xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_vgg16.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
25 #include "support/ToolchainSupport.h"
26 #include "utils/CommonGraphOptions.h"
27 #include "utils/GraphUtils.h"
28 #include "utils/Utils.h"
29 
30 using namespace arm_compute::utils;
31 using namespace arm_compute::graph::frontend;
32 using namespace arm_compute::graph_utils;
33 
34 /** Example demonstrating how to implement VGG16's network using the Compute Library's graph API */
35 class GraphVGG16Example : public Example
36 {
37 public:
GraphVGG16Example()38     GraphVGG16Example()
39         : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "VGG16")
40     {
41     }
do_setup(int argc,char ** argv)42     bool do_setup(int argc, char **argv) override
43     {
44         // Parse arguments
45         cmd_parser.parse(argc, argv);
46         cmd_parser.validate();
47 
48         // Consume common parameters
49         common_params = consume_common_graph_parameters(common_opts);
50 
51         // Return when help menu is requested
52         if(common_params.help)
53         {
54             cmd_parser.print_help(argv[0]);
55             return false;
56         }
57 
58         // Print parameter values
59         std::cout << common_params << std::endl;
60 
61         // Get trainable parameters data path
62         std::string data_path = common_params.data_path;
63 
64         // Create a preprocessor object
65         const std::array<float, 3> mean_rgb{ { 123.68f, 116.779f, 103.939f } };
66         std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<CaffePreproccessor>(mean_rgb);
67 
68         // Create input descriptor
69         const auto        operation_layout = common_params.data_layout;
70         const TensorShape tensor_shape     = permute_shape(TensorShape(224U, 224U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
71         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
72 
73         // Set weights trained layout
74         const DataLayout weights_layout = DataLayout::NCHW;
75 
76         // Create graph
77         graph << common_params.target
78               << common_params.fast_math_hint
79               << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
80               // Layer 1
81               << ConvolutionLayer(
82                   3U, 3U, 64U,
83                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv1_1_w.npy", weights_layout),
84                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv1_1_b.npy"),
85                   PadStrideInfo(1, 1, 1, 1))
86               .set_name("conv1_1")
87               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_1/Relu")
88               // Layer 2
89               << ConvolutionLayer(
90                   3U, 3U, 64U,
91                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv1_2_w.npy", weights_layout),
92                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv1_2_b.npy"),
93                   PadStrideInfo(1, 1, 1, 1))
94               .set_name("conv1_2")
95               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1_2/Relu")
96               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
97               // Layer 3
98               << ConvolutionLayer(
99                   3U, 3U, 128U,
100                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv2_1_w.npy", weights_layout),
101                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv2_1_b.npy"),
102                   PadStrideInfo(1, 1, 1, 1))
103               .set_name("conv2_1")
104               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_1/Relu")
105               // Layer 4
106               << ConvolutionLayer(
107                   3U, 3U, 128U,
108                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv2_2_w.npy", weights_layout),
109                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv2_2_b.npy"),
110                   PadStrideInfo(1, 1, 1, 1))
111               .set_name("conv2_2")
112               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2_2/Relu")
113               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
114               // Layer 5
115               << ConvolutionLayer(
116                   3U, 3U, 256U,
117                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_1_w.npy", weights_layout),
118                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_1_b.npy"),
119                   PadStrideInfo(1, 1, 1, 1))
120               .set_name("conv3_1")
121               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_1/Relu")
122               // Layer 6
123               << ConvolutionLayer(
124                   3U, 3U, 256U,
125                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_2_w.npy", weights_layout),
126                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_2_b.npy"),
127                   PadStrideInfo(1, 1, 1, 1))
128               .set_name("conv3_2")
129               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_2/Relu")
130               // Layer 7
131               << ConvolutionLayer(
132                   3U, 3U, 256U,
133                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_3_w.npy", weights_layout),
134                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv3_3_b.npy"),
135                   PadStrideInfo(1, 1, 1, 1))
136               .set_name("conv3_3")
137               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3_3/Relu")
138               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool3")
139               // Layer 8
140               << ConvolutionLayer(
141                   3U, 3U, 512U,
142                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_1_w.npy", weights_layout),
143                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_1_b.npy"),
144                   PadStrideInfo(1, 1, 1, 1))
145               .set_name("conv4_1")
146               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_1/Relu")
147               // Layer 9
148               << ConvolutionLayer(
149                   3U, 3U, 512U,
150                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_2_w.npy", weights_layout),
151                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_2_b.npy"),
152                   PadStrideInfo(1, 1, 1, 1))
153               .set_name("conv4_2")
154               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_2/Relu")
155               // Layer 10
156               << ConvolutionLayer(
157                   3U, 3U, 512U,
158                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_3_w.npy", weights_layout),
159                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv4_3_b.npy"),
160                   PadStrideInfo(1, 1, 1, 1))
161               .set_name("conv4_3")
162               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv4_3/Relu")
163               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool4")
164               // Layer 11
165               << ConvolutionLayer(
166                   3U, 3U, 512U,
167                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_1_w.npy", weights_layout),
168                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_1_b.npy"),
169                   PadStrideInfo(1, 1, 1, 1))
170               .set_name("conv5_1")
171               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_1/Relu")
172               // Layer 12
173               << ConvolutionLayer(
174                   3U, 3U, 512U,
175                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_2_w.npy", weights_layout),
176                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_2_b.npy"),
177                   PadStrideInfo(1, 1, 1, 1))
178               .set_name("conv5_2")
179               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_2/Relu")
180               // Layer 13
181               << ConvolutionLayer(
182                   3U, 3U, 512U,
183                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_3_w.npy", weights_layout),
184                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/conv5_3_b.npy"),
185                   PadStrideInfo(1, 1, 1, 1))
186               .set_name("conv5_3")
187               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv5_3/Relu")
188               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, operation_layout, PadStrideInfo(2, 2, 0, 0))).set_name("pool5")
189               // Layer 14
190               << FullyConnectedLayer(
191                   4096U,
192                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc6_w.npy", weights_layout),
193                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc6_b.npy"))
194               .set_name("fc6")
195               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Relu")
196               // Layer 15
197               << FullyConnectedLayer(
198                   4096U,
199                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc7_w.npy", weights_layout),
200                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc7_b.npy"))
201               .set_name("fc7")
202               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Relu_1")
203               // Layer 16
204               << FullyConnectedLayer(
205                   1000U,
206                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc8_w.npy", weights_layout),
207                   get_weights_accessor(data_path, "/cnn_data/vgg16_model/fc8_b.npy"))
208               .set_name("fc8")
209               // Softmax
210               << SoftmaxLayer().set_name("prob")
211               << OutputLayer(get_output_accessor(common_params, 5));
212 
213         // Finalize graph
214         GraphConfig config;
215         config.num_threads        = common_params.threads;
216         config.use_tuner          = common_params.enable_tuner;
217         config.tuner_mode         = common_params.tuner_mode;
218         config.tuner_file         = common_params.tuner_file;
219         config.mlgo_file          = common_params.mlgo_file;
220         config.use_synthetic_type = arm_compute::is_data_type_quantized(common_params.data_type);
221         config.synthetic_type     = common_params.data_type;
222 
223         graph.finalize(common_params.target, config);
224 
225         return true;
226     }
do_run()227     void do_run() override
228     {
229         // Run graph
230         graph.run();
231     }
232 
233 private:
234     CommandLineParser  cmd_parser;
235     CommonGraphOptions common_opts;
236     CommonGraphParams  common_params;
237     Stream             graph;
238 };
239 
240 /** Main program for VGG16
241  *
242  * Model is based on:
243  *      https://arxiv.org/abs/1409.1556
244  *      "Very Deep Convolutional Networks for Large-Scale Image Recognition"
245  *      Karen Simonyan, Andrew Zisserman
246  *
247  * Provenance: www.robots.ox.ac.uk/~vgg/software/very_deep/caffe/VGG_ILSVRC_16_layers.caffemodel
248  *
249  * @note To list all the possible arguments execute the binary appended with the --help option
250  *
251  * @param[in] argc Number of arguments
252  * @param[in] argv Arguments
253  */
main(int argc,char ** argv)254 int main(int argc, char **argv)
255 {
256     return arm_compute::utils::run_example<GraphVGG16Example>(argc, argv);
257 }
258