1 /*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include <fcntl.h>
18 #include <inttypes.h>
19 #include <linux/limits.h>
20 #include <stdint.h>
21 #include <stdlib.h>
22 #include <string.h>
23 #include <sys/mount.h>
24 #include <sys/stat.h>
25 #include <sys/statvfs.h>
26 #include <sys/types.h>
27 #include <sys/vfs.h>
28 #include <unistd.h>
29
30 #include <cstring>
31 #include <string>
32 #include <utility>
33
34 #include <android-base/file.h>
35 #include <android-base/logging.h>
36 #include <android-base/stringprintf.h>
37 #include <android-base/unique_fd.h>
38 #include <fstab/fstab.h>
39 #include <gtest/gtest.h>
40 #include <libdm/loop_control.h>
41 #include <libfiemap/fiemap_writer.h>
42 #include <libfiemap/split_fiemap_writer.h>
43 #include <libgsi/libgsi.h>
44 #include <storage_literals/storage_literals.h>
45
46 #include "utility.h"
47
48 namespace android {
49 namespace fiemap {
50
51 using namespace std;
52 using namespace std::string_literals;
53 using namespace android::fiemap;
54 using namespace android::storage_literals;
55 using unique_fd = android::base::unique_fd;
56 using LoopDevice = android::dm::LoopDevice;
57
58 std::string gTestDir;
59 uint64_t testfile_size = 536870912; // default of 512MiB
60 size_t gBlockSize = 0;
61
62 class FiemapWriterTest : public ::testing::Test {
63 protected:
SetUp()64 void SetUp() override {
65 const ::testing::TestInfo* tinfo = ::testing::UnitTest::GetInstance()->current_test_info();
66 testfile = gTestDir + "/"s + tinfo->name();
67 }
68
TearDown()69 void TearDown() override {
70 truncate(testfile.c_str(), 0);
71 unlink(testfile.c_str());
72 sync();
73 }
74
75 // name of the file we use for testing
76 std::string testfile;
77 };
78
79 class SplitFiemapTest : public ::testing::Test {
80 protected:
SetUp()81 void SetUp() override {
82 const ::testing::TestInfo* tinfo = ::testing::UnitTest::GetInstance()->current_test_info();
83 testfile = gTestDir + "/"s + tinfo->name();
84 }
85
TearDown()86 void TearDown() override {
87 std::string message;
88 if (!SplitFiemap::RemoveSplitFiles(testfile, &message)) {
89 cerr << "Could not remove all split files: " << message;
90 }
91 }
92
93 // name of the file we use for testing
94 std::string testfile;
95 };
96
TEST_F(FiemapWriterTest,CreateImpossiblyLargeFile)97 TEST_F(FiemapWriterTest, CreateImpossiblyLargeFile) {
98 // Try creating a file of size ~100TB but aligned to
99 // 512 byte to make sure block alignment tests don't
100 // fail.
101 FiemapUniquePtr fptr = FiemapWriter::Open(testfile, 1099511627997184);
102 EXPECT_EQ(fptr, nullptr);
103 EXPECT_EQ(access(testfile.c_str(), F_OK), -1);
104 EXPECT_EQ(errno, ENOENT);
105 }
106
TEST_F(FiemapWriterTest,CreateUnalignedFile)107 TEST_F(FiemapWriterTest, CreateUnalignedFile) {
108 // Try creating a file of size 4097 bytes which is guaranteed
109 // to be unaligned to all known block sizes.
110 FiemapUniquePtr fptr = FiemapWriter::Open(testfile, gBlockSize + 1);
111 ASSERT_NE(fptr, nullptr);
112 ASSERT_EQ(fptr->size(), gBlockSize * 2);
113 }
114
TEST_F(FiemapWriterTest,CheckFilePath)115 TEST_F(FiemapWriterTest, CheckFilePath) {
116 FiemapUniquePtr fptr = FiemapWriter::Open(testfile, gBlockSize);
117 ASSERT_NE(fptr, nullptr);
118 EXPECT_EQ(fptr->size(), gBlockSize);
119 EXPECT_EQ(fptr->file_path(), testfile);
120 EXPECT_EQ(access(testfile.c_str(), F_OK), 0);
121 }
122
TEST_F(FiemapWriterTest,CheckFileSize)123 TEST_F(FiemapWriterTest, CheckFileSize) {
124 // Create a large-ish file and test that the expected size matches.
125 FiemapUniquePtr fptr = FiemapWriter::Open(testfile, 1024 * 1024 * 16);
126 ASSERT_NE(fptr, nullptr);
127
128 struct stat s;
129 ASSERT_EQ(stat(testfile.c_str(), &s), 0);
130 EXPECT_EQ(static_cast<uint64_t>(s.st_size), fptr->size());
131 }
132
TEST_F(FiemapWriterTest,CheckProgress)133 TEST_F(FiemapWriterTest, CheckProgress) {
134 std::vector<uint64_t> expected;
135 size_t invocations = 0;
136 auto callback = [&](uint64_t done, uint64_t total) -> bool {
137 if (invocations >= expected.size()) {
138 return false;
139 }
140 EXPECT_EQ(done, expected[invocations]);
141 EXPECT_EQ(total, gBlockSize);
142 invocations++;
143 return true;
144 };
145
146 expected.push_back(gBlockSize);
147
148 auto ptr = FiemapWriter::Open(testfile, gBlockSize, true, std::move(callback));
149 EXPECT_NE(ptr, nullptr);
150 EXPECT_EQ(invocations, expected.size());
151 }
152
TEST_F(FiemapWriterTest,CheckPinning)153 TEST_F(FiemapWriterTest, CheckPinning) {
154 auto ptr = FiemapWriter::Open(testfile, 4096);
155 ASSERT_NE(ptr, nullptr);
156 EXPECT_TRUE(FiemapWriter::HasPinnedExtents(testfile));
157 }
158
TEST_F(FiemapWriterTest,CheckBlockDevicePath)159 TEST_F(FiemapWriterTest, CheckBlockDevicePath) {
160 FiemapUniquePtr fptr = FiemapWriter::Open(testfile, gBlockSize);
161 EXPECT_EQ(fptr->size(), gBlockSize);
162 EXPECT_EQ(fptr->bdev_path().find("/dev/block/"), size_t(0));
163
164 if (!android::gsi::IsGsiRunning()) {
165 EXPECT_EQ(fptr->bdev_path().find("/dev/block/dm-"), string::npos);
166 }
167 }
168
TEST_F(FiemapWriterTest,CheckFileCreated)169 TEST_F(FiemapWriterTest, CheckFileCreated) {
170 FiemapUniquePtr fptr = FiemapWriter::Open(testfile, 32768);
171 ASSERT_NE(fptr, nullptr);
172 unique_fd fd(open(testfile.c_str(), O_RDONLY));
173 EXPECT_GT(fd, -1);
174 }
175
TEST_F(FiemapWriterTest,CheckFileSizeActual)176 TEST_F(FiemapWriterTest, CheckFileSizeActual) {
177 FiemapUniquePtr fptr = FiemapWriter::Open(testfile, testfile_size);
178 ASSERT_NE(fptr, nullptr);
179
180 struct stat sb;
181 ASSERT_EQ(stat(testfile.c_str(), &sb), 0);
182 EXPECT_GE(sb.st_size, testfile_size);
183 }
184
TEST_F(FiemapWriterTest,CheckFileExtents)185 TEST_F(FiemapWriterTest, CheckFileExtents) {
186 FiemapUniquePtr fptr = FiemapWriter::Open(testfile, testfile_size);
187 ASSERT_NE(fptr, nullptr);
188 EXPECT_GT(fptr->extents().size(), 0);
189 }
190
TEST_F(FiemapWriterTest,ExistingFile)191 TEST_F(FiemapWriterTest, ExistingFile) {
192 // Create the file.
193 { ASSERT_NE(FiemapWriter::Open(testfile, gBlockSize), nullptr); }
194 // Test that we can still open it.
195 {
196 auto ptr = FiemapWriter::Open(testfile, 0, false);
197 ASSERT_NE(ptr, nullptr);
198 EXPECT_GT(ptr->extents().size(), 0);
199 }
200 }
201
TEST_F(FiemapWriterTest,FileDeletedOnError)202 TEST_F(FiemapWriterTest, FileDeletedOnError) {
203 auto callback = [](uint64_t, uint64_t) -> bool { return false; };
204 auto ptr = FiemapWriter::Open(testfile, gBlockSize, true, std::move(callback));
205 EXPECT_EQ(ptr, nullptr);
206 EXPECT_EQ(access(testfile.c_str(), F_OK), -1);
207 EXPECT_EQ(errno, ENOENT);
208 }
209
TEST_F(FiemapWriterTest,MaxBlockSize)210 TEST_F(FiemapWriterTest, MaxBlockSize) {
211 uint64_t max_piece_size = 0;
212 ASSERT_TRUE(DetermineMaximumFileSize(testfile, &max_piece_size));
213 ASSERT_GT(max_piece_size, 0);
214 }
215
TEST_F(FiemapWriterTest,FibmapBlockAddressing)216 TEST_F(FiemapWriterTest, FibmapBlockAddressing) {
217 FiemapUniquePtr fptr = FiemapWriter::Open(testfile, gBlockSize);
218 ASSERT_NE(fptr, nullptr);
219
220 switch (fptr->fs_type()) {
221 case F2FS_SUPER_MAGIC:
222 case EXT4_SUPER_MAGIC:
223 // Skip the test for FIEMAP supported filesystems. This is really
224 // because f2fs/ext4 have caches that seem to defeat reading back
225 // directly from the block device, and writing directly is too
226 // dangerous.
227 std::cout << "Skipping test, filesystem does not use FIBMAP\n";
228 return;
229 }
230
231 bool uses_dm;
232 std::string bdev_path;
233 ASSERT_TRUE(FiemapWriter::GetBlockDeviceForFile(testfile, &bdev_path, &uses_dm));
234
235 if (uses_dm) {
236 // We could use a device-mapper wrapper here to bypass encryption, but
237 // really this test is for FIBMAP correctness on VFAT (where encryption
238 // is never used), so we don't bother.
239 std::cout << "Skipping test, block device is metadata encrypted\n";
240 return;
241 }
242
243 std::string data(fptr->size(), '\0');
244 for (size_t i = 0; i < data.size(); i++) {
245 data[i] = 'A' + static_cast<char>(data.size() % 26);
246 }
247
248 {
249 unique_fd fd(open(testfile.c_str(), O_WRONLY | O_CLOEXEC));
250 ASSERT_GE(fd, 0);
251 ASSERT_TRUE(android::base::WriteFully(fd, data.data(), data.size()));
252 ASSERT_EQ(fsync(fd), 0);
253 }
254
255 ASSERT_FALSE(fptr->extents().empty());
256 const auto& first_extent = fptr->extents()[0];
257
258 unique_fd bdev(open(fptr->bdev_path().c_str(), O_RDONLY | O_CLOEXEC));
259 ASSERT_GE(bdev, 0);
260
261 off_t where = first_extent.fe_physical;
262 ASSERT_EQ(lseek(bdev, where, SEEK_SET), where);
263
264 // Note: this will fail on encrypted folders.
265 std::string actual(data.size(), '\0');
266 ASSERT_GE(first_extent.fe_length, data.size());
267 ASSERT_TRUE(android::base::ReadFully(bdev, actual.data(), actual.size()));
268 EXPECT_EQ(memcmp(actual.data(), data.data(), data.size()), 0);
269 }
270
TEST_F(FiemapWriterTest,CheckEmptyFile)271 TEST_F(FiemapWriterTest, CheckEmptyFile) {
272 // Can't get any fiemap_extent out of a zero-sized file.
273 FiemapUniquePtr fptr = FiemapWriter::Open(testfile, 0);
274 EXPECT_EQ(fptr, nullptr);
275 EXPECT_EQ(access(testfile.c_str(), F_OK), -1);
276 }
277
TEST_F(SplitFiemapTest,Create)278 TEST_F(SplitFiemapTest, Create) {
279 auto ptr = SplitFiemap::Create(testfile, 1024 * 768, 1024 * 32);
280 ASSERT_NE(ptr, nullptr);
281
282 auto extents = ptr->extents();
283
284 // Destroy the fiemap, closing file handles. This should not delete them.
285 ptr = nullptr;
286
287 std::vector<std::string> files;
288 ASSERT_TRUE(SplitFiemap::GetSplitFileList(testfile, &files));
289 for (const auto& path : files) {
290 EXPECT_EQ(access(path.c_str(), F_OK), 0);
291 }
292
293 ASSERT_GE(extents.size(), files.size());
294 }
295
TEST_F(SplitFiemapTest,Open)296 TEST_F(SplitFiemapTest, Open) {
297 {
298 auto ptr = SplitFiemap::Create(testfile, 1024 * 768, 1024 * 32);
299 ASSERT_NE(ptr, nullptr);
300 }
301
302 auto ptr = SplitFiemap::Open(testfile);
303 ASSERT_NE(ptr, nullptr);
304
305 auto extents = ptr->extents();
306 ASSERT_GE(extents.size(), 24);
307 }
308
TEST_F(SplitFiemapTest,DeleteOnFail)309 TEST_F(SplitFiemapTest, DeleteOnFail) {
310 auto ptr = SplitFiemap::Create(testfile, 1024 * 1024 * 100, 1);
311 ASSERT_EQ(ptr, nullptr);
312
313 std::string first_file = testfile + ".0001";
314 ASSERT_NE(access(first_file.c_str(), F_OK), 0);
315 ASSERT_EQ(errno, ENOENT);
316 ASSERT_NE(access(testfile.c_str(), F_OK), 0);
317 ASSERT_EQ(errno, ENOENT);
318 }
319
TEST_F(SplitFiemapTest,CorruptSplit)320 TEST_F(SplitFiemapTest, CorruptSplit) {
321 unique_fd fd(open(testfile.c_str(), O_RDWR | O_CREAT | O_TRUNC, 0700));
322 ASSERT_GE(fd, 0);
323
324 // Make a giant random string.
325 std::vector<char> data;
326 for (size_t i = 0x1; i < 0x7f; i++) {
327 for (size_t j = 0; j < 100; j++) {
328 data.emplace_back(i);
329 }
330 }
331 ASSERT_GT(data.size(), PATH_MAX);
332
333 data.emplace_back('\n');
334
335 ASSERT_TRUE(android::base::WriteFully(fd, data.data(), data.size()));
336 fd = {};
337
338 ASSERT_TRUE(SplitFiemap::RemoveSplitFiles(testfile));
339 }
340
ReadSplitFiles(const std::string & base_path,size_t num_files)341 static string ReadSplitFiles(const std::string& base_path, size_t num_files) {
342 std::string result;
343 for (int i = 0; i < num_files; i++) {
344 std::string path = base_path + android::base::StringPrintf(".%04d", i);
345 std::string data;
346 if (!android::base::ReadFileToString(path, &data)) {
347 return {};
348 }
349 result += data;
350 }
351 return result;
352 }
353
TEST_F(SplitFiemapTest,WriteWholeFile)354 TEST_F(SplitFiemapTest, WriteWholeFile) {
355 static constexpr size_t kChunkSize = 32768;
356 static constexpr size_t kSize = kChunkSize * 3;
357 auto ptr = SplitFiemap::Create(testfile, kSize, kChunkSize);
358 ASSERT_NE(ptr, nullptr);
359
360 auto buffer = std::make_unique<int[]>(kSize / sizeof(int));
361 for (size_t i = 0; i < kSize / sizeof(int); i++) {
362 buffer[i] = i;
363 }
364 ASSERT_TRUE(ptr->Write(buffer.get(), kSize));
365
366 std::string expected(reinterpret_cast<char*>(buffer.get()), kSize);
367 auto actual = ReadSplitFiles(testfile, 3);
368 ASSERT_EQ(expected.size(), actual.size());
369 EXPECT_EQ(memcmp(expected.data(), actual.data(), actual.size()), 0);
370 }
371
TEST_F(SplitFiemapTest,WriteFileInChunks1)372 TEST_F(SplitFiemapTest, WriteFileInChunks1) {
373 static constexpr size_t kChunkSize = 32768;
374 static constexpr size_t kSize = kChunkSize * 3;
375 auto ptr = SplitFiemap::Create(testfile, kSize, kChunkSize);
376 ASSERT_NE(ptr, nullptr);
377
378 auto buffer = std::make_unique<int[]>(kSize / sizeof(int));
379 for (size_t i = 0; i < kSize / sizeof(int); i++) {
380 buffer[i] = i;
381 }
382
383 // Write in chunks of 1000 (so some writes straddle the boundary of two
384 // files).
385 size_t bytes_written = 0;
386 while (bytes_written < kSize) {
387 size_t to_write = std::min(kSize - bytes_written, (size_t)1000);
388 char* data = reinterpret_cast<char*>(buffer.get()) + bytes_written;
389 ASSERT_TRUE(ptr->Write(data, to_write));
390 bytes_written += to_write;
391 }
392
393 std::string expected(reinterpret_cast<char*>(buffer.get()), kSize);
394 auto actual = ReadSplitFiles(testfile, 3);
395 ASSERT_EQ(expected.size(), actual.size());
396 EXPECT_EQ(memcmp(expected.data(), actual.data(), actual.size()), 0);
397 }
398
TEST_F(SplitFiemapTest,WriteFileInChunks2)399 TEST_F(SplitFiemapTest, WriteFileInChunks2) {
400 static constexpr size_t kChunkSize = 32768;
401 static constexpr size_t kSize = kChunkSize * 3;
402 auto ptr = SplitFiemap::Create(testfile, kSize, kChunkSize);
403 ASSERT_NE(ptr, nullptr);
404
405 auto buffer = std::make_unique<int[]>(kSize / sizeof(int));
406 for (size_t i = 0; i < kSize / sizeof(int); i++) {
407 buffer[i] = i;
408 }
409
410 // Write in chunks of 32KiB so every write is exactly at the end of the
411 // current file.
412 size_t bytes_written = 0;
413 while (bytes_written < kSize) {
414 size_t to_write = std::min(kSize - bytes_written, kChunkSize);
415 char* data = reinterpret_cast<char*>(buffer.get()) + bytes_written;
416 ASSERT_TRUE(ptr->Write(data, to_write));
417 bytes_written += to_write;
418 }
419
420 std::string expected(reinterpret_cast<char*>(buffer.get()), kSize);
421 auto actual = ReadSplitFiles(testfile, 3);
422 ASSERT_EQ(expected.size(), actual.size());
423 EXPECT_EQ(memcmp(expected.data(), actual.data(), actual.size()), 0);
424 }
425
TEST_F(SplitFiemapTest,WritePastEnd)426 TEST_F(SplitFiemapTest, WritePastEnd) {
427 static constexpr size_t kChunkSize = 32768;
428 static constexpr size_t kSize = kChunkSize * 3;
429 auto ptr = SplitFiemap::Create(testfile, kSize, kChunkSize);
430 ASSERT_NE(ptr, nullptr);
431
432 auto buffer = std::make_unique<int[]>(kSize / sizeof(int));
433 for (size_t i = 0; i < kSize / sizeof(int); i++) {
434 buffer[i] = i;
435 }
436 ASSERT_TRUE(ptr->Write(buffer.get(), kSize));
437 ASSERT_FALSE(ptr->Write(buffer.get(), kSize));
438 }
439
440 // Get max file size and free space.
GetBigFileLimit(const std::string & mount_point)441 std::pair<uint64_t, uint64_t> GetBigFileLimit(const std::string& mount_point) {
442 struct statvfs fs;
443 if (statvfs(mount_point.c_str(), &fs) < 0) {
444 PLOG(ERROR) << "statfs failed";
445 return {0, 0};
446 }
447
448 auto fs_limit = static_cast<uint64_t>(fs.f_blocks) * (fs.f_bsize - 1);
449 auto fs_free = static_cast<uint64_t>(fs.f_bfree) * fs.f_bsize;
450
451 LOG(INFO) << "Big file limit: " << fs_limit << ", free space: " << fs_free;
452
453 return {fs_limit, fs_free};
454 }
455
456 class FsTest : public ::testing::Test {
457 protected:
458 // 2GB Filesystem and 4k block size by default
459 static constexpr uint64_t block_size = 4096;
460 static constexpr uint64_t fs_size = 64 * 1024 * 1024;
461
SetUp()462 void SetUp() {
463 android::fs_mgr::Fstab fstab;
464 ASSERT_TRUE(android::fs_mgr::ReadFstabFromFile("/proc/mounts", &fstab));
465
466 ASSERT_EQ(access(tmpdir_.path, F_OK), 0);
467 fs_path_ = tmpdir_.path + "/fs_image"s;
468 mntpoint_ = tmpdir_.path + "/mnt_point"s;
469
470 auto entry = android::fs_mgr::GetEntryForMountPoint(&fstab, "/data");
471 ASSERT_NE(entry, nullptr);
472 if (entry->fs_type == "ext4") {
473 SetUpExt4();
474 } else if (entry->fs_type == "f2fs") {
475 SetUpF2fs();
476 } else {
477 FAIL() << "Unrecognized fs_type: " << entry->fs_type;
478 }
479 }
480
SetUpExt4()481 void SetUpExt4() {
482 uint64_t count = fs_size / block_size;
483 std::string dd_cmd =
484 ::android::base::StringPrintf("/system/bin/dd if=/dev/zero of=%s bs=%" PRIu64
485 " count=%" PRIu64 " > /dev/null 2>&1",
486 fs_path_.c_str(), block_size, count);
487 std::string mkfs_cmd =
488 ::android::base::StringPrintf("/system/bin/mkfs.ext4 -q %s", fs_path_.c_str());
489 // create mount point
490 ASSERT_EQ(mkdir(mntpoint_.c_str(), S_IRWXU), 0);
491 // create file for the file system
492 int ret = system(dd_cmd.c_str());
493 ASSERT_EQ(ret, 0);
494 // Get and attach a loop device to the filesystem we created
495 LoopDevice loop_dev(fs_path_, 10s);
496 ASSERT_TRUE(loop_dev.valid());
497 // create file system
498 ret = system(mkfs_cmd.c_str());
499 ASSERT_EQ(ret, 0);
500
501 // mount the file system
502 ASSERT_EQ(mount(loop_dev.device().c_str(), mntpoint_.c_str(), "ext4", 0, nullptr), 0);
503 }
504
SetUpF2fs()505 void SetUpF2fs() {
506 uint64_t count = fs_size / block_size;
507 std::string dd_cmd =
508 ::android::base::StringPrintf("/system/bin/dd if=/dev/zero of=%s bs=%" PRIu64
509 " count=%" PRIu64 " > /dev/null 2>&1",
510 fs_path_.c_str(), block_size, count);
511 std::string mkfs_cmd =
512 ::android::base::StringPrintf("/system/bin/make_f2fs -q %s", fs_path_.c_str());
513 // create mount point
514 ASSERT_EQ(mkdir(mntpoint_.c_str(), S_IRWXU), 0);
515 // create file for the file system
516 int ret = system(dd_cmd.c_str());
517 ASSERT_EQ(ret, 0);
518 // Get and attach a loop device to the filesystem we created
519 LoopDevice loop_dev(fs_path_, 10s);
520 ASSERT_TRUE(loop_dev.valid());
521 // create file system
522 ret = system(mkfs_cmd.c_str());
523 ASSERT_EQ(ret, 0);
524
525 // mount the file system
526 ASSERT_EQ(mount(loop_dev.device().c_str(), mntpoint_.c_str(), "f2fs", 0, nullptr), 0)
527 << strerror(errno);
528 }
529
TearDown()530 void TearDown() override {
531 umount(mntpoint_.c_str());
532 rmdir(mntpoint_.c_str());
533 unlink(fs_path_.c_str());
534 }
535
536 TemporaryDir tmpdir_;
537 std::string mntpoint_;
538 std::string fs_path_;
539 };
540
TEST_F(FsTest,LowSpaceError)541 TEST_F(FsTest, LowSpaceError) {
542 auto limits = GetBigFileLimit(mntpoint_);
543 ASSERT_GE(limits.first, 0);
544
545 FiemapUniquePtr ptr;
546
547 auto test_file = mntpoint_ + "/big_file";
548 auto status = FiemapWriter::Open(test_file, limits.first, &ptr);
549 ASSERT_FALSE(status.is_ok());
550 ASSERT_EQ(status.error_code(), FiemapStatus::ErrorCode::NO_SPACE);
551
552 // Also test for EFBIG.
553 status = FiemapWriter::Open(test_file, 16_TiB, &ptr);
554 ASSERT_FALSE(status.is_ok());
555 ASSERT_NE(status.error_code(), FiemapStatus::ErrorCode::NO_SPACE);
556 }
557
DetermineBlockSize()558 bool DetermineBlockSize() {
559 struct statfs s;
560 if (statfs(gTestDir.c_str(), &s)) {
561 std::cerr << "Could not call statfs: " << strerror(errno) << "\n";
562 return false;
563 }
564 if (!s.f_bsize) {
565 std::cerr << "Invalid block size: " << s.f_bsize << "\n";
566 return false;
567 }
568
569 gBlockSize = s.f_bsize;
570 return true;
571 }
572
573 } // namespace fiemap
574 } // namespace android
575
576 using namespace android::fiemap;
577
main(int argc,char ** argv)578 int main(int argc, char** argv) {
579 ::testing::InitGoogleTest(&argc, argv);
580 if (argc > 1 && argv[1] == "-h"s) {
581 cerr << "Usage: [test_dir] [file_size]\n";
582 cerr << "\n";
583 cerr << "Note: test_dir must be a writable, unencrypted directory.\n";
584 exit(EXIT_FAILURE);
585 }
586 ::android::base::InitLogging(argv, ::android::base::StderrLogger);
587
588 std::string root_dir = "/data/local/unencrypted";
589 if (access(root_dir.c_str(), F_OK)) {
590 root_dir = "/data";
591 }
592
593 std::string tempdir = root_dir + "/XXXXXX"s;
594 if (!mkdtemp(tempdir.data())) {
595 cerr << "unable to create tempdir on " << root_dir << "\n";
596 exit(EXIT_FAILURE);
597 }
598 if (!android::base::Realpath(tempdir, &gTestDir)) {
599 cerr << "unable to find realpath for " << tempdir;
600 exit(EXIT_FAILURE);
601 }
602
603 if (argc > 2) {
604 testfile_size = strtoull(argv[2], NULL, 0);
605 if (testfile_size == ULLONG_MAX) {
606 testfile_size = 512 * 1024 * 1024;
607 }
608 }
609
610 if (!DetermineBlockSize()) {
611 exit(EXIT_FAILURE);
612 }
613
614 auto result = RUN_ALL_TESTS();
615
616 std::string cmd = "rm -rf " + gTestDir;
617 system(cmd.c_str());
618
619 return result;
620 }
621