xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_srcnn955.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
25 #include "support/ToolchainSupport.h"
26 #include "utils/CommonGraphOptions.h"
27 #include "utils/GraphUtils.h"
28 #include "utils/Utils.h"
29 
30 using namespace arm_compute::utils;
31 using namespace arm_compute::graph::frontend;
32 using namespace arm_compute::graph_utils;
33 
34 /** Example demonstrating how to implement SRCNN 9-5-5 network using the Compute Library's graph API */
35 class GraphSRCNN955Example : public Example
36 {
37 public:
GraphSRCNN955Example()38     GraphSRCNN955Example()
39         : cmd_parser(), common_opts(cmd_parser), model_input_width(nullptr), model_input_height(nullptr), common_params(), graph(0, "SRCNN955")
40     {
41         model_input_width  = cmd_parser.add_option<SimpleOption<unsigned int>>("image-width", 300);
42         model_input_height = cmd_parser.add_option<SimpleOption<unsigned int>>("image-height", 300);
43 
44         // Add model id option
45         model_input_width->set_help("Input image width.");
46         model_input_height->set_help("Input image height.");
47     }
48     GraphSRCNN955Example(const GraphSRCNN955Example &) = delete;
49     GraphSRCNN955Example &operator=(const GraphSRCNN955Example &) = delete;
50     ~GraphSRCNN955Example() override                              = default;
do_setup(int argc,char ** argv)51     bool do_setup(int argc, char **argv) override
52     {
53         // Parse arguments
54         cmd_parser.parse(argc, argv);
55         cmd_parser.validate();
56 
57         // Consume common parameters
58         common_params = consume_common_graph_parameters(common_opts);
59 
60         // Return when help menu is requested
61         if(common_params.help)
62         {
63             cmd_parser.print_help(argv[0]);
64             return false;
65         }
66 
67         // Get input image width and height
68         const unsigned int image_width  = model_input_width->value();
69         const unsigned int image_height = model_input_height->value();
70 
71         // Print parameter values
72         std::cout << common_params << std::endl;
73         std::cout << "Image width: " << image_width << std::endl;
74         std::cout << "Image height: " << image_height << std::endl;
75 
76         // Get trainable parameters data path
77         const std::string data_path  = common_params.data_path;
78         const std::string model_path = "/cnn_data/srcnn955_model/";
79 
80         // Create a preprocessor object
81         std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<TFPreproccessor>();
82 
83         // Create input descriptor
84         const TensorShape tensor_shape     = permute_shape(TensorShape(image_width, image_height, 3U, common_params.batches), DataLayout::NCHW, common_params.data_layout);
85         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
86 
87         // Set weights trained layout
88         const DataLayout weights_layout = DataLayout::NCHW;
89 
90         graph << common_params.target
91               << common_params.fast_math_hint
92               << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false /* Do not convert to BGR */))
93               << ConvolutionLayer(
94                   9U, 9U, 64U,
95                   get_weights_accessor(data_path, "conv1_weights.npy", weights_layout),
96                   get_weights_accessor(data_path, "conv1_biases.npy"),
97                   PadStrideInfo(1, 1, 4, 4))
98               .set_name("conv1/convolution")
99               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1/Relu")
100               << ConvolutionLayer(
101                   5U, 5U, 32U,
102                   get_weights_accessor(data_path, "conv2_weights.npy", weights_layout),
103                   get_weights_accessor(data_path, "conv2_biases.npy"),
104                   PadStrideInfo(1, 1, 2, 2))
105               .set_name("conv2/convolution")
106               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv2/Relu")
107               << ConvolutionLayer(
108                   5U, 5U, 3U,
109                   get_weights_accessor(data_path, "conv3_weights.npy", weights_layout),
110                   get_weights_accessor(data_path, "conv3_biases.npy"),
111                   PadStrideInfo(1, 1, 2, 2))
112               .set_name("conv3/convolution")
113               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv3/Relu")
114               << OutputLayer(std::make_unique<DummyAccessor>(0));
115 
116         // Finalize graph
117         GraphConfig config;
118         config.num_threads        = common_params.threads;
119         config.use_tuner          = common_params.enable_tuner;
120         config.tuner_mode         = common_params.tuner_mode;
121         config.tuner_file         = common_params.tuner_file;
122         config.mlgo_file          = common_params.mlgo_file;
123         config.use_synthetic_type = arm_compute::is_data_type_quantized(common_params.data_type);
124         config.synthetic_type     = common_params.data_type;
125 
126         graph.finalize(common_params.target, config);
127 
128         return true;
129     }
130 
do_run()131     void do_run() override
132     {
133         // Run graph
134         graph.run();
135     }
136 
137 private:
138     CommandLineParser           cmd_parser;
139     CommonGraphOptions          common_opts;
140     SimpleOption<unsigned int> *model_input_width{ nullptr };
141     SimpleOption<unsigned int> *model_input_height{ nullptr };
142     CommonGraphParams           common_params;
143     Stream                      graph;
144 };
145 
146 /** Main program for SRCNN 9-5-5
147  *
148  * Model is based on:
149  *      http://mmlab.ie.cuhk.edu.hk/projects/SRCNN.html
150  *      "Image Super-Resolution Using Deep Convolutional Networks"
151  *      Chao Dong, Chen Change Loy, Kaiming He, Xiaoou Tang
152  *
153  * @note To list all the possible arguments execute the binary appended with the --help option
154  *
155  * @param[in] argc Number of arguments
156  * @param[in] argv Arguments
157  */
main(int argc,char ** argv)158 int main(int argc, char **argv)
159 {
160     return arm_compute::utils::run_example<GraphSRCNN955Example>(argc, argv);
161 }
162