1 // SPDX-License-Identifier: GPL-2.0+
2 
3 /*
4  * Freescale QuadSPI driver.
5  *
6  * Copyright (C) 2013 Freescale Semiconductor, Inc.
7  * Copyright (C) 2018 Bootlin
8  * Copyright (C) 2018 exceet electronics GmbH
9  * Copyright (C) 2018 Kontron Electronics GmbH
10  *
11  * Transition to SPI MEM interface:
12  * Authors:
13  *     Boris Brezillon <[email protected]>
14  *     Frieder Schrempf <[email protected]>
15  *     Yogesh Gaur <[email protected]>
16  *     Suresh Gupta <[email protected]>
17  *
18  * Based on the original fsl-quadspi.c SPI NOR driver:
19  * Author: Freescale Semiconductor, Inc.
20  *
21  */
22 
23 #include <linux/bitops.h>
24 #include <linux/clk.h>
25 #include <linux/completion.h>
26 #include <linux/delay.h>
27 #include <linux/err.h>
28 #include <linux/errno.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/iopoll.h>
32 #include <linux/jiffies.h>
33 #include <linux/kernel.h>
34 #include <linux/module.h>
35 #include <linux/mutex.h>
36 #include <linux/of.h>
37 #include <linux/platform_device.h>
38 #include <linux/pm_qos.h>
39 #include <linux/sizes.h>
40 
41 #include <linux/spi/spi.h>
42 #include <linux/spi/spi-mem.h>
43 
44 /*
45  * The driver only uses one single LUT entry, that is updated on
46  * each call of exec_op(). Index 0 is preset at boot with a basic
47  * read operation, so let's use the last entry (15).
48  */
49 #define	SEQID_LUT			15
50 
51 /* Registers used by the driver */
52 #define QUADSPI_MCR			0x00
53 #define QUADSPI_MCR_RESERVED_MASK	GENMASK(19, 16)
54 #define QUADSPI_MCR_MDIS_MASK		BIT(14)
55 #define QUADSPI_MCR_CLR_TXF_MASK	BIT(11)
56 #define QUADSPI_MCR_CLR_RXF_MASK	BIT(10)
57 #define QUADSPI_MCR_DDR_EN_MASK		BIT(7)
58 #define QUADSPI_MCR_END_CFG_MASK	GENMASK(3, 2)
59 #define QUADSPI_MCR_SWRSTHD_MASK	BIT(1)
60 #define QUADSPI_MCR_SWRSTSD_MASK	BIT(0)
61 
62 #define QUADSPI_IPCR			0x08
63 #define QUADSPI_IPCR_SEQID(x)		((x) << 24)
64 
65 #define QUADSPI_FLSHCR			0x0c
66 #define QUADSPI_FLSHCR_TCSS_MASK	GENMASK(3, 0)
67 #define QUADSPI_FLSHCR_TCSH_MASK	GENMASK(11, 8)
68 #define QUADSPI_FLSHCR_TDH_MASK		GENMASK(17, 16)
69 
70 #define QUADSPI_BUF0CR                  0x10
71 #define QUADSPI_BUF1CR                  0x14
72 #define QUADSPI_BUF2CR                  0x18
73 #define QUADSPI_BUFXCR_INVALID_MSTRID   0xe
74 
75 #define QUADSPI_BUF3CR			0x1c
76 #define QUADSPI_BUF3CR_ALLMST_MASK	BIT(31)
77 #define QUADSPI_BUF3CR_ADATSZ(x)	((x) << 8)
78 #define QUADSPI_BUF3CR_ADATSZ_MASK	GENMASK(15, 8)
79 
80 #define QUADSPI_BFGENCR			0x20
81 #define QUADSPI_BFGENCR_SEQID(x)	((x) << 12)
82 
83 #define QUADSPI_BUF0IND			0x30
84 #define QUADSPI_BUF1IND			0x34
85 #define QUADSPI_BUF2IND			0x38
86 #define QUADSPI_SFAR			0x100
87 
88 #define QUADSPI_SMPR			0x108
89 #define QUADSPI_SMPR_DDRSMP_MASK	GENMASK(18, 16)
90 #define QUADSPI_SMPR_FSDLY_MASK		BIT(6)
91 #define QUADSPI_SMPR_FSPHS_MASK		BIT(5)
92 #define QUADSPI_SMPR_HSENA_MASK		BIT(0)
93 
94 #define QUADSPI_RBCT			0x110
95 #define QUADSPI_RBCT_WMRK_MASK		GENMASK(4, 0)
96 #define QUADSPI_RBCT_RXBRD_USEIPS	BIT(8)
97 
98 #define QUADSPI_TBDR			0x154
99 
100 #define QUADSPI_SR			0x15c
101 #define QUADSPI_SR_IP_ACC_MASK		BIT(1)
102 #define QUADSPI_SR_AHB_ACC_MASK		BIT(2)
103 
104 #define QUADSPI_FR			0x160
105 #define QUADSPI_FR_TFF_MASK		BIT(0)
106 
107 #define QUADSPI_RSER			0x164
108 #define QUADSPI_RSER_TFIE		BIT(0)
109 
110 #define QUADSPI_SPTRCLR			0x16c
111 #define QUADSPI_SPTRCLR_IPPTRC		BIT(8)
112 #define QUADSPI_SPTRCLR_BFPTRC		BIT(0)
113 
114 #define QUADSPI_SFA1AD			0x180
115 #define QUADSPI_SFA2AD			0x184
116 #define QUADSPI_SFB1AD			0x188
117 #define QUADSPI_SFB2AD			0x18c
118 #define QUADSPI_RBDR(x)			(0x200 + ((x) * 4))
119 
120 #define QUADSPI_LUTKEY			0x300
121 #define QUADSPI_LUTKEY_VALUE		0x5AF05AF0
122 
123 #define QUADSPI_LCKCR			0x304
124 #define QUADSPI_LCKER_LOCK		BIT(0)
125 #define QUADSPI_LCKER_UNLOCK		BIT(1)
126 
127 #define QUADSPI_LUT_BASE		0x310
128 #define QUADSPI_LUT_OFFSET		(SEQID_LUT * 4 * 4)
129 #define QUADSPI_LUT_REG(idx) \
130 	(QUADSPI_LUT_BASE + QUADSPI_LUT_OFFSET + (idx) * 4)
131 
132 /* Instruction set for the LUT register */
133 #define LUT_STOP		0
134 #define LUT_CMD			1
135 #define LUT_ADDR		2
136 #define LUT_DUMMY		3
137 #define LUT_MODE		4
138 #define LUT_MODE2		5
139 #define LUT_MODE4		6
140 #define LUT_FSL_READ		7
141 #define LUT_FSL_WRITE		8
142 #define LUT_JMP_ON_CS		9
143 #define LUT_ADDR_DDR		10
144 #define LUT_MODE_DDR		11
145 #define LUT_MODE2_DDR		12
146 #define LUT_MODE4_DDR		13
147 #define LUT_FSL_READ_DDR	14
148 #define LUT_FSL_WRITE_DDR	15
149 #define LUT_DATA_LEARN		16
150 
151 /*
152  * The PAD definitions for LUT register.
153  *
154  * The pad stands for the number of IO lines [0:3].
155  * For example, the quad read needs four IO lines,
156  * so you should use LUT_PAD(4).
157  */
158 #define LUT_PAD(x) (fls(x) - 1)
159 
160 /*
161  * Macro for constructing the LUT entries with the following
162  * register layout:
163  *
164  *  ---------------------------------------------------
165  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
166  *  ---------------------------------------------------
167  */
168 #define LUT_DEF(idx, ins, pad, opr)					\
169 	((((ins) << 10) | ((pad) << 8) | (opr)) << (((idx) % 2) * 16))
170 
171 /* Controller needs driver to swap endianness */
172 #define QUADSPI_QUIRK_SWAP_ENDIAN	BIT(0)
173 
174 /* Controller needs 4x internal clock */
175 #define QUADSPI_QUIRK_4X_INT_CLK	BIT(1)
176 
177 /*
178  * TKT253890, the controller needs the driver to fill the txfifo with
179  * 16 bytes at least to trigger a data transfer, even though the extra
180  * data won't be transferred.
181  */
182 #define QUADSPI_QUIRK_TKT253890		BIT(2)
183 
184 /* TKT245618, the controller cannot wake up from wait mode */
185 #define QUADSPI_QUIRK_TKT245618		BIT(3)
186 
187 /*
188  * Controller adds QSPI_AMBA_BASE (base address of the mapped memory)
189  * internally. No need to add it when setting SFXXAD and SFAR registers
190  */
191 #define QUADSPI_QUIRK_BASE_INTERNAL	BIT(4)
192 
193 /*
194  * Controller uses TDH bits in register QUADSPI_FLSHCR.
195  * They need to be set in accordance with the DDR/SDR mode.
196  */
197 #define QUADSPI_QUIRK_USE_TDH_SETTING	BIT(5)
198 
199 struct fsl_qspi_devtype_data {
200 	unsigned int rxfifo;
201 	unsigned int txfifo;
202 	int invalid_mstrid;
203 	unsigned int ahb_buf_size;
204 	unsigned int quirks;
205 	bool little_endian;
206 };
207 
208 static const struct fsl_qspi_devtype_data vybrid_data = {
209 	.rxfifo = SZ_128,
210 	.txfifo = SZ_64,
211 	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
212 	.ahb_buf_size = SZ_1K,
213 	.quirks = QUADSPI_QUIRK_SWAP_ENDIAN,
214 	.little_endian = true,
215 };
216 
217 static const struct fsl_qspi_devtype_data imx6sx_data = {
218 	.rxfifo = SZ_128,
219 	.txfifo = SZ_512,
220 	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
221 	.ahb_buf_size = SZ_1K,
222 	.quirks = QUADSPI_QUIRK_4X_INT_CLK | QUADSPI_QUIRK_TKT245618,
223 	.little_endian = true,
224 };
225 
226 static const struct fsl_qspi_devtype_data imx7d_data = {
227 	.rxfifo = SZ_128,
228 	.txfifo = SZ_512,
229 	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
230 	.ahb_buf_size = SZ_1K,
231 	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
232 		  QUADSPI_QUIRK_USE_TDH_SETTING,
233 	.little_endian = true,
234 };
235 
236 static const struct fsl_qspi_devtype_data imx6ul_data = {
237 	.rxfifo = SZ_128,
238 	.txfifo = SZ_512,
239 	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
240 	.ahb_buf_size = SZ_1K,
241 	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_4X_INT_CLK |
242 		  QUADSPI_QUIRK_USE_TDH_SETTING,
243 	.little_endian = true,
244 };
245 
246 static const struct fsl_qspi_devtype_data ls1021a_data = {
247 	.rxfifo = SZ_128,
248 	.txfifo = SZ_64,
249 	.invalid_mstrid = QUADSPI_BUFXCR_INVALID_MSTRID,
250 	.ahb_buf_size = SZ_1K,
251 	.quirks = 0,
252 	.little_endian = false,
253 };
254 
255 static const struct fsl_qspi_devtype_data ls2080a_data = {
256 	.rxfifo = SZ_128,
257 	.txfifo = SZ_64,
258 	.ahb_buf_size = SZ_1K,
259 	.invalid_mstrid = 0x0,
260 	.quirks = QUADSPI_QUIRK_TKT253890 | QUADSPI_QUIRK_BASE_INTERNAL,
261 	.little_endian = true,
262 };
263 
264 struct fsl_qspi {
265 	void __iomem *iobase;
266 	void __iomem *ahb_addr;
267 	u32 memmap_phy;
268 	struct clk *clk, *clk_en;
269 	struct device *dev;
270 	struct completion c;
271 	const struct fsl_qspi_devtype_data *devtype_data;
272 	struct mutex lock;
273 	struct pm_qos_request pm_qos_req;
274 	int selected;
275 };
276 
needs_swap_endian(struct fsl_qspi * q)277 static inline int needs_swap_endian(struct fsl_qspi *q)
278 {
279 	return q->devtype_data->quirks & QUADSPI_QUIRK_SWAP_ENDIAN;
280 }
281 
needs_4x_clock(struct fsl_qspi * q)282 static inline int needs_4x_clock(struct fsl_qspi *q)
283 {
284 	return q->devtype_data->quirks & QUADSPI_QUIRK_4X_INT_CLK;
285 }
286 
needs_fill_txfifo(struct fsl_qspi * q)287 static inline int needs_fill_txfifo(struct fsl_qspi *q)
288 {
289 	return q->devtype_data->quirks & QUADSPI_QUIRK_TKT253890;
290 }
291 
needs_wakeup_wait_mode(struct fsl_qspi * q)292 static inline int needs_wakeup_wait_mode(struct fsl_qspi *q)
293 {
294 	return q->devtype_data->quirks & QUADSPI_QUIRK_TKT245618;
295 }
296 
needs_amba_base_offset(struct fsl_qspi * q)297 static inline int needs_amba_base_offset(struct fsl_qspi *q)
298 {
299 	return !(q->devtype_data->quirks & QUADSPI_QUIRK_BASE_INTERNAL);
300 }
301 
needs_tdh_setting(struct fsl_qspi * q)302 static inline int needs_tdh_setting(struct fsl_qspi *q)
303 {
304 	return q->devtype_data->quirks & QUADSPI_QUIRK_USE_TDH_SETTING;
305 }
306 
307 /*
308  * An IC bug makes it necessary to rearrange the 32-bit data.
309  * Later chips, such as IMX6SLX, have fixed this bug.
310  */
fsl_qspi_endian_xchg(struct fsl_qspi * q,u32 a)311 static inline u32 fsl_qspi_endian_xchg(struct fsl_qspi *q, u32 a)
312 {
313 	return needs_swap_endian(q) ? __swab32(a) : a;
314 }
315 
316 /*
317  * R/W functions for big- or little-endian registers:
318  * The QSPI controller's endianness is independent of
319  * the CPU core's endianness. So far, although the CPU
320  * core is little-endian the QSPI controller can use
321  * big-endian or little-endian.
322  */
qspi_writel(struct fsl_qspi * q,u32 val,void __iomem * addr)323 static void qspi_writel(struct fsl_qspi *q, u32 val, void __iomem *addr)
324 {
325 	if (q->devtype_data->little_endian)
326 		iowrite32(val, addr);
327 	else
328 		iowrite32be(val, addr);
329 }
330 
qspi_readl(struct fsl_qspi * q,void __iomem * addr)331 static u32 qspi_readl(struct fsl_qspi *q, void __iomem *addr)
332 {
333 	if (q->devtype_data->little_endian)
334 		return ioread32(addr);
335 
336 	return ioread32be(addr);
337 }
338 
fsl_qspi_irq_handler(int irq,void * dev_id)339 static irqreturn_t fsl_qspi_irq_handler(int irq, void *dev_id)
340 {
341 	struct fsl_qspi *q = dev_id;
342 	u32 reg;
343 
344 	/* clear interrupt */
345 	reg = qspi_readl(q, q->iobase + QUADSPI_FR);
346 	qspi_writel(q, reg, q->iobase + QUADSPI_FR);
347 
348 	if (reg & QUADSPI_FR_TFF_MASK)
349 		complete(&q->c);
350 
351 	dev_dbg(q->dev, "QUADSPI_FR : 0x%.8x:0x%.8x\n", 0, reg);
352 	return IRQ_HANDLED;
353 }
354 
fsl_qspi_check_buswidth(struct fsl_qspi * q,u8 width)355 static int fsl_qspi_check_buswidth(struct fsl_qspi *q, u8 width)
356 {
357 	switch (width) {
358 	case 1:
359 	case 2:
360 	case 4:
361 		return 0;
362 	}
363 
364 	return -ENOTSUPP;
365 }
366 
fsl_qspi_supports_op(struct spi_mem * mem,const struct spi_mem_op * op)367 static bool fsl_qspi_supports_op(struct spi_mem *mem,
368 				 const struct spi_mem_op *op)
369 {
370 	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
371 	int ret;
372 
373 	ret = fsl_qspi_check_buswidth(q, op->cmd.buswidth);
374 
375 	if (op->addr.nbytes)
376 		ret |= fsl_qspi_check_buswidth(q, op->addr.buswidth);
377 
378 	if (op->dummy.nbytes)
379 		ret |= fsl_qspi_check_buswidth(q, op->dummy.buswidth);
380 
381 	if (op->data.nbytes)
382 		ret |= fsl_qspi_check_buswidth(q, op->data.buswidth);
383 
384 	if (ret)
385 		return false;
386 
387 	/*
388 	 * The number of instructions needed for the op, needs
389 	 * to fit into a single LUT entry.
390 	 */
391 	if (op->addr.nbytes +
392 	   (op->dummy.nbytes ? 1:0) +
393 	   (op->data.nbytes ? 1:0) > 6)
394 		return false;
395 
396 	/* Max 64 dummy clock cycles supported */
397 	if (op->dummy.nbytes &&
398 	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
399 		return false;
400 
401 	/* Max data length, check controller limits and alignment */
402 	if (op->data.dir == SPI_MEM_DATA_IN &&
403 	    (op->data.nbytes > q->devtype_data->ahb_buf_size ||
404 	     (op->data.nbytes > q->devtype_data->rxfifo - 4 &&
405 	      !IS_ALIGNED(op->data.nbytes, 8))))
406 		return false;
407 
408 	if (op->data.dir == SPI_MEM_DATA_OUT &&
409 	    op->data.nbytes > q->devtype_data->txfifo)
410 		return false;
411 
412 	return spi_mem_default_supports_op(mem, op);
413 }
414 
fsl_qspi_prepare_lut(struct fsl_qspi * q,const struct spi_mem_op * op)415 static void fsl_qspi_prepare_lut(struct fsl_qspi *q,
416 				 const struct spi_mem_op *op)
417 {
418 	void __iomem *base = q->iobase;
419 	u32 lutval[4] = {};
420 	int lutidx = 1, i;
421 
422 	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
423 			     op->cmd.opcode);
424 
425 	/*
426 	 * For some unknown reason, using LUT_ADDR doesn't work in some
427 	 * cases (at least with only one byte long addresses), so
428 	 * let's use LUT_MODE to write the address bytes one by one
429 	 */
430 	for (i = 0; i < op->addr.nbytes; i++) {
431 		u8 addrbyte = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
432 
433 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_MODE,
434 					      LUT_PAD(op->addr.buswidth),
435 					      addrbyte);
436 		lutidx++;
437 	}
438 
439 	if (op->dummy.nbytes) {
440 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
441 					      LUT_PAD(op->dummy.buswidth),
442 					      op->dummy.nbytes * 8 /
443 					      op->dummy.buswidth);
444 		lutidx++;
445 	}
446 
447 	if (op->data.nbytes) {
448 		lutval[lutidx / 2] |= LUT_DEF(lutidx,
449 					      op->data.dir == SPI_MEM_DATA_IN ?
450 					      LUT_FSL_READ : LUT_FSL_WRITE,
451 					      LUT_PAD(op->data.buswidth),
452 					      0);
453 		lutidx++;
454 	}
455 
456 	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
457 
458 	/* unlock LUT */
459 	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
460 	qspi_writel(q, QUADSPI_LCKER_UNLOCK, q->iobase + QUADSPI_LCKCR);
461 
462 	/* fill LUT */
463 	for (i = 0; i < ARRAY_SIZE(lutval); i++)
464 		qspi_writel(q, lutval[i], base + QUADSPI_LUT_REG(i));
465 
466 	/* lock LUT */
467 	qspi_writel(q, QUADSPI_LUTKEY_VALUE, q->iobase + QUADSPI_LUTKEY);
468 	qspi_writel(q, QUADSPI_LCKER_LOCK, q->iobase + QUADSPI_LCKCR);
469 }
470 
fsl_qspi_clk_prep_enable(struct fsl_qspi * q)471 static int fsl_qspi_clk_prep_enable(struct fsl_qspi *q)
472 {
473 	int ret;
474 
475 	ret = clk_prepare_enable(q->clk_en);
476 	if (ret)
477 		return ret;
478 
479 	ret = clk_prepare_enable(q->clk);
480 	if (ret) {
481 		clk_disable_unprepare(q->clk_en);
482 		return ret;
483 	}
484 
485 	if (needs_wakeup_wait_mode(q))
486 		cpu_latency_qos_add_request(&q->pm_qos_req, 0);
487 
488 	return 0;
489 }
490 
fsl_qspi_clk_disable_unprep(struct fsl_qspi * q)491 static void fsl_qspi_clk_disable_unprep(struct fsl_qspi *q)
492 {
493 	if (needs_wakeup_wait_mode(q))
494 		cpu_latency_qos_remove_request(&q->pm_qos_req);
495 
496 	clk_disable_unprepare(q->clk);
497 	clk_disable_unprepare(q->clk_en);
498 }
499 
500 /*
501  * If we have changed the content of the flash by writing or erasing, or if we
502  * read from flash with a different offset into the page buffer, we need to
503  * invalidate the AHB buffer. If we do not do so, we may read out the wrong
504  * data. The spec tells us reset the AHB domain and Serial Flash domain at
505  * the same time.
506  */
fsl_qspi_invalidate(struct fsl_qspi * q)507 static void fsl_qspi_invalidate(struct fsl_qspi *q)
508 {
509 	u32 reg;
510 
511 	reg = qspi_readl(q, q->iobase + QUADSPI_MCR);
512 	reg |= QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK;
513 	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
514 
515 	/*
516 	 * The minimum delay : 1 AHB + 2 SFCK clocks.
517 	 * Delay 1 us is enough.
518 	 */
519 	udelay(1);
520 
521 	reg &= ~(QUADSPI_MCR_SWRSTHD_MASK | QUADSPI_MCR_SWRSTSD_MASK);
522 	qspi_writel(q, reg, q->iobase + QUADSPI_MCR);
523 }
524 
fsl_qspi_select_mem(struct fsl_qspi * q,struct spi_device * spi,const struct spi_mem_op * op)525 static void fsl_qspi_select_mem(struct fsl_qspi *q, struct spi_device *spi,
526 				const struct spi_mem_op *op)
527 {
528 	unsigned long rate = op->max_freq;
529 	int ret;
530 
531 	if (q->selected == spi_get_chipselect(spi, 0))
532 		return;
533 
534 	if (needs_4x_clock(q))
535 		rate *= 4;
536 
537 	fsl_qspi_clk_disable_unprep(q);
538 
539 	ret = clk_set_rate(q->clk, rate);
540 	if (ret)
541 		return;
542 
543 	ret = fsl_qspi_clk_prep_enable(q);
544 	if (ret)
545 		return;
546 
547 	q->selected = spi_get_chipselect(spi, 0);
548 
549 	fsl_qspi_invalidate(q);
550 }
551 
fsl_qspi_read_ahb(struct fsl_qspi * q,const struct spi_mem_op * op)552 static void fsl_qspi_read_ahb(struct fsl_qspi *q, const struct spi_mem_op *op)
553 {
554 	memcpy_fromio(op->data.buf.in,
555 		      q->ahb_addr + q->selected * q->devtype_data->ahb_buf_size,
556 		      op->data.nbytes);
557 }
558 
fsl_qspi_fill_txfifo(struct fsl_qspi * q,const struct spi_mem_op * op)559 static void fsl_qspi_fill_txfifo(struct fsl_qspi *q,
560 				 const struct spi_mem_op *op)
561 {
562 	void __iomem *base = q->iobase;
563 	int i;
564 	u32 val;
565 
566 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
567 		memcpy(&val, op->data.buf.out + i, 4);
568 		val = fsl_qspi_endian_xchg(q, val);
569 		qspi_writel(q, val, base + QUADSPI_TBDR);
570 	}
571 
572 	if (i < op->data.nbytes) {
573 		memcpy(&val, op->data.buf.out + i, op->data.nbytes - i);
574 		val = fsl_qspi_endian_xchg(q, val);
575 		qspi_writel(q, val, base + QUADSPI_TBDR);
576 	}
577 
578 	if (needs_fill_txfifo(q)) {
579 		for (i = op->data.nbytes; i < 16; i += 4)
580 			qspi_writel(q, 0, base + QUADSPI_TBDR);
581 	}
582 }
583 
fsl_qspi_read_rxfifo(struct fsl_qspi * q,const struct spi_mem_op * op)584 static void fsl_qspi_read_rxfifo(struct fsl_qspi *q,
585 			  const struct spi_mem_op *op)
586 {
587 	void __iomem *base = q->iobase;
588 	int i;
589 	u8 *buf = op->data.buf.in;
590 	u32 val;
591 
592 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 4); i += 4) {
593 		val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
594 		val = fsl_qspi_endian_xchg(q, val);
595 		memcpy(buf + i, &val, 4);
596 	}
597 
598 	if (i < op->data.nbytes) {
599 		val = qspi_readl(q, base + QUADSPI_RBDR(i / 4));
600 		val = fsl_qspi_endian_xchg(q, val);
601 		memcpy(buf + i, &val, op->data.nbytes - i);
602 	}
603 }
604 
fsl_qspi_do_op(struct fsl_qspi * q,const struct spi_mem_op * op)605 static int fsl_qspi_do_op(struct fsl_qspi *q, const struct spi_mem_op *op)
606 {
607 	void __iomem *base = q->iobase;
608 	int err = 0;
609 
610 	init_completion(&q->c);
611 
612 	/*
613 	 * Always start the sequence at the same index since we update
614 	 * the LUT at each exec_op() call. And also specify the DATA
615 	 * length, since it's has not been specified in the LUT.
616 	 */
617 	qspi_writel(q, op->data.nbytes | QUADSPI_IPCR_SEQID(SEQID_LUT),
618 		    base + QUADSPI_IPCR);
619 
620 	/* Wait for the interrupt. */
621 	if (!wait_for_completion_timeout(&q->c, msecs_to_jiffies(1000)))
622 		err = -ETIMEDOUT;
623 
624 	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
625 		fsl_qspi_read_rxfifo(q, op);
626 
627 	return err;
628 }
629 
fsl_qspi_readl_poll_tout(struct fsl_qspi * q,void __iomem * base,u32 mask,u32 delay_us,u32 timeout_us)630 static int fsl_qspi_readl_poll_tout(struct fsl_qspi *q, void __iomem *base,
631 				    u32 mask, u32 delay_us, u32 timeout_us)
632 {
633 	u32 reg;
634 
635 	if (!q->devtype_data->little_endian)
636 		mask = (u32)cpu_to_be32(mask);
637 
638 	return readl_poll_timeout(base, reg, !(reg & mask), delay_us,
639 				  timeout_us);
640 }
641 
fsl_qspi_exec_op(struct spi_mem * mem,const struct spi_mem_op * op)642 static int fsl_qspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
643 {
644 	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
645 	void __iomem *base = q->iobase;
646 	u32 addr_offset = 0;
647 	int err = 0;
648 	int invalid_mstrid = q->devtype_data->invalid_mstrid;
649 
650 	mutex_lock(&q->lock);
651 
652 	/* wait for the controller being ready */
653 	fsl_qspi_readl_poll_tout(q, base + QUADSPI_SR, (QUADSPI_SR_IP_ACC_MASK |
654 				 QUADSPI_SR_AHB_ACC_MASK), 10, 1000);
655 
656 	fsl_qspi_select_mem(q, mem->spi, op);
657 
658 	if (needs_amba_base_offset(q))
659 		addr_offset = q->memmap_phy;
660 
661 	qspi_writel(q,
662 		    q->selected * q->devtype_data->ahb_buf_size + addr_offset,
663 		    base + QUADSPI_SFAR);
664 
665 	qspi_writel(q, qspi_readl(q, base + QUADSPI_MCR) |
666 		    QUADSPI_MCR_CLR_RXF_MASK | QUADSPI_MCR_CLR_TXF_MASK,
667 		    base + QUADSPI_MCR);
668 
669 	qspi_writel(q, QUADSPI_SPTRCLR_BFPTRC | QUADSPI_SPTRCLR_IPPTRC,
670 		    base + QUADSPI_SPTRCLR);
671 
672 	qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF0CR);
673 	qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF1CR);
674 	qspi_writel(q, invalid_mstrid, base + QUADSPI_BUF2CR);
675 
676 	fsl_qspi_prepare_lut(q, op);
677 
678 	/*
679 	 * If we have large chunks of data, we read them through the AHB bus
680 	 * by accessing the mapped memory. In all other cases we use
681 	 * IP commands to access the flash.
682 	 */
683 	if (op->data.nbytes > (q->devtype_data->rxfifo - 4) &&
684 	    op->data.dir == SPI_MEM_DATA_IN) {
685 		fsl_qspi_read_ahb(q, op);
686 	} else {
687 		qspi_writel(q, QUADSPI_RBCT_WMRK_MASK |
688 			    QUADSPI_RBCT_RXBRD_USEIPS, base + QUADSPI_RBCT);
689 
690 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
691 			fsl_qspi_fill_txfifo(q, op);
692 
693 		err = fsl_qspi_do_op(q, op);
694 	}
695 
696 	/* Invalidate the data in the AHB buffer. */
697 	fsl_qspi_invalidate(q);
698 
699 	mutex_unlock(&q->lock);
700 
701 	return err;
702 }
703 
fsl_qspi_adjust_op_size(struct spi_mem * mem,struct spi_mem_op * op)704 static int fsl_qspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
705 {
706 	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
707 
708 	if (op->data.dir == SPI_MEM_DATA_OUT) {
709 		if (op->data.nbytes > q->devtype_data->txfifo)
710 			op->data.nbytes = q->devtype_data->txfifo;
711 	} else {
712 		if (op->data.nbytes > q->devtype_data->ahb_buf_size)
713 			op->data.nbytes = q->devtype_data->ahb_buf_size;
714 		else if (op->data.nbytes > (q->devtype_data->rxfifo - 4))
715 			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
716 	}
717 
718 	return 0;
719 }
720 
fsl_qspi_default_setup(struct fsl_qspi * q)721 static int fsl_qspi_default_setup(struct fsl_qspi *q)
722 {
723 	void __iomem *base = q->iobase;
724 	u32 reg, addr_offset = 0;
725 	int ret;
726 
727 	/* disable and unprepare clock to avoid glitch pass to controller */
728 	fsl_qspi_clk_disable_unprep(q);
729 
730 	/* the default frequency, we will change it later if necessary. */
731 	ret = clk_set_rate(q->clk, 66000000);
732 	if (ret)
733 		return ret;
734 
735 	ret = fsl_qspi_clk_prep_enable(q);
736 	if (ret)
737 		return ret;
738 
739 	/* Reset the module */
740 	qspi_writel(q, QUADSPI_MCR_SWRSTSD_MASK | QUADSPI_MCR_SWRSTHD_MASK,
741 		    base + QUADSPI_MCR);
742 	udelay(1);
743 
744 	/* Disable the module */
745 	qspi_writel(q, QUADSPI_MCR_MDIS_MASK | QUADSPI_MCR_RESERVED_MASK,
746 		    base + QUADSPI_MCR);
747 
748 	/*
749 	 * Previous boot stages (BootROM, bootloader) might have used DDR
750 	 * mode and did not clear the TDH bits. As we currently use SDR mode
751 	 * only, clear the TDH bits if necessary.
752 	 */
753 	if (needs_tdh_setting(q))
754 		qspi_writel(q, qspi_readl(q, base + QUADSPI_FLSHCR) &
755 			    ~QUADSPI_FLSHCR_TDH_MASK,
756 			    base + QUADSPI_FLSHCR);
757 
758 	reg = qspi_readl(q, base + QUADSPI_SMPR);
759 	qspi_writel(q, reg & ~(QUADSPI_SMPR_FSDLY_MASK
760 			| QUADSPI_SMPR_FSPHS_MASK
761 			| QUADSPI_SMPR_HSENA_MASK
762 			| QUADSPI_SMPR_DDRSMP_MASK), base + QUADSPI_SMPR);
763 
764 	/* We only use the buffer3 for AHB read */
765 	qspi_writel(q, 0, base + QUADSPI_BUF0IND);
766 	qspi_writel(q, 0, base + QUADSPI_BUF1IND);
767 	qspi_writel(q, 0, base + QUADSPI_BUF2IND);
768 
769 	qspi_writel(q, QUADSPI_BFGENCR_SEQID(SEQID_LUT),
770 		    q->iobase + QUADSPI_BFGENCR);
771 	qspi_writel(q, QUADSPI_RBCT_WMRK_MASK, base + QUADSPI_RBCT);
772 	qspi_writel(q, QUADSPI_BUF3CR_ALLMST_MASK |
773 		    QUADSPI_BUF3CR_ADATSZ(q->devtype_data->ahb_buf_size / 8),
774 		    base + QUADSPI_BUF3CR);
775 
776 	if (needs_amba_base_offset(q))
777 		addr_offset = q->memmap_phy;
778 
779 	/*
780 	 * In HW there can be a maximum of four chips on two buses with
781 	 * two chip selects on each bus. We use four chip selects in SW
782 	 * to differentiate between the four chips.
783 	 * We use ahb_buf_size for each chip and set SFA1AD, SFA2AD, SFB1AD,
784 	 * SFB2AD accordingly.
785 	 */
786 	qspi_writel(q, q->devtype_data->ahb_buf_size + addr_offset,
787 		    base + QUADSPI_SFA1AD);
788 	qspi_writel(q, q->devtype_data->ahb_buf_size * 2 + addr_offset,
789 		    base + QUADSPI_SFA2AD);
790 	qspi_writel(q, q->devtype_data->ahb_buf_size * 3 + addr_offset,
791 		    base + QUADSPI_SFB1AD);
792 	qspi_writel(q, q->devtype_data->ahb_buf_size * 4 + addr_offset,
793 		    base + QUADSPI_SFB2AD);
794 
795 	q->selected = -1;
796 
797 	/* Enable the module */
798 	qspi_writel(q, QUADSPI_MCR_RESERVED_MASK | QUADSPI_MCR_END_CFG_MASK,
799 		    base + QUADSPI_MCR);
800 
801 	/* clear all interrupt status */
802 	qspi_writel(q, 0xffffffff, q->iobase + QUADSPI_FR);
803 
804 	/* enable the interrupt */
805 	qspi_writel(q, QUADSPI_RSER_TFIE, q->iobase + QUADSPI_RSER);
806 
807 	return 0;
808 }
809 
fsl_qspi_get_name(struct spi_mem * mem)810 static const char *fsl_qspi_get_name(struct spi_mem *mem)
811 {
812 	struct fsl_qspi *q = spi_controller_get_devdata(mem->spi->controller);
813 	struct device *dev = &mem->spi->dev;
814 	const char *name;
815 
816 	/*
817 	 * In order to keep mtdparts compatible with the old MTD driver at
818 	 * mtd/spi-nor/fsl-quadspi.c, we set a custom name derived from the
819 	 * platform_device of the controller.
820 	 */
821 	if (of_get_available_child_count(q->dev->of_node) == 1)
822 		return dev_name(q->dev);
823 
824 	name = devm_kasprintf(dev, GFP_KERNEL,
825 			      "%s-%d", dev_name(q->dev),
826 			      spi_get_chipselect(mem->spi, 0));
827 
828 	if (!name) {
829 		dev_err(dev, "failed to get memory for custom flash name\n");
830 		return ERR_PTR(-ENOMEM);
831 	}
832 
833 	return name;
834 }
835 
836 static const struct spi_controller_mem_ops fsl_qspi_mem_ops = {
837 	.adjust_op_size = fsl_qspi_adjust_op_size,
838 	.supports_op = fsl_qspi_supports_op,
839 	.exec_op = fsl_qspi_exec_op,
840 	.get_name = fsl_qspi_get_name,
841 };
842 
843 static const struct spi_controller_mem_caps fsl_qspi_mem_caps = {
844 	.per_op_freq = true,
845 };
846 
fsl_qspi_cleanup(void * data)847 static void fsl_qspi_cleanup(void *data)
848 {
849 	struct fsl_qspi *q = data;
850 
851 	/* disable the hardware */
852 	qspi_writel(q, QUADSPI_MCR_MDIS_MASK, q->iobase + QUADSPI_MCR);
853 	qspi_writel(q, 0x0, q->iobase + QUADSPI_RSER);
854 
855 	fsl_qspi_clk_disable_unprep(q);
856 
857 	mutex_destroy(&q->lock);
858 }
859 
fsl_qspi_probe(struct platform_device * pdev)860 static int fsl_qspi_probe(struct platform_device *pdev)
861 {
862 	struct spi_controller *ctlr;
863 	struct device *dev = &pdev->dev;
864 	struct device_node *np = dev->of_node;
865 	struct resource *res;
866 	struct fsl_qspi *q;
867 	int ret;
868 
869 	ctlr = spi_alloc_host(&pdev->dev, sizeof(*q));
870 	if (!ctlr)
871 		return -ENOMEM;
872 
873 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD |
874 			  SPI_TX_DUAL | SPI_TX_QUAD;
875 
876 	q = spi_controller_get_devdata(ctlr);
877 	q->dev = dev;
878 	q->devtype_data = of_device_get_match_data(dev);
879 	if (!q->devtype_data) {
880 		ret = -ENODEV;
881 		goto err_put_ctrl;
882 	}
883 
884 	platform_set_drvdata(pdev, q);
885 
886 	/* find the resources */
887 	q->iobase = devm_platform_ioremap_resource_byname(pdev, "QuadSPI");
888 	if (IS_ERR(q->iobase)) {
889 		ret = PTR_ERR(q->iobase);
890 		goto err_put_ctrl;
891 	}
892 
893 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
894 					"QuadSPI-memory");
895 	if (!res) {
896 		ret = -EINVAL;
897 		goto err_put_ctrl;
898 	}
899 	q->memmap_phy = res->start;
900 	/* Since there are 4 cs, map size required is 4 times ahb_buf_size */
901 	q->ahb_addr = devm_ioremap(dev, q->memmap_phy,
902 				   (q->devtype_data->ahb_buf_size * 4));
903 	if (!q->ahb_addr) {
904 		ret = -ENOMEM;
905 		goto err_put_ctrl;
906 	}
907 
908 	/* find the clocks */
909 	q->clk_en = devm_clk_get(dev, "qspi_en");
910 	if (IS_ERR(q->clk_en)) {
911 		ret = PTR_ERR(q->clk_en);
912 		goto err_put_ctrl;
913 	}
914 
915 	q->clk = devm_clk_get(dev, "qspi");
916 	if (IS_ERR(q->clk)) {
917 		ret = PTR_ERR(q->clk);
918 		goto err_put_ctrl;
919 	}
920 
921 	ret = fsl_qspi_clk_prep_enable(q);
922 	if (ret) {
923 		dev_err(dev, "can not enable the clock\n");
924 		goto err_put_ctrl;
925 	}
926 
927 	/* find the irq */
928 	ret = platform_get_irq(pdev, 0);
929 	if (ret < 0)
930 		goto err_disable_clk;
931 
932 	ret = devm_request_irq(dev, ret,
933 			fsl_qspi_irq_handler, 0, pdev->name, q);
934 	if (ret) {
935 		dev_err(dev, "failed to request irq: %d\n", ret);
936 		goto err_disable_clk;
937 	}
938 
939 	mutex_init(&q->lock);
940 
941 	ctlr->bus_num = -1;
942 	ctlr->num_chipselect = 4;
943 	ctlr->mem_ops = &fsl_qspi_mem_ops;
944 	ctlr->mem_caps = &fsl_qspi_mem_caps;
945 
946 	fsl_qspi_default_setup(q);
947 
948 	ctlr->dev.of_node = np;
949 
950 	ret = devm_add_action_or_reset(dev, fsl_qspi_cleanup, q);
951 	if (ret)
952 		goto err_put_ctrl;
953 
954 	ret = devm_spi_register_controller(dev, ctlr);
955 	if (ret)
956 		goto err_put_ctrl;
957 
958 	return 0;
959 
960 err_disable_clk:
961 	fsl_qspi_clk_disable_unprep(q);
962 
963 err_put_ctrl:
964 	spi_controller_put(ctlr);
965 
966 	dev_err(dev, "Freescale QuadSPI probe failed\n");
967 	return ret;
968 }
969 
fsl_qspi_suspend(struct device * dev)970 static int fsl_qspi_suspend(struct device *dev)
971 {
972 	return 0;
973 }
974 
fsl_qspi_resume(struct device * dev)975 static int fsl_qspi_resume(struct device *dev)
976 {
977 	struct fsl_qspi *q = dev_get_drvdata(dev);
978 
979 	fsl_qspi_default_setup(q);
980 
981 	return 0;
982 }
983 
984 static const struct of_device_id fsl_qspi_dt_ids[] = {
985 	{ .compatible = "fsl,vf610-qspi", .data = &vybrid_data, },
986 	{ .compatible = "fsl,imx6sx-qspi", .data = &imx6sx_data, },
987 	{ .compatible = "fsl,imx7d-qspi", .data = &imx7d_data, },
988 	{ .compatible = "fsl,imx6ul-qspi", .data = &imx6ul_data, },
989 	{ .compatible = "fsl,ls1021a-qspi", .data = &ls1021a_data, },
990 	{ .compatible = "fsl,ls2080a-qspi", .data = &ls2080a_data, },
991 	{ /* sentinel */ }
992 };
993 MODULE_DEVICE_TABLE(of, fsl_qspi_dt_ids);
994 
995 static const struct dev_pm_ops fsl_qspi_pm_ops = {
996 	.suspend	= fsl_qspi_suspend,
997 	.resume		= fsl_qspi_resume,
998 };
999 
1000 static struct platform_driver fsl_qspi_driver = {
1001 	.driver = {
1002 		.name	= "fsl-quadspi",
1003 		.of_match_table = fsl_qspi_dt_ids,
1004 		.pm =   &fsl_qspi_pm_ops,
1005 	},
1006 	.probe          = fsl_qspi_probe,
1007 };
1008 module_platform_driver(fsl_qspi_driver);
1009 
1010 MODULE_DESCRIPTION("Freescale QuadSPI Controller Driver");
1011 MODULE_AUTHOR("Freescale Semiconductor Inc.");
1012 MODULE_AUTHOR("Boris Brezillon <[email protected]>");
1013 MODULE_AUTHOR("Frieder Schrempf <[email protected]>");
1014 MODULE_AUTHOR("Yogesh Gaur <[email protected]>");
1015 MODULE_AUTHOR("Suresh Gupta <[email protected]>");
1016 MODULE_LICENSE("GPL v2");
1017