xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_shufflenet.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
25 #include "support/ToolchainSupport.h"
26 #include "utils/CommonGraphOptions.h"
27 #include "utils/GraphUtils.h"
28 #include "utils/Utils.h"
29 
30 using namespace arm_compute::utils;
31 using namespace arm_compute::graph::frontend;
32 using namespace arm_compute::graph_utils;
33 
34 /** Example demonstrating how to implement ShuffleNet network using the Compute Library's graph API */
35 class ShuffleNetExample : public Example
36 {
37 public:
ShuffleNetExample()38     ShuffleNetExample()
39         : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "ShuffleNet")
40     {
41     }
do_setup(int argc,char ** argv)42     bool do_setup(int argc, char **argv) override
43     {
44         // Parse arguments
45         cmd_parser.parse(argc, argv);
46         cmd_parser.validate();
47 
48         // Consume common parameters
49         common_params = consume_common_graph_parameters(common_opts);
50 
51         // Return when help menu is requested
52         if(common_params.help)
53         {
54             cmd_parser.print_help(argv[0]);
55             return false;
56         }
57 
58         // Set default layout if needed (Single kernel grouped convolution not yet supported int NHWC)
59         if(!common_opts.data_layout->is_set())
60         {
61             common_params.data_layout = DataLayout::NHWC;
62         }
63 
64         // Checks
65         ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
66 
67         // Print parameter values
68         std::cout << common_params << std::endl;
69         std::cout << "Model: Shufflenet_1_g4" << std::endl;
70 
71         // Create model path
72         std::string model_path = "/cnn_data/shufflenet_model/";
73 
74         // Get trainable parameters data path
75         std::string data_path = common_params.data_path;
76 
77         // Add model path to data path
78         if(!data_path.empty())
79         {
80             data_path += model_path;
81         }
82 
83         // Create input descriptor
84         const auto        operation_layout = common_params.data_layout;
85         const TensorShape tensor_shape     = permute_shape(TensorShape(224U, 224U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
86         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
87 
88         // Set weights trained layout
89         const DataLayout weights_layout = DataLayout::NCHW;
90 
91         // Create preprocessor
92         std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<TFPreproccessor>(0);
93 
94         graph << common_params.target
95               << common_params.fast_math_hint
96               << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false /* Do not convert to BGR */))
97               << ConvolutionLayer(
98                   3U, 3U, 24U,
99                   get_weights_accessor(data_path, "conv3_0_w_0.npy", weights_layout),
100                   get_weights_accessor(data_path, "conv3_0_b_0.npy", weights_layout),
101                   PadStrideInfo(2, 2, 1, 1))
102               .set_name("Conv1/convolution")
103               << BatchNormalizationLayer(
104                   get_weights_accessor(data_path, "conv3_0_bn_rm_0.npy"),
105                   get_weights_accessor(data_path, "conv3_0_bn_riv_0.npy"),
106                   get_weights_accessor(data_path, "conv3_0_bn_s_0.npy"),
107                   get_weights_accessor(data_path, "conv3_0_bn_b_0.npy"),
108                   1e-5f)
109               .set_name("Conv1/BatchNorm")
110               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("Conv1/Relu")
111               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 1, 1))).set_name("pool1/MaxPool");
112 
113         // Stage 2
114         add_residual_block(data_path, DataLayout::NCHW, 0U /* unit */, 112U /* depth */, 2U /* stride */);
115         add_residual_block(data_path, DataLayout::NCHW, 1U /* unit */, 136U /* depth */, 1U /* stride */);
116         add_residual_block(data_path, DataLayout::NCHW, 2U /* unit */, 136U /* depth */, 1U /* stride */);
117         add_residual_block(data_path, DataLayout::NCHW, 3U /* unit */, 136U /* depth */, 1U /* stride */);
118 
119         // Stage 3
120         add_residual_block(data_path, DataLayout::NCHW, 4U /* unit */, 136U /* depth */, 2U /* stride */);
121         add_residual_block(data_path, DataLayout::NCHW, 5U /* unit */, 272U /* depth */, 1U /* stride */);
122         add_residual_block(data_path, DataLayout::NCHW, 6U /* unit */, 272U /* depth */, 1U /* stride */);
123         add_residual_block(data_path, DataLayout::NCHW, 7U /* unit */, 272U /* depth */, 1U /* stride */);
124         add_residual_block(data_path, DataLayout::NCHW, 8U /* unit */, 272U /* depth */, 1U /* stride */);
125         add_residual_block(data_path, DataLayout::NCHW, 9U /* unit */, 272U /* depth */, 1U /* stride */);
126         add_residual_block(data_path, DataLayout::NCHW, 10U /* unit */, 272U /* depth */, 1U /* stride */);
127         add_residual_block(data_path, DataLayout::NCHW, 11U /* unit */, 272U /* depth */, 1U /* stride */);
128 
129         // Stage 4
130         add_residual_block(data_path, DataLayout::NCHW, 12U /* unit */, 272U /* depth */, 2U /* stride */);
131         add_residual_block(data_path, DataLayout::NCHW, 13U /* unit */, 544U /* depth */, 1U /* stride */);
132         add_residual_block(data_path, DataLayout::NCHW, 14U /* unit */, 544U /* depth */, 1U /* stride */);
133         add_residual_block(data_path, DataLayout::NCHW, 15U /* unit */, 544U /* depth */, 1U /* stride */);
134 
135         graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, operation_layout)).set_name("predictions/AvgPool")
136               << FlattenLayer().set_name("predictions/Reshape")
137               << FullyConnectedLayer(
138                   1000U,
139                   get_weights_accessor(data_path, "pred_w_0.npy", weights_layout),
140                   get_weights_accessor(data_path, "pred_b_0.npy"))
141               .set_name("predictions/FC")
142               << SoftmaxLayer().set_name("predictions/Softmax")
143               << OutputLayer(get_output_accessor(common_params, 5));
144 
145         // Finalize graph
146         GraphConfig config;
147         config.num_threads = common_params.threads;
148         config.use_tuner   = common_params.enable_tuner;
149         config.tuner_mode  = common_params.tuner_mode;
150         config.tuner_file  = common_params.tuner_file;
151         config.mlgo_file   = common_params.mlgo_file;
152 
153         graph.finalize(common_params.target, config);
154 
155         return true;
156     }
157 
do_run()158     void do_run() override
159     {
160         // Run graph
161         graph.run();
162     }
163 
164 private:
165     CommandLineParser  cmd_parser;
166     CommonGraphOptions common_opts;
167     CommonGraphParams  common_params;
168     Stream             graph;
169 
add_residual_block(const std::string & data_path,DataLayout weights_layout,unsigned int unit,unsigned int depth,unsigned int stride)170     void add_residual_block(const std::string &data_path, DataLayout weights_layout,
171                             unsigned int unit, unsigned int depth, unsigned int stride)
172     {
173         PadStrideInfo      dwc_info        = PadStrideInfo(1, 1, 1, 1);
174         const unsigned int gconv_id        = unit * 2;
175         const unsigned int num_groups      = 4;
176         const std::string  unit_id_name    = arm_compute::support::cpp11::to_string(unit);
177         const std::string  gconv_id_name   = arm_compute::support::cpp11::to_string(gconv_id);
178         const std::string  gconv_id_1_name = arm_compute::support::cpp11::to_string(gconv_id + 1);
179         const std::string  unit_name       = "unit" + unit_id_name;
180 
181         SubStream left_ss(graph);
182         SubStream right_ss(graph);
183 
184         if(stride == 2)
185         {
186             right_ss << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 3, common_params.data_layout, PadStrideInfo(2, 2, 1, 1))).set_name(unit_name + "/pool_1/AveragePool");
187             dwc_info = PadStrideInfo(2, 2, 1, 1);
188         }
189 
190         left_ss << ConvolutionLayer(
191                     1U, 1U, depth,
192                     get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_w_0.npy", weights_layout),
193                     std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
194                     PadStrideInfo(1, 1, 0, 0), num_groups)
195                 .set_name(unit_name + "/gconv1_" + gconv_id_name + "/convolution")
196                 << BatchNormalizationLayer(
197                     get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_rm_0.npy"),
198                     get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_riv_0.npy"),
199                     get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_s_0.npy"),
200                     get_weights_accessor(data_path, "gconv1_" + gconv_id_name + "_bn_b_0.npy"),
201                     1e-5f)
202                 .set_name(unit_name + "/gconv1_" + gconv_id_name + "/BatchNorm")
203                 << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "/gconv1_" + gconv_id_name + "/Relu")
204                 << ChannelShuffleLayer(num_groups).set_name(unit_name + "/shuffle_0/ChannelShufle")
205                 << DepthwiseConvolutionLayer(
206                     3U, 3U,
207                     get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_w_0.npy", weights_layout),
208                     std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
209                     dwc_info)
210                 .set_name(unit_name + "/gconv3_" + unit_id_name + "/depthwise")
211                 << BatchNormalizationLayer(
212                     get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_rm_0.npy"),
213                     get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_riv_0.npy"),
214                     get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_s_0.npy"),
215                     get_weights_accessor(data_path, "gconv3_" + unit_id_name + "_bn_b_0.npy"),
216                     1e-5f)
217                 .set_name(unit_name + "/gconv3_" + unit_id_name + "/BatchNorm")
218                 << ConvolutionLayer(
219                     1U, 1U, depth,
220                     get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_w_0.npy", weights_layout),
221                     std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
222                     PadStrideInfo(1, 1, 0, 0), num_groups)
223                 .set_name(unit_name + "/gconv1_" + gconv_id_1_name + "/convolution")
224                 << BatchNormalizationLayer(
225                     get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_rm_0.npy"),
226                     get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_riv_0.npy"),
227                     get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_s_0.npy"),
228                     get_weights_accessor(data_path, "gconv1_" + gconv_id_1_name + "_bn_b_0.npy"),
229                     1e-5f)
230                 .set_name(unit_name + "/gconv1_" + gconv_id_1_name + "/BatchNorm");
231 
232         if(stride == 2)
233         {
234             graph << ConcatLayer(std::move(left_ss), std::move(right_ss)).set_name(unit_name + "/Concat");
235         }
236         else
237         {
238             graph << EltwiseLayer(std::move(left_ss), std::move(right_ss), EltwiseOperation::Add).set_name(unit_name + "/Add");
239         }
240         graph << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "/Relu");
241     }
242 };
243 
244 /** Main program for ShuffleNet
245  *
246  * Model is based on:
247  *      https://arxiv.org/abs/1707.01083
248  *      "ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices"
249  *      Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, Jian Sun
250  *
251  * Provenance: https://s3.amazonaws.com/download.onnx/models/opset_9/shufflenet.tar.gz
252  *
253  * @note To list all the possible arguments execute the binary appended with the --help option
254  *
255  * @param[in] argc Number of arguments
256  * @param[in] argv Arguments
257  */
main(int argc,char ** argv)258 int main(int argc, char **argv)
259 {
260     return arm_compute::utils::run_example<ShuffleNetExample>(argc, argv);
261 }
262