
212   // Returns a reference the ith element of the fixed array.
213   // REQUIRES: 0 <= i < size()
214   reference operator[](size_type i) {
215     ABSL_HARDENING_ASSERT(i < size());
216     return data()[i];
217   }
218 
219   // Overload of FixedArray::operator()[] to return a const reference to the
220   // ith element of the fixed array.
221   // REQUIRES: 0 <= i < size()
222   const_reference operator[](size_type i) const {
223     ABSL_HARDENING_ASSERT(i < size());
224     return data()[i];
225   }
226 
227   // FixedArray::at
228   //
229   // Bounds-checked access.  Returns a reference to the ith element of the fixed
230   // array, or throws std::out_of_range
at(size_type i)231   reference at(size_type i) {
232     if (ABSL_PREDICT_FALSE(i >= size())) {
233       base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
234     }
235     return data()[i];
236   }
237 
238   // Overload of FixedArray::at() to return a const reference to the ith element
239   // of the fixed array.
at(size_type i)240   const_reference at(size_type i) const {
241     if (ABSL_PREDICT_FALSE(i >= size())) {
242       base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check");
243     }
244     return data()[i];
245   }
246 
247   // FixedArray::front()
248   //
249   // Returns a reference to the first element of the fixed array.
front()250   reference front() {
251     ABSL_HARDENING_ASSERT(!empty());
252     return data()[0];
253   }
254 
255   // Overload of FixedArray::front() to return a reference to the first element
256   // of a fixed array of const values.
front()257   const_reference front() const {
258     ABSL_HARDENING_ASSERT(!empty());
259     return data()[0];
260   }
261 
262   // FixedArray::back()
263   //
264   // Returns a reference to the last element of the fixed array.
back()265   reference back() {
266     ABSL_HARDENING_ASSERT(!empty());
267     return data()[size() - 1];
268   }
269 
270   // Overload of FixedArray::back() to return a reference to the last element
271   // of a fixed array of const values.
back()272   const_reference back() const {
273     ABSL_HARDENING_ASSERT(!empty());
274     return data()[size() - 1];
275   }
276 
277   // FixedArray::begin()
278   //
279   // Returns an iterator to the beginning of the fixed array.
begin()280   iterator begin() { return data(); }
281 
282   // Overload of FixedArray::begin() to return a const iterator to the
283   // beginning of the fixed array.
begin()284   const_iterator begin() const { return data(); }
285 
286   // FixedArray::cbegin()
287   //
288   // Returns a const iterator to the beginning of the fixed array.
cbegin()289   const_iterator cbegin() const { return begin(); }
290 
291   // FixedArray::end()
292   //
293   // Returns an iterator to the end of the fixed array.
end()294   iterator end() { return data() + size(); }
295 
296   // Overload of FixedArray::end() to return a const iterator to the end of the
297   // fixed array.
end()298   const_iterator end() const { return data() + size(); }
299 
300   // FixedArray::cend()
301   //
302   // Returns a const iterator to the end of the fixed array.
cend()303   const_iterator cend() const { return end(); }
304 
305   // FixedArray::rbegin()
306   //
307   // Returns a reverse iterator from the end of the fixed array.
rbegin()308   reverse_iterator rbegin() { return reverse_iterator(end()); }
309 
310   // Overload of FixedArray::rbegin() to return a const reverse iterator from
311   // the end of the fixed array.
rbegin()312   const_reverse_iterator rbegin() const {
313     return const_reverse_iterator(end());
314   }
315 
316   // FixedArray::crbegin()
317   //
318   // Returns a const reverse iterator from the end of the fixed array.
crbegin()319   const_reverse_iterator crbegin() const { return rbegin(); }
320 
321   // FixedArray::rend()
322   //
323   // Returns a reverse iterator from the beginning of the fixed array.
rend()324   reverse_iterator rend() { return reverse_iterator(begin()); }
325 
326   // Overload of FixedArray::rend() for returning a const reverse iterator
327   // from the beginning of the fixed array.
rend()328   const_reverse_iterator rend() const {
329     return const_reverse_iterator(begin());
330   }
331 
332   // FixedArray::crend()
333   //
334   // Returns a reverse iterator from the beginning of the fixed array.
crend()335   const_reverse_iterator crend() const { return rend(); }
336 
337   // FixedArray::fill()
338   //
339   // Assigns the given `value` to all elements in the fixed array.
fill(const value_type & val)340   void fill(const value_type& val) { std::fill(begin(), end(), val); }
341 
342   // Relational operators. Equality operators are elementwise using
343   // `operator==`, while order operators order FixedArrays lexicographically.
344   friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) {
345     return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end());
346   }
347 
348   friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) {
349     return !(lhs == rhs);
350   }
351 
352   friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) {
353     return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(),
354                                         rhs.end());
355   }
356 
357   friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) {
358     return rhs < lhs;
359   }
360 
361   friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) {
362     return !(rhs < lhs);
363   }
364 
365   friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) {
366     return !(lhs < rhs);
367   }
368 
369   template <typename H>
AbslHashValue(H h,const FixedArray & v)370   friend H AbslHashValue(H h, const FixedArray& v) {
371     return H::combine(H::combine_contiguous(std::move(h), v.data(), v.size()),
372                       v.size());
373   }
374 
375  private:
376   // StorageElement
377   //
378   // For FixedArrays with a C-style-array value_type, StorageElement is a POD
379   // wrapper struct called StorageElementWrapper that holds the value_type
380   // instance inside. This is needed for construction and destruction of the
381   // entire array regardless of how many dimensions it has. For all other cases,
382   // StorageElement is just an alias of value_type.
383   //
384   // Maintainer's Note: The simpler solution would be to simply wrap value_type
385   // in a struct whether it's an array or not. That causes some paranoid
386   // diagnostics to misfire, believing that 'data()' returns a pointer to a
387   // single element, rather than the packed array that it really is.
388   // e.g.:
389   //
390   //     FixedArray<char> buf(1);
391   //     sprintf(buf.data(), "foo");
392   //
393   //     error: call to int __builtin___sprintf_chk(etc...)
394   //     will always overflow destination buffer [-Werror]
395   //
396   template <typename OuterT, typename InnerT = absl::remove_extent_t<OuterT>,
397             size_t InnerN = std::extent<OuterT>::value>
398   struct StorageElementWrapper {
399     InnerT array[InnerN];
400   };
401 
402   using StorageElement =
403       absl::conditional_t<std::is_array<value_type>::value,
404                           StorageElementWrapper<value_type>, value_type>;
405 
AsValueType(pointer ptr)406   static pointer AsValueType(pointer ptr) { return ptr; }
AsValueType(StorageElementWrapper<value_type> * ptr)407   static pointer AsValueType(StorageElementWrapper<value_type>* ptr) {
408     return std::addressof(ptr->array);
409   }
410 
411   static_assert(sizeof(StorageElement) == sizeof(value_type), "");
412   static_assert(alignof(StorageElement) == alignof(value_type), "");
413 
414   class NonEmptyInlinedStorage {
415    public:
data()416     StorageElement* data() { return reinterpret_cast<StorageElement*>(buff_); }
417     void AnnotateConstruct(size_type n);
418     void AnnotateDestruct(size_type n);
419 
420 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
RedzoneBegin()421     void* RedzoneBegin() { return &redzone_begin_; }
RedzoneEnd()422     void* RedzoneEnd() { return &redzone_end_ + 1; }
423 #endif  // ABSL_HAVE_ADDRESS_SANITIZER
424 
425    private:
426     ABSL_ADDRESS_SANITIZER_REDZONE(redzone_begin_);
427     alignas(StorageElement) char buff_[sizeof(StorageElement[inline_elements])];
428     ABSL_ADDRESS_SANITIZER_REDZONE(redzone_end_);
429   };
430 
431   class EmptyInlinedStorage {
432    public:
data()433     StorageElement* data() { return nullptr; }
AnnotateConstruct(size_type)434     void AnnotateConstruct(size_type) {}
AnnotateDestruct(size_type)435     void AnnotateDestruct(size_type) {}
436   };
437 
438   using InlinedStorage =
439       absl::conditional_t<inline_elements == 0, EmptyInlinedStorage,
440                           NonEmptyInlinedStorage>;
441 
442   // Storage
443   //
444   // An instance of Storage manages the inline and out-of-line memory for
445   // instances of FixedArray. This guarantees that even when construction of
446   // individual elements fails in the FixedArray constructor body, the
447   // destructor for Storage will still be called and out-of-line memory will be
448   // properly deallocated.
449   //
450   class Storage : public InlinedStorage {
451    public:
Storage(size_type n,const allocator_type & a)452     Storage(size_type n, const allocator_type& a)
453         : size_alloc_(n, a), data_(InitializeData()) {}
454 
~Storage()455     ~Storage() noexcept {
456       if (UsingInlinedStorage(size())) {
457         InlinedStorage::AnnotateDestruct(size());
458       } else {
459         AllocatorTraits::deallocate(alloc(), AsValueType(begin()), size());
460       }
461     }
462 
size()463     size_type size() const { return size_alloc_.template get<0>(); }
begin()464     StorageElement* begin() const { return data_; }
end()465     StorageElement* end() const { return begin() + size(); }
alloc()466     allocator_type& alloc() { return size_alloc_.template get<1>(); }
467 
468    private:
UsingInlinedStorage(size_type n)469     static bool UsingInlinedStorage(size_type n) {
470       return n <= inline_elements;
471     }
472 
473 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
474     ABSL_ATTRIBUTE_NOINLINE
475 #endif  // ABSL_HAVE_ADDRESS_SANITIZER
InitializeData()476     StorageElement* InitializeData() {
477       if (UsingInlinedStorage(size())) {
478         InlinedStorage::AnnotateConstruct(size());
479         return InlinedStorage::data();
480       } else {
481         return reinterpret_cast<StorageElement*>(
482             AllocatorTraits::allocate(alloc(), size()));
483       }
484     }
485 
486     // `CompressedTuple` takes advantage of EBCO for stateless `allocator_type`s
487     container_internal::CompressedTuple<size_type, allocator_type> size_alloc_;
488     StorageElement* data_;
489   };
490 
491   Storage storage_;
492 };
493 
494 #ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
495 template <typename T, size_t N, typename A>
496 constexpr size_t FixedArray<T, N, A>::kInlineBytesDefault;
497 
498 template <typename T, size_t N, typename A>
499 constexpr typename FixedArray<T, N, A>::size_type
500     FixedArray<T, N, A>::inline_elements;
501 #endif
502 
503 template <typename T, size_t N, typename A>
AnnotateConstruct(typename FixedArray<T,N,A>::size_type n)504 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateConstruct(
505     typename FixedArray<T, N, A>::size_type n) {
506 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
507   if (!n) return;
508   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), RedzoneEnd(),
509                                      data() + n);
510   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), data(),
511                                      RedzoneBegin());
512 #endif  // ABSL_HAVE_ADDRESS_SANITIZER
513   static_cast<void>(n);  // Mark used when not in asan mode
514 }
515 
516 template <typename T, size_t N, typename A>
AnnotateDestruct(typename FixedArray<T,N,A>::size_type n)517 void FixedArray<T, N, A>::NonEmptyInlinedStorage::AnnotateDestruct(
518     typename FixedArray<T, N, A>::size_type n) {
519 #ifdef ABSL_HAVE_ADDRESS_SANITIZER
520   if (!n) return;
521   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(data(), RedzoneEnd(), data() + n,
522                                      RedzoneEnd());
523   ABSL_ANNOTATE_CONTIGUOUS_CONTAINER(RedzoneBegin(), data(), RedzoneBegin(),
524                                      data());
525 #endif  // ABSL_HAVE_ADDRESS_SANITIZER
526   static_cast<void>(n);  // Mark used when not in asan mode
527 }
528 ABSL_NAMESPACE_END
529 }  // namespace absl
530 
531 #endif  // ABSL_CONTAINER_FIXED_ARRAY_H_
532