xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_resnet50.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2017-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
25 #include "support/ToolchainSupport.h"
26 #include "utils/CommonGraphOptions.h"
27 #include "utils/GraphUtils.h"
28 #include "utils/Utils.h"
29 
30 using namespace arm_compute::utils;
31 using namespace arm_compute::graph::frontend;
32 using namespace arm_compute::graph_utils;
33 
34 /** Example demonstrating how to implement ResNetV1_50 network using the Compute Library's graph API */
35 class GraphResNetV1_50Example : public Example
36 {
37 public:
GraphResNetV1_50Example()38     GraphResNetV1_50Example()
39         : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "ResNetV1_50")
40     {
41     }
do_setup(int argc,char ** argv)42     bool do_setup(int argc, char **argv) override
43     {
44         // Parse arguments
45         cmd_parser.parse(argc, argv);
46         cmd_parser.validate();
47 
48         // Consume common parameters
49         common_params = consume_common_graph_parameters(common_opts);
50 
51         // Return when help menu is requested
52         if(common_params.help)
53         {
54             cmd_parser.print_help(argv[0]);
55             return false;
56         }
57 
58         // Print parameter values
59         std::cout << common_params << std::endl;
60 
61         // Get trainable parameters data path
62         std::string data_path = common_params.data_path;
63 
64         // Create a preprocessor object
65         const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
66         std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<CaffePreproccessor>(mean_rgb,
67                                                                                            false /* Do not convert to BGR */);
68 
69         // Create input descriptor
70         const auto        operation_layout = common_params.data_layout;
71         const TensorShape tensor_shape     = permute_shape(TensorShape(224U, 224U, 3U, common_params.batches), DataLayout::NCHW, operation_layout);
72         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(operation_layout);
73 
74         // Set weights trained layout
75         const DataLayout weights_layout = DataLayout::NCHW;
76 
77         graph << common_params.target
78               << common_params.fast_math_hint
79               << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false /* Do not convert to BGR */))
80               << ConvolutionLayer(
81                   7U, 7U, 64U,
82                   get_weights_accessor(data_path, "/cnn_data/resnet50_model/conv1_weights.npy", weights_layout),
83                   std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
84                   PadStrideInfo(2, 2, 3, 3))
85               .set_name("conv1/convolution")
86               << BatchNormalizationLayer(
87                   get_weights_accessor(data_path, "/cnn_data/resnet50_model/conv1_BatchNorm_moving_mean.npy"),
88                   get_weights_accessor(data_path, "/cnn_data/resnet50_model/conv1_BatchNorm_moving_variance.npy"),
89                   get_weights_accessor(data_path, "/cnn_data/resnet50_model/conv1_BatchNorm_gamma.npy"),
90                   get_weights_accessor(data_path, "/cnn_data/resnet50_model/conv1_BatchNorm_beta.npy"),
91                   0.0000100099996416f)
92               .set_name("conv1/BatchNorm")
93               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1/Relu")
94               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, operation_layout, PadStrideInfo(2, 2, 0, 1, 0, 1, DimensionRoundingType::FLOOR))).set_name("pool1/MaxPool");
95 
96         add_residual_block(data_path, "block1", weights_layout, 64, 3, 2);
97         add_residual_block(data_path, "block2", weights_layout, 128, 4, 2);
98         add_residual_block(data_path, "block3", weights_layout, 256, 6, 2);
99         add_residual_block(data_path, "block4", weights_layout, 512, 3, 1);
100 
101         graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, operation_layout)).set_name("pool5")
102               << ConvolutionLayer(
103                   1U, 1U, 1000U,
104                   get_weights_accessor(data_path, "/cnn_data/resnet50_model/logits_weights.npy", weights_layout),
105                   get_weights_accessor(data_path, "/cnn_data/resnet50_model/logits_biases.npy"),
106                   PadStrideInfo(1, 1, 0, 0))
107               .set_name("logits/convolution")
108               << FlattenLayer().set_name("predictions/Reshape")
109               << SoftmaxLayer().set_name("predictions/Softmax")
110               << OutputLayer(get_output_accessor(common_params, 5));
111 
112         // Finalize graph
113         GraphConfig config;
114         config.num_threads        = common_params.threads;
115         config.use_tuner          = common_params.enable_tuner;
116         config.tuner_mode         = common_params.tuner_mode;
117         config.tuner_file         = common_params.tuner_file;
118         config.mlgo_file          = common_params.mlgo_file;
119         config.use_synthetic_type = arm_compute::is_data_type_quantized(common_params.data_type);
120         config.synthetic_type     = common_params.data_type;
121 
122         graph.finalize(common_params.target, config);
123 
124         return true;
125     }
126 
do_run()127     void do_run() override
128     {
129         // Run graph
130         graph.run();
131     }
132 
133 private:
134     CommandLineParser  cmd_parser;
135     CommonGraphOptions common_opts;
136     CommonGraphParams  common_params;
137     Stream             graph;
138 
add_residual_block(const std::string & data_path,const std::string & name,DataLayout weights_layout,unsigned int base_depth,unsigned int num_units,unsigned int stride)139     void add_residual_block(const std::string &data_path, const std::string &name, DataLayout weights_layout,
140                             unsigned int base_depth, unsigned int num_units, unsigned int stride)
141     {
142         for(unsigned int i = 0; i < num_units; ++i)
143         {
144             std::stringstream unit_path_ss;
145             unit_path_ss << "/cnn_data/resnet50_model/" << name << "_unit_" << (i + 1) << "_bottleneck_v1_";
146             std::stringstream unit_name_ss;
147             unit_name_ss << name << "/unit" << (i + 1) << "/bottleneck_v1/";
148 
149             std::string unit_path = unit_path_ss.str();
150             std::string unit_name = unit_name_ss.str();
151 
152             unsigned int middle_stride = 1;
153 
154             if(i == (num_units - 1))
155             {
156                 middle_stride = stride;
157             }
158 
159             SubStream right(graph);
160             right << ConvolutionLayer(
161                       1U, 1U, base_depth,
162                       get_weights_accessor(data_path, unit_path + "conv1_weights.npy", weights_layout),
163                       std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
164                       PadStrideInfo(1, 1, 0, 0))
165                   .set_name(unit_name + "conv1/convolution")
166                   << BatchNormalizationLayer(
167                       get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_mean.npy"),
168                       get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_variance.npy"),
169                       get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_gamma.npy"),
170                       get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_beta.npy"),
171                       0.0000100099996416f)
172                   .set_name(unit_name + "conv1/BatchNorm")
173                   << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu")
174 
175                   << ConvolutionLayer(
176                       3U, 3U, base_depth,
177                       get_weights_accessor(data_path, unit_path + "conv2_weights.npy", weights_layout),
178                       std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
179                       PadStrideInfo(middle_stride, middle_stride, 1, 1))
180                   .set_name(unit_name + "conv2/convolution")
181                   << BatchNormalizationLayer(
182                       get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_mean.npy"),
183                       get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_variance.npy"),
184                       get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_gamma.npy"),
185                       get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_beta.npy"),
186                       0.0000100099996416f)
187                   .set_name(unit_name + "conv2/BatchNorm")
188                   << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu")
189 
190                   << ConvolutionLayer(
191                       1U, 1U, base_depth * 4,
192                       get_weights_accessor(data_path, unit_path + "conv3_weights.npy", weights_layout),
193                       std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
194                       PadStrideInfo(1, 1, 0, 0))
195                   .set_name(unit_name + "conv3/convolution")
196                   << BatchNormalizationLayer(
197                       get_weights_accessor(data_path, unit_path + "conv3_BatchNorm_moving_mean.npy"),
198                       get_weights_accessor(data_path, unit_path + "conv3_BatchNorm_moving_variance.npy"),
199                       get_weights_accessor(data_path, unit_path + "conv3_BatchNorm_gamma.npy"),
200                       get_weights_accessor(data_path, unit_path + "conv3_BatchNorm_beta.npy"),
201                       0.0000100099996416f)
202                   .set_name(unit_name + "conv2/BatchNorm");
203 
204             if(i == 0)
205             {
206                 SubStream left(graph);
207                 left << ConvolutionLayer(
208                          1U, 1U, base_depth * 4,
209                          get_weights_accessor(data_path, unit_path + "shortcut_weights.npy", weights_layout),
210                          std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
211                          PadStrideInfo(1, 1, 0, 0))
212                      .set_name(unit_name + "shortcut/convolution")
213                      << BatchNormalizationLayer(
214                          get_weights_accessor(data_path, unit_path + "shortcut_BatchNorm_moving_mean.npy"),
215                          get_weights_accessor(data_path, unit_path + "shortcut_BatchNorm_moving_variance.npy"),
216                          get_weights_accessor(data_path, unit_path + "shortcut_BatchNorm_gamma.npy"),
217                          get_weights_accessor(data_path, unit_path + "shortcut_BatchNorm_beta.npy"),
218                          0.0000100099996416f)
219                      .set_name(unit_name + "shortcut/BatchNorm");
220 
221                 graph << EltwiseLayer(std::move(left), std::move(right), EltwiseOperation::Add).set_name(unit_name + "add");
222             }
223             else if(middle_stride > 1)
224             {
225                 SubStream left(graph);
226                 left << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 1, common_params.data_layout, PadStrideInfo(middle_stride, middle_stride, 0, 0), true)).set_name(unit_name + "shortcut/MaxPool");
227 
228                 graph << EltwiseLayer(std::move(left), std::move(right), EltwiseOperation::Add).set_name(unit_name + "add");
229             }
230             else
231             {
232                 SubStream left(graph);
233                 graph << EltwiseLayer(std::move(left), std::move(right), EltwiseOperation::Add).set_name(unit_name + "add");
234             }
235 
236             graph << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "Relu");
237         }
238     }
239 };
240 
241 /** Main program for ResNetV1_50
242  *
243  * Model is based on:
244  *      https://arxiv.org/abs/1512.03385
245  *      "Deep Residual Learning for Image Recognition"
246  *      Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun
247  *
248  * Provenance: download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz
249  *
250  * @note To list all the possible arguments execute the binary appended with the --help option
251  *
252  * @param[in] argc Number of arguments
253  * @param[in] argv Arguments
254  */
main(int argc,char ** argv)255 int main(int argc, char **argv)
256 {
257     return arm_compute::utils::run_example<GraphResNetV1_50Example>(argc, argv);
258 }
259