xref: /aosp_15_r20/external/ComputeLibrary/examples/graph_resnet12.cpp (revision c217d954acce2dbc11938adb493fc0abd69584f3)
1 /*
2  * Copyright (c) 2018-2021 Arm Limited.
3  *
4  * SPDX-License-Identifier: MIT
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to
8  * deal in the Software without restriction, including without limitation the
9  * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10  * sell copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in all
14  * copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 #include "arm_compute/graph.h"
25 #include "support/ToolchainSupport.h"
26 #include "utils/CommonGraphOptions.h"
27 #include "utils/GraphUtils.h"
28 #include "utils/Utils.h"
29 
30 using namespace arm_compute::utils;
31 using namespace arm_compute::graph::frontend;
32 using namespace arm_compute::graph_utils;
33 
34 /** Example demonstrating how to implement ResNet12 network using the Compute Library's graph API */
35 class GraphResNet12Example : public Example
36 {
37 public:
GraphResNet12Example()38     GraphResNet12Example()
39         : cmd_parser(), common_opts(cmd_parser), model_input_width(nullptr), model_input_height(nullptr), common_params(), graph(0, "ResNet12")
40     {
41         model_input_width  = cmd_parser.add_option<SimpleOption<unsigned int>>("image-width", 192);
42         model_input_height = cmd_parser.add_option<SimpleOption<unsigned int>>("image-height", 128);
43 
44         // Add model id option
45         model_input_width->set_help("Input image width.");
46         model_input_height->set_help("Input image height.");
47     }
48     GraphResNet12Example(const GraphResNet12Example &) = delete;
49     GraphResNet12Example &operator=(const GraphResNet12Example &) = delete;
50     ~GraphResNet12Example() override                              = default;
do_setup(int argc,char ** argv)51     bool do_setup(int argc, char **argv) override
52     {
53         // Parse arguments
54         cmd_parser.parse(argc, argv);
55         cmd_parser.validate();
56 
57         // Consume common parameters
58         common_params = consume_common_graph_parameters(common_opts);
59 
60         // Return when help menu is requested
61         if(common_params.help)
62         {
63             cmd_parser.print_help(argv[0]);
64             return false;
65         }
66 
67         // Get input image width and height
68         const unsigned int image_width  = model_input_width->value();
69         const unsigned int image_height = model_input_height->value();
70 
71         // Checks
72         ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
73 
74         // Print parameter values
75         std::cout << common_params << std::endl;
76         std::cout << "Image width: " << image_width << std::endl;
77         std::cout << "Image height: " << image_height << std::endl;
78 
79         // Get trainable parameters data path
80         const std::string data_path  = common_params.data_path;
81         const std::string model_path = "/cnn_data/resnet12_model/";
82 
83         // Create a preprocessor object
84         std::unique_ptr<IPreprocessor> preprocessor = std::make_unique<TFPreproccessor>();
85 
86         // Create input descriptor
87         const TensorShape tensor_shape     = permute_shape(TensorShape(image_width, image_height, 3U, common_params.batches), DataLayout::NCHW, common_params.data_layout);
88         TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
89 
90         // Set weights trained layout
91         const DataLayout weights_layout = DataLayout::NCHW;
92 
93         graph << common_params.target
94               << common_params.fast_math_hint
95               << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor), false /* Do not convert to BGR */))
96               << ConvolutionLayer(
97                   9U, 9U, 64U,
98                   get_weights_accessor(data_path, "conv1_weights.npy", weights_layout),
99                   get_weights_accessor(data_path, "conv1_biases.npy", weights_layout),
100                   PadStrideInfo(1, 1, 4, 4))
101               .set_name("conv1/convolution")
102               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv1/Relu");
103 
104         add_residual_block(data_path, "block1", weights_layout);
105         add_residual_block(data_path, "block2", weights_layout);
106         add_residual_block(data_path, "block3", weights_layout);
107         add_residual_block(data_path, "block4", weights_layout);
108 
109         graph << ConvolutionLayer(
110                   3U, 3U, 64U,
111                   get_weights_accessor(data_path, "conv10_weights.npy", weights_layout),
112                   get_weights_accessor(data_path, "conv10_biases.npy"),
113                   PadStrideInfo(1, 1, 1, 1))
114               .set_name("conv10/convolution")
115               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv10/Relu")
116               << ConvolutionLayer(
117                   3U, 3U, 64U,
118                   get_weights_accessor(data_path, "conv11_weights.npy", weights_layout),
119                   get_weights_accessor(data_path, "conv11_biases.npy"),
120                   PadStrideInfo(1, 1, 1, 1))
121               .set_name("conv11/convolution")
122               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("conv11/Relu")
123               << ConvolutionLayer(
124                   9U, 9U, 3U,
125                   get_weights_accessor(data_path, "conv12_weights.npy", weights_layout),
126                   get_weights_accessor(data_path, "conv12_biases.npy"),
127                   PadStrideInfo(1, 1, 4, 4))
128               .set_name("conv12/convolution")
129               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::TANH)).set_name("conv12/Tanh")
130               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 0.58f, 0.5f)).set_name("conv12/Linear")
131               << OutputLayer(std::make_unique<DummyAccessor>(0));
132 
133         // Finalize graph
134         GraphConfig config;
135         config.num_threads = common_params.threads;
136         config.use_tuner   = common_params.enable_tuner;
137         config.tuner_mode  = common_params.tuner_mode;
138         config.tuner_file  = common_params.tuner_file;
139         config.mlgo_file   = common_params.mlgo_file;
140 
141         graph.finalize(common_params.target, config);
142 
143         return true;
144     }
145 
do_run()146     void do_run() override
147     {
148         // Run graph
149         graph.run();
150     }
151 
152 private:
153     CommandLineParser           cmd_parser;
154     CommonGraphOptions          common_opts;
155     SimpleOption<unsigned int> *model_input_width{ nullptr };
156     SimpleOption<unsigned int> *model_input_height{ nullptr };
157     CommonGraphParams           common_params;
158     Stream                      graph;
159 
add_residual_block(const std::string & data_path,const std::string & name,DataLayout weights_layout)160     void add_residual_block(const std::string &data_path, const std::string &name, DataLayout weights_layout)
161     {
162         std::stringstream unit_path_ss;
163         unit_path_ss << data_path << name << "_";
164         std::stringstream unit_name_ss;
165         unit_name_ss << name << "/";
166 
167         std::string unit_path = unit_path_ss.str();
168         std::string unit_name = unit_name_ss.str();
169 
170         SubStream left(graph);
171         SubStream right(graph);
172 
173         right << ConvolutionLayer(
174                   3U, 3U, 64U,
175                   get_weights_accessor(data_path, unit_path + "conv1_weights.npy", weights_layout),
176                   get_weights_accessor(data_path, unit_path + "conv1_biases.npy", weights_layout),
177                   PadStrideInfo(1, 1, 1, 1))
178               .set_name(unit_name + "conv1/convolution")
179               << BatchNormalizationLayer(
180                   get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_mean.npy"),
181                   get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_moving_variance.npy"),
182                   get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_gamma.npy"),
183                   get_weights_accessor(data_path, unit_path + "conv1_BatchNorm_beta.npy"),
184                   0.0000100099996416f)
185               .set_name(unit_name + "conv1/BatchNorm")
186               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv1/Relu")
187 
188               << ConvolutionLayer(
189                   3U, 3U, 64U,
190                   get_weights_accessor(data_path, unit_path + "conv2_weights.npy", weights_layout),
191                   get_weights_accessor(data_path, unit_path + "conv2_biases.npy", weights_layout),
192                   PadStrideInfo(1, 1, 1, 1))
193               .set_name(unit_name + "conv2/convolution")
194               << BatchNormalizationLayer(
195                   get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_mean.npy"),
196                   get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_moving_variance.npy"),
197                   get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_gamma.npy"),
198                   get_weights_accessor(data_path, unit_path + "conv2_BatchNorm_beta.npy"),
199                   0.0000100099996416f)
200               .set_name(unit_name + "conv2/BatchNorm")
201               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name(unit_name + "conv2/Relu");
202 
203         graph << EltwiseLayer(std::move(left), std::move(right), EltwiseOperation::Add).set_name(unit_name + "add");
204     }
205 };
206 
207 /** Main program for ResNet12
208  *
209  * Model is based on:
210  *      https://arxiv.org/pdf/1709.01118.pdf
211  *      "WESPE: Weakly Supervised Photo Enhancer for Digital Cameras"
212  *      Andrey Ignatov, Nikolay Kobyshev, Kenneth Vanhoey, Radu Timofte, Luc Van Gool
213  *
214  * @note To list all the possible arguments execute the binary appended with the --help option
215  *
216  * @param[in] argc Number of arguments
217  * @param[in] argv Arguments
218  */
main(int argc,char ** argv)219 int main(int argc, char **argv)
220 {
221     return arm_compute::utils::run_example<GraphResNet12Example>(argc, argv);
222 }
223