1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * vrf.c: device driver to encapsulate a VRF space
4 *
5 * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6 * Copyright (c) 2015 Shrijeet Mukherjee <[email protected]>
7 * Copyright (c) 2015 David Ahern <[email protected]>
8 *
9 * Based on dummy, team and ipvlan drivers
10 */
11
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/sch_generic.h>
38 #include <net/netns/generic.h>
39 #include <net/netfilter/nf_conntrack.h>
40 #include <net/inet_dscp.h>
41
42 #define DRV_NAME "vrf"
43 #define DRV_VERSION "1.1"
44
45 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */
46
47 #define HT_MAP_BITS 4
48 #define HASH_INITVAL ((u32)0xcafef00d)
49
50 struct vrf_map {
51 DECLARE_HASHTABLE(ht, HT_MAP_BITS);
52 spinlock_t vmap_lock;
53
54 /* shared_tables:
55 * count how many distinct tables do not comply with the strict mode
56 * requirement.
57 * shared_tables value must be 0 in order to enable the strict mode.
58 *
59 * example of the evolution of shared_tables:
60 * | time
61 * add vrf0 --> table 100 shared_tables = 0 | t0
62 * add vrf1 --> table 101 shared_tables = 0 | t1
63 * add vrf2 --> table 100 shared_tables = 1 | t2
64 * add vrf3 --> table 100 shared_tables = 1 | t3
65 * add vrf4 --> table 101 shared_tables = 2 v t4
66 *
67 * shared_tables is a "step function" (or "staircase function")
68 * and it is increased by one when the second vrf is associated to a
69 * table.
70 *
71 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
72 *
73 * at t3, another dev (vrf3) is bound to the same table 100 but the
74 * value of shared_tables is still 1.
75 * This means that no matter how many new vrfs will register on the
76 * table 100, the shared_tables will not increase (considering only
77 * table 100).
78 *
79 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
80 *
81 * Looking at the value of shared_tables we can immediately know if
82 * the strict_mode can or cannot be enforced. Indeed, strict_mode
83 * can be enforced iff shared_tables = 0.
84 *
85 * Conversely, shared_tables is decreased when a vrf is de-associated
86 * from a table with exactly two associated vrfs.
87 */
88 u32 shared_tables;
89
90 bool strict_mode;
91 };
92
93 struct vrf_map_elem {
94 struct hlist_node hnode;
95 struct list_head vrf_list; /* VRFs registered to this table */
96
97 u32 table_id;
98 int users;
99 int ifindex;
100 };
101
102 static unsigned int vrf_net_id;
103
104 /* per netns vrf data */
105 struct netns_vrf {
106 /* protected by rtnl lock */
107 bool add_fib_rules;
108
109 struct vrf_map vmap;
110 struct ctl_table_header *ctl_hdr;
111 };
112
113 struct net_vrf {
114 struct rtable __rcu *rth;
115 struct rt6_info __rcu *rt6;
116 #if IS_ENABLED(CONFIG_IPV6)
117 struct fib6_table *fib6_table;
118 #endif
119 u32 tb_id;
120
121 struct list_head me_list; /* entry in vrf_map_elem */
122 int ifindex;
123 };
124
vrf_tx_error(struct net_device * vrf_dev,struct sk_buff * skb)125 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
126 {
127 vrf_dev->stats.tx_errors++;
128 kfree_skb(skb);
129 }
130
netns_vrf_map(struct net * net)131 static struct vrf_map *netns_vrf_map(struct net *net)
132 {
133 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
134
135 return &nn_vrf->vmap;
136 }
137
netns_vrf_map_by_dev(struct net_device * dev)138 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
139 {
140 return netns_vrf_map(dev_net(dev));
141 }
142
vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem * me)143 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
144 {
145 struct list_head *me_head = &me->vrf_list;
146 struct net_vrf *vrf;
147
148 if (list_empty(me_head))
149 return -ENODEV;
150
151 vrf = list_first_entry(me_head, struct net_vrf, me_list);
152
153 return vrf->ifindex;
154 }
155
vrf_map_elem_alloc(gfp_t flags)156 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
157 {
158 struct vrf_map_elem *me;
159
160 me = kmalloc(sizeof(*me), flags);
161 if (!me)
162 return NULL;
163
164 return me;
165 }
166
vrf_map_elem_free(struct vrf_map_elem * me)167 static void vrf_map_elem_free(struct vrf_map_elem *me)
168 {
169 kfree(me);
170 }
171
vrf_map_elem_init(struct vrf_map_elem * me,int table_id,int ifindex,int users)172 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
173 int ifindex, int users)
174 {
175 me->table_id = table_id;
176 me->ifindex = ifindex;
177 me->users = users;
178 INIT_LIST_HEAD(&me->vrf_list);
179 }
180
vrf_map_lookup_elem(struct vrf_map * vmap,u32 table_id)181 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
182 u32 table_id)
183 {
184 struct vrf_map_elem *me;
185 u32 key;
186
187 key = jhash_1word(table_id, HASH_INITVAL);
188 hash_for_each_possible(vmap->ht, me, hnode, key) {
189 if (me->table_id == table_id)
190 return me;
191 }
192
193 return NULL;
194 }
195
vrf_map_add_elem(struct vrf_map * vmap,struct vrf_map_elem * me)196 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
197 {
198 u32 table_id = me->table_id;
199 u32 key;
200
201 key = jhash_1word(table_id, HASH_INITVAL);
202 hash_add(vmap->ht, &me->hnode, key);
203 }
204
vrf_map_del_elem(struct vrf_map_elem * me)205 static void vrf_map_del_elem(struct vrf_map_elem *me)
206 {
207 hash_del(&me->hnode);
208 }
209
vrf_map_lock(struct vrf_map * vmap)210 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
211 {
212 spin_lock(&vmap->vmap_lock);
213 }
214
vrf_map_unlock(struct vrf_map * vmap)215 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
216 {
217 spin_unlock(&vmap->vmap_lock);
218 }
219
220 /* called with rtnl lock held */
221 static int
vrf_map_register_dev(struct net_device * dev,struct netlink_ext_ack * extack)222 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
223 {
224 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
225 struct net_vrf *vrf = netdev_priv(dev);
226 struct vrf_map_elem *new_me, *me;
227 u32 table_id = vrf->tb_id;
228 bool free_new_me = false;
229 int users;
230 int res;
231
232 /* we pre-allocate elements used in the spin-locked section (so that we
233 * keep the spinlock as short as possible).
234 */
235 new_me = vrf_map_elem_alloc(GFP_KERNEL);
236 if (!new_me)
237 return -ENOMEM;
238
239 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
240
241 vrf_map_lock(vmap);
242
243 me = vrf_map_lookup_elem(vmap, table_id);
244 if (!me) {
245 me = new_me;
246 vrf_map_add_elem(vmap, me);
247 goto link_vrf;
248 }
249
250 /* we already have an entry in the vrf_map, so it means there is (at
251 * least) a vrf registered on the specific table.
252 */
253 free_new_me = true;
254 if (vmap->strict_mode) {
255 /* vrfs cannot share the same table */
256 NL_SET_ERR_MSG(extack, "Table is used by another VRF");
257 res = -EBUSY;
258 goto unlock;
259 }
260
261 link_vrf:
262 users = ++me->users;
263 if (users == 2)
264 ++vmap->shared_tables;
265
266 list_add(&vrf->me_list, &me->vrf_list);
267
268 res = 0;
269
270 unlock:
271 vrf_map_unlock(vmap);
272
273 /* clean-up, if needed */
274 if (free_new_me)
275 vrf_map_elem_free(new_me);
276
277 return res;
278 }
279
280 /* called with rtnl lock held */
vrf_map_unregister_dev(struct net_device * dev)281 static void vrf_map_unregister_dev(struct net_device *dev)
282 {
283 struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
284 struct net_vrf *vrf = netdev_priv(dev);
285 u32 table_id = vrf->tb_id;
286 struct vrf_map_elem *me;
287 int users;
288
289 vrf_map_lock(vmap);
290
291 me = vrf_map_lookup_elem(vmap, table_id);
292 if (!me)
293 goto unlock;
294
295 list_del(&vrf->me_list);
296
297 users = --me->users;
298 if (users == 1) {
299 --vmap->shared_tables;
300 } else if (users == 0) {
301 vrf_map_del_elem(me);
302
303 /* no one will refer to this element anymore */
304 vrf_map_elem_free(me);
305 }
306
307 unlock:
308 vrf_map_unlock(vmap);
309 }
310
311 /* return the vrf device index associated with the table_id */
vrf_ifindex_lookup_by_table_id(struct net * net,u32 table_id)312 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
313 {
314 struct vrf_map *vmap = netns_vrf_map(net);
315 struct vrf_map_elem *me;
316 int ifindex;
317
318 vrf_map_lock(vmap);
319
320 if (!vmap->strict_mode) {
321 ifindex = -EPERM;
322 goto unlock;
323 }
324
325 me = vrf_map_lookup_elem(vmap, table_id);
326 if (!me) {
327 ifindex = -ENODEV;
328 goto unlock;
329 }
330
331 ifindex = vrf_map_elem_get_vrf_ifindex(me);
332
333 unlock:
334 vrf_map_unlock(vmap);
335
336 return ifindex;
337 }
338
339 /* by default VRF devices do not have a qdisc and are expected
340 * to be created with only a single queue.
341 */
qdisc_tx_is_default(const struct net_device * dev)342 static bool qdisc_tx_is_default(const struct net_device *dev)
343 {
344 struct netdev_queue *txq;
345 struct Qdisc *qdisc;
346
347 if (dev->num_tx_queues > 1)
348 return false;
349
350 txq = netdev_get_tx_queue(dev, 0);
351 qdisc = rcu_access_pointer(txq->qdisc);
352
353 return !qdisc->enqueue;
354 }
355
356 /* Local traffic destined to local address. Reinsert the packet to rx
357 * path, similar to loopback handling.
358 */
vrf_local_xmit(struct sk_buff * skb,struct net_device * dev,struct dst_entry * dst)359 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
360 struct dst_entry *dst)
361 {
362 unsigned int len = skb->len;
363
364 skb_orphan(skb);
365
366 skb_dst_set(skb, dst);
367
368 /* set pkt_type to avoid skb hitting packet taps twice -
369 * once on Tx and again in Rx processing
370 */
371 skb->pkt_type = PACKET_LOOPBACK;
372
373 skb->protocol = eth_type_trans(skb, dev);
374
375 if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
376 dev_dstats_rx_add(dev, len);
377 else
378 dev_dstats_rx_dropped(dev);
379
380 return NETDEV_TX_OK;
381 }
382
vrf_nf_set_untracked(struct sk_buff * skb)383 static void vrf_nf_set_untracked(struct sk_buff *skb)
384 {
385 if (skb_get_nfct(skb) == 0)
386 nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
387 }
388
vrf_nf_reset_ct(struct sk_buff * skb)389 static void vrf_nf_reset_ct(struct sk_buff *skb)
390 {
391 if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
392 nf_reset_ct(skb);
393 }
394
395 #if IS_ENABLED(CONFIG_IPV6)
vrf_ip6_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)396 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
397 struct sk_buff *skb)
398 {
399 int err;
400
401 vrf_nf_reset_ct(skb);
402
403 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
404 sk, skb, NULL, skb_dst(skb)->dev, dst_output);
405
406 if (likely(err == 1))
407 err = dst_output(net, sk, skb);
408
409 return err;
410 }
411
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)412 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
413 struct net_device *dev)
414 {
415 const struct ipv6hdr *iph;
416 struct net *net = dev_net(skb->dev);
417 struct flowi6 fl6;
418 int ret = NET_XMIT_DROP;
419 struct dst_entry *dst;
420 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
421
422 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
423 goto err;
424
425 iph = ipv6_hdr(skb);
426
427 memset(&fl6, 0, sizeof(fl6));
428 /* needed to match OIF rule */
429 fl6.flowi6_l3mdev = dev->ifindex;
430 fl6.flowi6_iif = LOOPBACK_IFINDEX;
431 fl6.daddr = iph->daddr;
432 fl6.saddr = iph->saddr;
433 fl6.flowlabel = ip6_flowinfo(iph);
434 fl6.flowi6_mark = skb->mark;
435 fl6.flowi6_proto = iph->nexthdr;
436
437 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
438 if (IS_ERR(dst) || dst == dst_null)
439 goto err;
440
441 skb_dst_drop(skb);
442
443 /* if dst.dev is the VRF device again this is locally originated traffic
444 * destined to a local address. Short circuit to Rx path.
445 */
446 if (dst->dev == dev)
447 return vrf_local_xmit(skb, dev, dst);
448
449 skb_dst_set(skb, dst);
450
451 /* strip the ethernet header added for pass through VRF device */
452 __skb_pull(skb, skb_network_offset(skb));
453
454 memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
455 ret = vrf_ip6_local_out(net, skb->sk, skb);
456 if (unlikely(net_xmit_eval(ret)))
457 dev->stats.tx_errors++;
458 else
459 ret = NET_XMIT_SUCCESS;
460
461 return ret;
462 err:
463 vrf_tx_error(dev, skb);
464 return NET_XMIT_DROP;
465 }
466 #else
vrf_process_v6_outbound(struct sk_buff * skb,struct net_device * dev)467 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
468 struct net_device *dev)
469 {
470 vrf_tx_error(dev, skb);
471 return NET_XMIT_DROP;
472 }
473 #endif
474
475 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
vrf_ip_local_out(struct net * net,struct sock * sk,struct sk_buff * skb)476 static int vrf_ip_local_out(struct net *net, struct sock *sk,
477 struct sk_buff *skb)
478 {
479 int err;
480
481 vrf_nf_reset_ct(skb);
482
483 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
484 skb, NULL, skb_dst(skb)->dev, dst_output);
485 if (likely(err == 1))
486 err = dst_output(net, sk, skb);
487
488 return err;
489 }
490
vrf_process_v4_outbound(struct sk_buff * skb,struct net_device * vrf_dev)491 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
492 struct net_device *vrf_dev)
493 {
494 struct iphdr *ip4h;
495 int ret = NET_XMIT_DROP;
496 struct flowi4 fl4;
497 struct net *net = dev_net(vrf_dev);
498 struct rtable *rt;
499
500 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
501 goto err;
502
503 ip4h = ip_hdr(skb);
504
505 memset(&fl4, 0, sizeof(fl4));
506 /* needed to match OIF rule */
507 fl4.flowi4_l3mdev = vrf_dev->ifindex;
508 fl4.flowi4_iif = LOOPBACK_IFINDEX;
509 fl4.flowi4_tos = inet_dscp_to_dsfield(ip4h_dscp(ip4h));
510 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
511 fl4.flowi4_proto = ip4h->protocol;
512 fl4.daddr = ip4h->daddr;
513 fl4.saddr = ip4h->saddr;
514
515 rt = ip_route_output_flow(net, &fl4, NULL);
516 if (IS_ERR(rt))
517 goto err;
518
519 skb_dst_drop(skb);
520
521 /* if dst.dev is the VRF device again this is locally originated traffic
522 * destined to a local address. Short circuit to Rx path.
523 */
524 if (rt->dst.dev == vrf_dev)
525 return vrf_local_xmit(skb, vrf_dev, &rt->dst);
526
527 skb_dst_set(skb, &rt->dst);
528
529 /* strip the ethernet header added for pass through VRF device */
530 __skb_pull(skb, skb_network_offset(skb));
531
532 if (!ip4h->saddr) {
533 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
534 RT_SCOPE_LINK);
535 }
536
537 memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
538 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
539 if (unlikely(net_xmit_eval(ret)))
540 vrf_dev->stats.tx_errors++;
541 else
542 ret = NET_XMIT_SUCCESS;
543
544 out:
545 return ret;
546 err:
547 vrf_tx_error(vrf_dev, skb);
548 goto out;
549 }
550
is_ip_tx_frame(struct sk_buff * skb,struct net_device * dev)551 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
552 {
553 switch (skb->protocol) {
554 case htons(ETH_P_IP):
555 return vrf_process_v4_outbound(skb, dev);
556 case htons(ETH_P_IPV6):
557 return vrf_process_v6_outbound(skb, dev);
558 default:
559 vrf_tx_error(dev, skb);
560 return NET_XMIT_DROP;
561 }
562 }
563
vrf_xmit(struct sk_buff * skb,struct net_device * dev)564 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
565 {
566 unsigned int len = skb->len;
567 netdev_tx_t ret;
568
569 ret = is_ip_tx_frame(skb, dev);
570 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN))
571 dev_dstats_tx_add(dev, len);
572 else
573 dev_dstats_tx_dropped(dev);
574
575 return ret;
576 }
577
vrf_finish_direct(struct sk_buff * skb)578 static void vrf_finish_direct(struct sk_buff *skb)
579 {
580 struct net_device *vrf_dev = skb->dev;
581
582 if (!list_empty(&vrf_dev->ptype_all) &&
583 likely(skb_headroom(skb) >= ETH_HLEN)) {
584 struct ethhdr *eth = skb_push(skb, ETH_HLEN);
585
586 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
587 eth_zero_addr(eth->h_dest);
588 eth->h_proto = skb->protocol;
589
590 rcu_read_lock_bh();
591 dev_queue_xmit_nit(skb, vrf_dev);
592 rcu_read_unlock_bh();
593
594 skb_pull(skb, ETH_HLEN);
595 }
596
597 vrf_nf_reset_ct(skb);
598 }
599
600 #if IS_ENABLED(CONFIG_IPV6)
601 /* modelled after ip6_finish_output2 */
vrf_finish_output6(struct net * net,struct sock * sk,struct sk_buff * skb)602 static int vrf_finish_output6(struct net *net, struct sock *sk,
603 struct sk_buff *skb)
604 {
605 struct dst_entry *dst = skb_dst(skb);
606 struct net_device *dev = dst->dev;
607 const struct in6_addr *nexthop;
608 struct neighbour *neigh;
609 int ret;
610
611 vrf_nf_reset_ct(skb);
612
613 skb->protocol = htons(ETH_P_IPV6);
614 skb->dev = dev;
615
616 rcu_read_lock();
617 nexthop = rt6_nexthop(dst_rt6_info(dst), &ipv6_hdr(skb)->daddr);
618 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
619 if (unlikely(!neigh))
620 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
621 if (!IS_ERR(neigh)) {
622 sock_confirm_neigh(skb, neigh);
623 ret = neigh_output(neigh, skb, false);
624 rcu_read_unlock();
625 return ret;
626 }
627 rcu_read_unlock();
628
629 IP6_INC_STATS(dev_net(dst->dev),
630 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
631 kfree_skb(skb);
632 return -EINVAL;
633 }
634
635 /* modelled after ip6_output */
vrf_output6(struct net * net,struct sock * sk,struct sk_buff * skb)636 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
637 {
638 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
639 net, sk, skb, NULL, skb_dst(skb)->dev,
640 vrf_finish_output6,
641 !(IP6CB(skb)->flags & IP6SKB_REROUTED));
642 }
643
644 /* set dst on skb to send packet to us via dev_xmit path. Allows
645 * packet to go through device based features such as qdisc, netfilter
646 * hooks and packet sockets with skb->dev set to vrf device.
647 */
vrf_ip6_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)648 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
649 struct sk_buff *skb)
650 {
651 struct net_vrf *vrf = netdev_priv(vrf_dev);
652 struct dst_entry *dst = NULL;
653 struct rt6_info *rt6;
654
655 rcu_read_lock();
656
657 rt6 = rcu_dereference(vrf->rt6);
658 if (likely(rt6)) {
659 dst = &rt6->dst;
660 dst_hold(dst);
661 }
662
663 rcu_read_unlock();
664
665 if (unlikely(!dst)) {
666 vrf_tx_error(vrf_dev, skb);
667 return NULL;
668 }
669
670 skb_dst_drop(skb);
671 skb_dst_set(skb, dst);
672
673 return skb;
674 }
675
vrf_output6_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)676 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
677 struct sk_buff *skb)
678 {
679 vrf_finish_direct(skb);
680
681 return vrf_ip6_local_out(net, sk, skb);
682 }
683
vrf_output6_direct(struct net * net,struct sock * sk,struct sk_buff * skb)684 static int vrf_output6_direct(struct net *net, struct sock *sk,
685 struct sk_buff *skb)
686 {
687 int err = 1;
688
689 skb->protocol = htons(ETH_P_IPV6);
690
691 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
692 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
693 NULL, skb->dev, vrf_output6_direct_finish);
694
695 if (likely(err == 1))
696 vrf_finish_direct(skb);
697
698 return err;
699 }
700
vrf_ip6_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)701 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
702 struct sk_buff *skb)
703 {
704 int err;
705
706 err = vrf_output6_direct(net, sk, skb);
707 if (likely(err == 1))
708 err = vrf_ip6_local_out(net, sk, skb);
709
710 return err;
711 }
712
vrf_ip6_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)713 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
714 struct sock *sk,
715 struct sk_buff *skb)
716 {
717 struct net *net = dev_net(vrf_dev);
718 int err;
719
720 skb->dev = vrf_dev;
721
722 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
723 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
724
725 if (likely(err == 1))
726 err = vrf_output6_direct(net, sk, skb);
727
728 if (likely(err == 1))
729 return skb;
730
731 return NULL;
732 }
733
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)734 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
735 struct sock *sk,
736 struct sk_buff *skb)
737 {
738 /* don't divert link scope packets */
739 if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
740 return skb;
741
742 vrf_nf_set_untracked(skb);
743
744 if (qdisc_tx_is_default(vrf_dev) ||
745 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
746 return vrf_ip6_out_direct(vrf_dev, sk, skb);
747
748 return vrf_ip6_out_redirect(vrf_dev, skb);
749 }
750
751 /* holding rtnl */
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)752 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
753 {
754 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
755 struct net *net = dev_net(dev);
756 struct dst_entry *dst;
757
758 RCU_INIT_POINTER(vrf->rt6, NULL);
759 synchronize_rcu();
760
761 /* move dev in dst's to loopback so this VRF device can be deleted
762 * - based on dst_ifdown
763 */
764 if (rt6) {
765 dst = &rt6->dst;
766 netdev_ref_replace(dst->dev, net->loopback_dev,
767 &dst->dev_tracker, GFP_KERNEL);
768 dst->dev = net->loopback_dev;
769 dst_release(dst);
770 }
771 }
772
vrf_rt6_create(struct net_device * dev)773 static int vrf_rt6_create(struct net_device *dev)
774 {
775 int flags = DST_NOPOLICY | DST_NOXFRM;
776 struct net_vrf *vrf = netdev_priv(dev);
777 struct net *net = dev_net(dev);
778 struct rt6_info *rt6;
779 int rc = -ENOMEM;
780
781 /* IPv6 can be CONFIG enabled and then disabled runtime */
782 if (!ipv6_mod_enabled())
783 return 0;
784
785 vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
786 if (!vrf->fib6_table)
787 goto out;
788
789 /* create a dst for routing packets out a VRF device */
790 rt6 = ip6_dst_alloc(net, dev, flags);
791 if (!rt6)
792 goto out;
793
794 rt6->dst.output = vrf_output6;
795
796 rcu_assign_pointer(vrf->rt6, rt6);
797
798 rc = 0;
799 out:
800 return rc;
801 }
802 #else
vrf_ip6_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)803 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
804 struct sock *sk,
805 struct sk_buff *skb)
806 {
807 return skb;
808 }
809
vrf_rt6_release(struct net_device * dev,struct net_vrf * vrf)810 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
811 {
812 }
813
vrf_rt6_create(struct net_device * dev)814 static int vrf_rt6_create(struct net_device *dev)
815 {
816 return 0;
817 }
818 #endif
819
820 /* modelled after ip_finish_output2 */
vrf_finish_output(struct net * net,struct sock * sk,struct sk_buff * skb)821 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
822 {
823 struct dst_entry *dst = skb_dst(skb);
824 struct rtable *rt = dst_rtable(dst);
825 struct net_device *dev = dst->dev;
826 unsigned int hh_len = LL_RESERVED_SPACE(dev);
827 struct neighbour *neigh;
828 bool is_v6gw = false;
829
830 vrf_nf_reset_ct(skb);
831
832 /* Be paranoid, rather than too clever. */
833 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
834 skb = skb_expand_head(skb, hh_len);
835 if (!skb) {
836 dev->stats.tx_errors++;
837 return -ENOMEM;
838 }
839 }
840
841 rcu_read_lock();
842
843 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
844 if (!IS_ERR(neigh)) {
845 int ret;
846
847 sock_confirm_neigh(skb, neigh);
848 /* if crossing protocols, can not use the cached header */
849 ret = neigh_output(neigh, skb, is_v6gw);
850 rcu_read_unlock();
851 return ret;
852 }
853
854 rcu_read_unlock();
855 vrf_tx_error(skb->dev, skb);
856 return -EINVAL;
857 }
858
vrf_output(struct net * net,struct sock * sk,struct sk_buff * skb)859 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
860 {
861 struct net_device *dev = skb_dst(skb)->dev;
862
863 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
864
865 skb->dev = dev;
866 skb->protocol = htons(ETH_P_IP);
867
868 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
869 net, sk, skb, NULL, dev,
870 vrf_finish_output,
871 !(IPCB(skb)->flags & IPSKB_REROUTED));
872 }
873
874 /* set dst on skb to send packet to us via dev_xmit path. Allows
875 * packet to go through device based features such as qdisc, netfilter
876 * hooks and packet sockets with skb->dev set to vrf device.
877 */
vrf_ip_out_redirect(struct net_device * vrf_dev,struct sk_buff * skb)878 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
879 struct sk_buff *skb)
880 {
881 struct net_vrf *vrf = netdev_priv(vrf_dev);
882 struct dst_entry *dst = NULL;
883 struct rtable *rth;
884
885 rcu_read_lock();
886
887 rth = rcu_dereference(vrf->rth);
888 if (likely(rth)) {
889 dst = &rth->dst;
890 dst_hold(dst);
891 }
892
893 rcu_read_unlock();
894
895 if (unlikely(!dst)) {
896 vrf_tx_error(vrf_dev, skb);
897 return NULL;
898 }
899
900 skb_dst_drop(skb);
901 skb_dst_set(skb, dst);
902
903 return skb;
904 }
905
vrf_output_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)906 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
907 struct sk_buff *skb)
908 {
909 vrf_finish_direct(skb);
910
911 return vrf_ip_local_out(net, sk, skb);
912 }
913
vrf_output_direct(struct net * net,struct sock * sk,struct sk_buff * skb)914 static int vrf_output_direct(struct net *net, struct sock *sk,
915 struct sk_buff *skb)
916 {
917 int err = 1;
918
919 skb->protocol = htons(ETH_P_IP);
920
921 if (!(IPCB(skb)->flags & IPSKB_REROUTED))
922 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
923 NULL, skb->dev, vrf_output_direct_finish);
924
925 if (likely(err == 1))
926 vrf_finish_direct(skb);
927
928 return err;
929 }
930
vrf_ip_out_direct_finish(struct net * net,struct sock * sk,struct sk_buff * skb)931 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
932 struct sk_buff *skb)
933 {
934 int err;
935
936 err = vrf_output_direct(net, sk, skb);
937 if (likely(err == 1))
938 err = vrf_ip_local_out(net, sk, skb);
939
940 return err;
941 }
942
vrf_ip_out_direct(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)943 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
944 struct sock *sk,
945 struct sk_buff *skb)
946 {
947 struct net *net = dev_net(vrf_dev);
948 int err;
949
950 skb->dev = vrf_dev;
951
952 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
953 skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
954
955 if (likely(err == 1))
956 err = vrf_output_direct(net, sk, skb);
957
958 if (likely(err == 1))
959 return skb;
960
961 return NULL;
962 }
963
vrf_ip_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb)964 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
965 struct sock *sk,
966 struct sk_buff *skb)
967 {
968 /* don't divert multicast or local broadcast */
969 if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
970 ipv4_is_lbcast(ip_hdr(skb)->daddr))
971 return skb;
972
973 vrf_nf_set_untracked(skb);
974
975 if (qdisc_tx_is_default(vrf_dev) ||
976 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
977 return vrf_ip_out_direct(vrf_dev, sk, skb);
978
979 return vrf_ip_out_redirect(vrf_dev, skb);
980 }
981
982 /* called with rcu lock held */
vrf_l3_out(struct net_device * vrf_dev,struct sock * sk,struct sk_buff * skb,u16 proto)983 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
984 struct sock *sk,
985 struct sk_buff *skb,
986 u16 proto)
987 {
988 switch (proto) {
989 case AF_INET:
990 return vrf_ip_out(vrf_dev, sk, skb);
991 case AF_INET6:
992 return vrf_ip6_out(vrf_dev, sk, skb);
993 }
994
995 return skb;
996 }
997
998 /* holding rtnl */
vrf_rtable_release(struct net_device * dev,struct net_vrf * vrf)999 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1000 {
1001 struct rtable *rth = rtnl_dereference(vrf->rth);
1002 struct net *net = dev_net(dev);
1003 struct dst_entry *dst;
1004
1005 RCU_INIT_POINTER(vrf->rth, NULL);
1006 synchronize_rcu();
1007
1008 /* move dev in dst's to loopback so this VRF device can be deleted
1009 * - based on dst_ifdown
1010 */
1011 if (rth) {
1012 dst = &rth->dst;
1013 netdev_ref_replace(dst->dev, net->loopback_dev,
1014 &dst->dev_tracker, GFP_KERNEL);
1015 dst->dev = net->loopback_dev;
1016 dst_release(dst);
1017 }
1018 }
1019
vrf_rtable_create(struct net_device * dev)1020 static int vrf_rtable_create(struct net_device *dev)
1021 {
1022 struct net_vrf *vrf = netdev_priv(dev);
1023 struct rtable *rth;
1024
1025 if (!fib_new_table(dev_net(dev), vrf->tb_id))
1026 return -ENOMEM;
1027
1028 /* create a dst for routing packets out through a VRF device */
1029 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1030 if (!rth)
1031 return -ENOMEM;
1032
1033 rth->dst.output = vrf_output;
1034
1035 rcu_assign_pointer(vrf->rth, rth);
1036
1037 return 0;
1038 }
1039
1040 /**************************** device handling ********************/
1041
1042 /* cycle interface to flush neighbor cache and move routes across tables */
cycle_netdev(struct net_device * dev,struct netlink_ext_ack * extack)1043 static void cycle_netdev(struct net_device *dev,
1044 struct netlink_ext_ack *extack)
1045 {
1046 unsigned int flags = dev->flags;
1047 int ret;
1048
1049 if (!netif_running(dev))
1050 return;
1051
1052 ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1053 if (ret >= 0)
1054 ret = dev_change_flags(dev, flags, extack);
1055
1056 if (ret < 0) {
1057 netdev_err(dev,
1058 "Failed to cycle device %s; route tables might be wrong!\n",
1059 dev->name);
1060 }
1061 }
1062
do_vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1063 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1064 struct netlink_ext_ack *extack)
1065 {
1066 int ret;
1067
1068 /* do not allow loopback device to be enslaved to a VRF.
1069 * The vrf device acts as the loopback for the vrf.
1070 */
1071 if (port_dev == dev_net(dev)->loopback_dev) {
1072 NL_SET_ERR_MSG(extack,
1073 "Can not enslave loopback device to a VRF");
1074 return -EOPNOTSUPP;
1075 }
1076
1077 port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1078 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1079 if (ret < 0)
1080 goto err;
1081
1082 cycle_netdev(port_dev, extack);
1083
1084 return 0;
1085
1086 err:
1087 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1088 return ret;
1089 }
1090
vrf_add_slave(struct net_device * dev,struct net_device * port_dev,struct netlink_ext_ack * extack)1091 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1092 struct netlink_ext_ack *extack)
1093 {
1094 if (netif_is_l3_master(port_dev)) {
1095 NL_SET_ERR_MSG(extack,
1096 "Can not enslave an L3 master device to a VRF");
1097 return -EINVAL;
1098 }
1099
1100 if (netif_is_l3_slave(port_dev))
1101 return -EINVAL;
1102
1103 return do_vrf_add_slave(dev, port_dev, extack);
1104 }
1105
1106 /* inverse of do_vrf_add_slave */
do_vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1107 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1108 {
1109 netdev_upper_dev_unlink(port_dev, dev);
1110 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1111
1112 cycle_netdev(port_dev, NULL);
1113
1114 return 0;
1115 }
1116
vrf_del_slave(struct net_device * dev,struct net_device * port_dev)1117 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1118 {
1119 return do_vrf_del_slave(dev, port_dev);
1120 }
1121
vrf_dev_uninit(struct net_device * dev)1122 static void vrf_dev_uninit(struct net_device *dev)
1123 {
1124 struct net_vrf *vrf = netdev_priv(dev);
1125
1126 vrf_rtable_release(dev, vrf);
1127 vrf_rt6_release(dev, vrf);
1128 }
1129
vrf_dev_init(struct net_device * dev)1130 static int vrf_dev_init(struct net_device *dev)
1131 {
1132 struct net_vrf *vrf = netdev_priv(dev);
1133
1134 /* create the default dst which points back to us */
1135 if (vrf_rtable_create(dev) != 0)
1136 goto out_nomem;
1137
1138 if (vrf_rt6_create(dev) != 0)
1139 goto out_rth;
1140
1141 dev->flags = IFF_MASTER | IFF_NOARP;
1142
1143 /* similarly, oper state is irrelevant; set to up to avoid confusion */
1144 dev->operstate = IF_OPER_UP;
1145 netdev_lockdep_set_classes(dev);
1146 return 0;
1147
1148 out_rth:
1149 vrf_rtable_release(dev, vrf);
1150 out_nomem:
1151 return -ENOMEM;
1152 }
1153
1154 static const struct net_device_ops vrf_netdev_ops = {
1155 .ndo_init = vrf_dev_init,
1156 .ndo_uninit = vrf_dev_uninit,
1157 .ndo_start_xmit = vrf_xmit,
1158 .ndo_set_mac_address = eth_mac_addr,
1159 .ndo_add_slave = vrf_add_slave,
1160 .ndo_del_slave = vrf_del_slave,
1161 };
1162
vrf_fib_table(const struct net_device * dev)1163 static u32 vrf_fib_table(const struct net_device *dev)
1164 {
1165 struct net_vrf *vrf = netdev_priv(dev);
1166
1167 return vrf->tb_id;
1168 }
1169
vrf_rcv_finish(struct net * net,struct sock * sk,struct sk_buff * skb)1170 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1171 {
1172 kfree_skb(skb);
1173 return 0;
1174 }
1175
vrf_rcv_nfhook(u8 pf,unsigned int hook,struct sk_buff * skb,struct net_device * dev)1176 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1177 struct sk_buff *skb,
1178 struct net_device *dev)
1179 {
1180 struct net *net = dev_net(dev);
1181
1182 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1183 skb = NULL; /* kfree_skb(skb) handled by nf code */
1184
1185 return skb;
1186 }
1187
vrf_prepare_mac_header(struct sk_buff * skb,struct net_device * vrf_dev,u16 proto)1188 static int vrf_prepare_mac_header(struct sk_buff *skb,
1189 struct net_device *vrf_dev, u16 proto)
1190 {
1191 struct ethhdr *eth;
1192 int err;
1193
1194 /* in general, we do not know if there is enough space in the head of
1195 * the packet for hosting the mac header.
1196 */
1197 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1198 if (unlikely(err))
1199 /* no space in the skb head */
1200 return -ENOBUFS;
1201
1202 __skb_push(skb, ETH_HLEN);
1203 eth = (struct ethhdr *)skb->data;
1204
1205 skb_reset_mac_header(skb);
1206 skb_reset_mac_len(skb);
1207
1208 /* we set the ethernet destination and the source addresses to the
1209 * address of the VRF device.
1210 */
1211 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1212 ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1213 eth->h_proto = htons(proto);
1214
1215 /* the destination address of the Ethernet frame corresponds to the
1216 * address set on the VRF interface; therefore, the packet is intended
1217 * to be processed locally.
1218 */
1219 skb->protocol = eth->h_proto;
1220 skb->pkt_type = PACKET_HOST;
1221
1222 skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1223
1224 skb_pull_inline(skb, ETH_HLEN);
1225
1226 return 0;
1227 }
1228
1229 /* prepare and add the mac header to the packet if it was not set previously.
1230 * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1231 * If the mac header was already set, the original mac header is left
1232 * untouched and the function returns immediately.
1233 */
vrf_add_mac_header_if_unset(struct sk_buff * skb,struct net_device * vrf_dev,u16 proto,struct net_device * orig_dev)1234 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1235 struct net_device *vrf_dev,
1236 u16 proto, struct net_device *orig_dev)
1237 {
1238 if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1239 return 0;
1240
1241 return vrf_prepare_mac_header(skb, vrf_dev, proto);
1242 }
1243
1244 #if IS_ENABLED(CONFIG_IPV6)
1245 /* neighbor handling is done with actual device; do not want
1246 * to flip skb->dev for those ndisc packets. This really fails
1247 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1248 * a start.
1249 */
ipv6_ndisc_frame(const struct sk_buff * skb)1250 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1251 {
1252 const struct ipv6hdr *iph = ipv6_hdr(skb);
1253 bool rc = false;
1254
1255 if (iph->nexthdr == NEXTHDR_ICMP) {
1256 const struct icmp6hdr *icmph;
1257 struct icmp6hdr _icmph;
1258
1259 icmph = skb_header_pointer(skb, sizeof(*iph),
1260 sizeof(_icmph), &_icmph);
1261 if (!icmph)
1262 goto out;
1263
1264 switch (icmph->icmp6_type) {
1265 case NDISC_ROUTER_SOLICITATION:
1266 case NDISC_ROUTER_ADVERTISEMENT:
1267 case NDISC_NEIGHBOUR_SOLICITATION:
1268 case NDISC_NEIGHBOUR_ADVERTISEMENT:
1269 case NDISC_REDIRECT:
1270 rc = true;
1271 break;
1272 }
1273 }
1274
1275 out:
1276 return rc;
1277 }
1278
vrf_ip6_route_lookup(struct net * net,const struct net_device * dev,struct flowi6 * fl6,int ifindex,const struct sk_buff * skb,int flags)1279 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1280 const struct net_device *dev,
1281 struct flowi6 *fl6,
1282 int ifindex,
1283 const struct sk_buff *skb,
1284 int flags)
1285 {
1286 struct net_vrf *vrf = netdev_priv(dev);
1287
1288 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1289 }
1290
vrf_ip6_input_dst(struct sk_buff * skb,struct net_device * vrf_dev,int ifindex)1291 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1292 int ifindex)
1293 {
1294 const struct ipv6hdr *iph = ipv6_hdr(skb);
1295 struct flowi6 fl6 = {
1296 .flowi6_iif = ifindex,
1297 .flowi6_mark = skb->mark,
1298 .flowi6_proto = iph->nexthdr,
1299 .daddr = iph->daddr,
1300 .saddr = iph->saddr,
1301 .flowlabel = ip6_flowinfo(iph),
1302 };
1303 struct net *net = dev_net(vrf_dev);
1304 struct rt6_info *rt6;
1305
1306 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1307 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1308 if (unlikely(!rt6))
1309 return;
1310
1311 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1312 return;
1313
1314 skb_dst_set(skb, &rt6->dst);
1315 }
1316
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1317 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1318 struct sk_buff *skb)
1319 {
1320 int orig_iif = skb->skb_iif;
1321 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1322 bool is_ndisc = ipv6_ndisc_frame(skb);
1323
1324 /* loopback, multicast & non-ND link-local traffic; do not push through
1325 * packet taps again. Reset pkt_type for upper layers to process skb.
1326 * For non-loopback strict packets, determine the dst using the original
1327 * ifindex.
1328 */
1329 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1330 skb->dev = vrf_dev;
1331 skb->skb_iif = vrf_dev->ifindex;
1332 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1333
1334 if (skb->pkt_type == PACKET_LOOPBACK)
1335 skb->pkt_type = PACKET_HOST;
1336 else
1337 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1338
1339 goto out;
1340 }
1341
1342 /* if packet is NDISC then keep the ingress interface */
1343 if (!is_ndisc) {
1344 struct net_device *orig_dev = skb->dev;
1345
1346 dev_dstats_rx_add(vrf_dev, skb->len);
1347 skb->dev = vrf_dev;
1348 skb->skb_iif = vrf_dev->ifindex;
1349
1350 if (!list_empty(&vrf_dev->ptype_all)) {
1351 int err;
1352
1353 err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1354 ETH_P_IPV6,
1355 orig_dev);
1356 if (likely(!err)) {
1357 skb_push(skb, skb->mac_len);
1358 dev_queue_xmit_nit(skb, vrf_dev);
1359 skb_pull(skb, skb->mac_len);
1360 }
1361 }
1362
1363 IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1364 }
1365
1366 if (need_strict)
1367 vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1368
1369 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1370 out:
1371 return skb;
1372 }
1373
1374 #else
vrf_ip6_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1375 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1376 struct sk_buff *skb)
1377 {
1378 return skb;
1379 }
1380 #endif
1381
vrf_ip_rcv(struct net_device * vrf_dev,struct sk_buff * skb)1382 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1383 struct sk_buff *skb)
1384 {
1385 struct net_device *orig_dev = skb->dev;
1386
1387 skb->dev = vrf_dev;
1388 skb->skb_iif = vrf_dev->ifindex;
1389 IPCB(skb)->flags |= IPSKB_L3SLAVE;
1390
1391 if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1392 goto out;
1393
1394 /* loopback traffic; do not push through packet taps again.
1395 * Reset pkt_type for upper layers to process skb
1396 */
1397 if (skb->pkt_type == PACKET_LOOPBACK) {
1398 skb->pkt_type = PACKET_HOST;
1399 goto out;
1400 }
1401
1402 dev_dstats_rx_add(vrf_dev, skb->len);
1403
1404 if (!list_empty(&vrf_dev->ptype_all)) {
1405 int err;
1406
1407 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1408 orig_dev);
1409 if (likely(!err)) {
1410 skb_push(skb, skb->mac_len);
1411 dev_queue_xmit_nit(skb, vrf_dev);
1412 skb_pull(skb, skb->mac_len);
1413 }
1414 }
1415
1416 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1417 out:
1418 return skb;
1419 }
1420
1421 /* called with rcu lock held */
vrf_l3_rcv(struct net_device * vrf_dev,struct sk_buff * skb,u16 proto)1422 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1423 struct sk_buff *skb,
1424 u16 proto)
1425 {
1426 switch (proto) {
1427 case AF_INET:
1428 return vrf_ip_rcv(vrf_dev, skb);
1429 case AF_INET6:
1430 return vrf_ip6_rcv(vrf_dev, skb);
1431 }
1432
1433 return skb;
1434 }
1435
1436 #if IS_ENABLED(CONFIG_IPV6)
1437 /* send to link-local or multicast address via interface enslaved to
1438 * VRF device. Force lookup to VRF table without changing flow struct
1439 * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1440 * is taken on the dst by this function.
1441 */
vrf_link_scope_lookup(const struct net_device * dev,struct flowi6 * fl6)1442 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1443 struct flowi6 *fl6)
1444 {
1445 struct net *net = dev_net(dev);
1446 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1447 struct dst_entry *dst = NULL;
1448 struct rt6_info *rt;
1449
1450 /* VRF device does not have a link-local address and
1451 * sending packets to link-local or mcast addresses over
1452 * a VRF device does not make sense
1453 */
1454 if (fl6->flowi6_oif == dev->ifindex) {
1455 dst = &net->ipv6.ip6_null_entry->dst;
1456 return dst;
1457 }
1458
1459 if (!ipv6_addr_any(&fl6->saddr))
1460 flags |= RT6_LOOKUP_F_HAS_SADDR;
1461
1462 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1463 if (rt)
1464 dst = &rt->dst;
1465
1466 return dst;
1467 }
1468 #endif
1469
1470 static const struct l3mdev_ops vrf_l3mdev_ops = {
1471 .l3mdev_fib_table = vrf_fib_table,
1472 .l3mdev_l3_rcv = vrf_l3_rcv,
1473 .l3mdev_l3_out = vrf_l3_out,
1474 #if IS_ENABLED(CONFIG_IPV6)
1475 .l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1476 #endif
1477 };
1478
vrf_get_drvinfo(struct net_device * dev,struct ethtool_drvinfo * info)1479 static void vrf_get_drvinfo(struct net_device *dev,
1480 struct ethtool_drvinfo *info)
1481 {
1482 strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1483 strscpy(info->version, DRV_VERSION, sizeof(info->version));
1484 }
1485
1486 static const struct ethtool_ops vrf_ethtool_ops = {
1487 .get_drvinfo = vrf_get_drvinfo,
1488 };
1489
vrf_fib_rule_nl_size(void)1490 static inline size_t vrf_fib_rule_nl_size(void)
1491 {
1492 size_t sz;
1493
1494 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1495 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */
1496 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */
1497 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */
1498
1499 return sz;
1500 }
1501
vrf_fib_rule(const struct net_device * dev,__u8 family,bool add_it)1502 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1503 {
1504 struct fib_rule_hdr *frh;
1505 struct nlmsghdr *nlh;
1506 struct sk_buff *skb;
1507 int err;
1508
1509 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1510 !ipv6_mod_enabled())
1511 return 0;
1512
1513 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1514 if (!skb)
1515 return -ENOMEM;
1516
1517 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1518 if (!nlh)
1519 goto nla_put_failure;
1520
1521 /* rule only needs to appear once */
1522 nlh->nlmsg_flags |= NLM_F_EXCL;
1523
1524 frh = nlmsg_data(nlh);
1525 memset(frh, 0, sizeof(*frh));
1526 frh->family = family;
1527 frh->action = FR_ACT_TO_TBL;
1528
1529 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1530 goto nla_put_failure;
1531
1532 if (nla_put_u8(skb, FRA_L3MDEV, 1))
1533 goto nla_put_failure;
1534
1535 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1536 goto nla_put_failure;
1537
1538 nlmsg_end(skb, nlh);
1539
1540 /* fib_nl_{new,del}rule handling looks for net from skb->sk */
1541 skb->sk = dev_net(dev)->rtnl;
1542 if (add_it) {
1543 err = fib_nl_newrule(skb, nlh, NULL);
1544 if (err == -EEXIST)
1545 err = 0;
1546 } else {
1547 err = fib_nl_delrule(skb, nlh, NULL);
1548 if (err == -ENOENT)
1549 err = 0;
1550 }
1551 nlmsg_free(skb);
1552
1553 return err;
1554
1555 nla_put_failure:
1556 nlmsg_free(skb);
1557
1558 return -EMSGSIZE;
1559 }
1560
vrf_add_fib_rules(const struct net_device * dev)1561 static int vrf_add_fib_rules(const struct net_device *dev)
1562 {
1563 int err;
1564
1565 err = vrf_fib_rule(dev, AF_INET, true);
1566 if (err < 0)
1567 goto out_err;
1568
1569 err = vrf_fib_rule(dev, AF_INET6, true);
1570 if (err < 0)
1571 goto ipv6_err;
1572
1573 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1574 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1575 if (err < 0)
1576 goto ipmr_err;
1577 #endif
1578
1579 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1580 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1581 if (err < 0)
1582 goto ip6mr_err;
1583 #endif
1584
1585 return 0;
1586
1587 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1588 ip6mr_err:
1589 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false);
1590 #endif
1591
1592 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1593 ipmr_err:
1594 vrf_fib_rule(dev, AF_INET6, false);
1595 #endif
1596
1597 ipv6_err:
1598 vrf_fib_rule(dev, AF_INET, false);
1599
1600 out_err:
1601 netdev_err(dev, "Failed to add FIB rules.\n");
1602 return err;
1603 }
1604
vrf_setup(struct net_device * dev)1605 static void vrf_setup(struct net_device *dev)
1606 {
1607 ether_setup(dev);
1608
1609 /* Initialize the device structure. */
1610 dev->netdev_ops = &vrf_netdev_ops;
1611 dev->l3mdev_ops = &vrf_l3mdev_ops;
1612 dev->ethtool_ops = &vrf_ethtool_ops;
1613 dev->needs_free_netdev = true;
1614
1615 /* Fill in device structure with ethernet-generic values. */
1616 eth_hw_addr_random(dev);
1617
1618 /* don't acquire vrf device's netif_tx_lock when transmitting */
1619 dev->lltx = true;
1620
1621 /* don't allow vrf devices to change network namespaces. */
1622 dev->netns_local = true;
1623
1624 /* does not make sense for a VLAN to be added to a vrf device */
1625 dev->features |= NETIF_F_VLAN_CHALLENGED;
1626
1627 /* enable offload features */
1628 dev->features |= NETIF_F_GSO_SOFTWARE;
1629 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1630 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1631
1632 dev->hw_features = dev->features;
1633 dev->hw_enc_features = dev->features;
1634
1635 /* default to no qdisc; user can add if desired */
1636 dev->priv_flags |= IFF_NO_QUEUE;
1637 dev->priv_flags |= IFF_NO_RX_HANDLER;
1638 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1639
1640 /* VRF devices do not care about MTU, but if the MTU is set
1641 * too low then the ipv4 and ipv6 protocols are disabled
1642 * which breaks networking.
1643 */
1644 dev->min_mtu = IPV6_MIN_MTU;
1645 dev->max_mtu = IP6_MAX_MTU;
1646 dev->mtu = dev->max_mtu;
1647
1648 dev->pcpu_stat_type = NETDEV_PCPU_STAT_DSTATS;
1649 }
1650
vrf_validate(struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1651 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1652 struct netlink_ext_ack *extack)
1653 {
1654 if (tb[IFLA_ADDRESS]) {
1655 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1656 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1657 return -EINVAL;
1658 }
1659 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1660 NL_SET_ERR_MSG(extack, "Invalid hardware address");
1661 return -EADDRNOTAVAIL;
1662 }
1663 }
1664 return 0;
1665 }
1666
vrf_dellink(struct net_device * dev,struct list_head * head)1667 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1668 {
1669 struct net_device *port_dev;
1670 struct list_head *iter;
1671
1672 netdev_for_each_lower_dev(dev, port_dev, iter)
1673 vrf_del_slave(dev, port_dev);
1674
1675 vrf_map_unregister_dev(dev);
1676
1677 unregister_netdevice_queue(dev, head);
1678 }
1679
vrf_newlink(struct net * src_net,struct net_device * dev,struct nlattr * tb[],struct nlattr * data[],struct netlink_ext_ack * extack)1680 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1681 struct nlattr *tb[], struct nlattr *data[],
1682 struct netlink_ext_ack *extack)
1683 {
1684 struct net_vrf *vrf = netdev_priv(dev);
1685 struct netns_vrf *nn_vrf;
1686 bool *add_fib_rules;
1687 struct net *net;
1688 int err;
1689
1690 if (!data || !data[IFLA_VRF_TABLE]) {
1691 NL_SET_ERR_MSG(extack, "VRF table id is missing");
1692 return -EINVAL;
1693 }
1694
1695 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1696 if (vrf->tb_id == RT_TABLE_UNSPEC) {
1697 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1698 "Invalid VRF table id");
1699 return -EINVAL;
1700 }
1701
1702 dev->priv_flags |= IFF_L3MDEV_MASTER;
1703
1704 err = register_netdevice(dev);
1705 if (err)
1706 goto out;
1707
1708 /* mapping between table_id and vrf;
1709 * note: such binding could not be done in the dev init function
1710 * because dev->ifindex id is not available yet.
1711 */
1712 vrf->ifindex = dev->ifindex;
1713
1714 err = vrf_map_register_dev(dev, extack);
1715 if (err) {
1716 unregister_netdevice(dev);
1717 goto out;
1718 }
1719
1720 net = dev_net(dev);
1721 nn_vrf = net_generic(net, vrf_net_id);
1722
1723 add_fib_rules = &nn_vrf->add_fib_rules;
1724 if (*add_fib_rules) {
1725 err = vrf_add_fib_rules(dev);
1726 if (err) {
1727 vrf_map_unregister_dev(dev);
1728 unregister_netdevice(dev);
1729 goto out;
1730 }
1731 *add_fib_rules = false;
1732 }
1733
1734 out:
1735 return err;
1736 }
1737
vrf_nl_getsize(const struct net_device * dev)1738 static size_t vrf_nl_getsize(const struct net_device *dev)
1739 {
1740 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */
1741 }
1742
vrf_fillinfo(struct sk_buff * skb,const struct net_device * dev)1743 static int vrf_fillinfo(struct sk_buff *skb,
1744 const struct net_device *dev)
1745 {
1746 struct net_vrf *vrf = netdev_priv(dev);
1747
1748 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1749 }
1750
vrf_get_slave_size(const struct net_device * bond_dev,const struct net_device * slave_dev)1751 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1752 const struct net_device *slave_dev)
1753 {
1754 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */
1755 }
1756
vrf_fill_slave_info(struct sk_buff * skb,const struct net_device * vrf_dev,const struct net_device * slave_dev)1757 static int vrf_fill_slave_info(struct sk_buff *skb,
1758 const struct net_device *vrf_dev,
1759 const struct net_device *slave_dev)
1760 {
1761 struct net_vrf *vrf = netdev_priv(vrf_dev);
1762
1763 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1764 return -EMSGSIZE;
1765
1766 return 0;
1767 }
1768
1769 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1770 [IFLA_VRF_TABLE] = { .type = NLA_U32 },
1771 };
1772
1773 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1774 .kind = DRV_NAME,
1775 .priv_size = sizeof(struct net_vrf),
1776
1777 .get_size = vrf_nl_getsize,
1778 .policy = vrf_nl_policy,
1779 .validate = vrf_validate,
1780 .fill_info = vrf_fillinfo,
1781
1782 .get_slave_size = vrf_get_slave_size,
1783 .fill_slave_info = vrf_fill_slave_info,
1784
1785 .newlink = vrf_newlink,
1786 .dellink = vrf_dellink,
1787 .setup = vrf_setup,
1788 .maxtype = IFLA_VRF_MAX,
1789 };
1790
vrf_device_event(struct notifier_block * unused,unsigned long event,void * ptr)1791 static int vrf_device_event(struct notifier_block *unused,
1792 unsigned long event, void *ptr)
1793 {
1794 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1795
1796 /* only care about unregister events to drop slave references */
1797 if (event == NETDEV_UNREGISTER) {
1798 struct net_device *vrf_dev;
1799
1800 if (!netif_is_l3_slave(dev))
1801 goto out;
1802
1803 vrf_dev = netdev_master_upper_dev_get(dev);
1804 vrf_del_slave(vrf_dev, dev);
1805 }
1806 out:
1807 return NOTIFY_DONE;
1808 }
1809
1810 static struct notifier_block vrf_notifier_block __read_mostly = {
1811 .notifier_call = vrf_device_event,
1812 };
1813
vrf_map_init(struct vrf_map * vmap)1814 static int vrf_map_init(struct vrf_map *vmap)
1815 {
1816 spin_lock_init(&vmap->vmap_lock);
1817 hash_init(vmap->ht);
1818
1819 vmap->strict_mode = false;
1820
1821 return 0;
1822 }
1823
1824 #ifdef CONFIG_SYSCTL
vrf_strict_mode(struct vrf_map * vmap)1825 static bool vrf_strict_mode(struct vrf_map *vmap)
1826 {
1827 bool strict_mode;
1828
1829 vrf_map_lock(vmap);
1830 strict_mode = vmap->strict_mode;
1831 vrf_map_unlock(vmap);
1832
1833 return strict_mode;
1834 }
1835
vrf_strict_mode_change(struct vrf_map * vmap,bool new_mode)1836 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1837 {
1838 bool *cur_mode;
1839 int res = 0;
1840
1841 vrf_map_lock(vmap);
1842
1843 cur_mode = &vmap->strict_mode;
1844 if (*cur_mode == new_mode)
1845 goto unlock;
1846
1847 if (*cur_mode) {
1848 /* disable strict mode */
1849 *cur_mode = false;
1850 } else {
1851 if (vmap->shared_tables) {
1852 /* we cannot allow strict_mode because there are some
1853 * vrfs that share one or more tables.
1854 */
1855 res = -EBUSY;
1856 goto unlock;
1857 }
1858
1859 /* no tables are shared among vrfs, so we can go back
1860 * to 1:1 association between a vrf with its table.
1861 */
1862 *cur_mode = true;
1863 }
1864
1865 unlock:
1866 vrf_map_unlock(vmap);
1867
1868 return res;
1869 }
1870
vrf_shared_table_handler(const struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)1871 static int vrf_shared_table_handler(const struct ctl_table *table, int write,
1872 void *buffer, size_t *lenp, loff_t *ppos)
1873 {
1874 struct net *net = (struct net *)table->extra1;
1875 struct vrf_map *vmap = netns_vrf_map(net);
1876 int proc_strict_mode = 0;
1877 struct ctl_table tmp = {
1878 .procname = table->procname,
1879 .data = &proc_strict_mode,
1880 .maxlen = sizeof(int),
1881 .mode = table->mode,
1882 .extra1 = SYSCTL_ZERO,
1883 .extra2 = SYSCTL_ONE,
1884 };
1885 int ret;
1886
1887 if (!write)
1888 proc_strict_mode = vrf_strict_mode(vmap);
1889
1890 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1891
1892 if (write && ret == 0)
1893 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1894
1895 return ret;
1896 }
1897
1898 static const struct ctl_table vrf_table[] = {
1899 {
1900 .procname = "strict_mode",
1901 .data = NULL,
1902 .maxlen = sizeof(int),
1903 .mode = 0644,
1904 .proc_handler = vrf_shared_table_handler,
1905 /* set by the vrf_netns_init */
1906 .extra1 = NULL,
1907 },
1908 };
1909
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)1910 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1911 {
1912 struct ctl_table *table;
1913
1914 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1915 if (!table)
1916 return -ENOMEM;
1917
1918 /* init the extra1 parameter with the reference to current netns */
1919 table[0].extra1 = net;
1920
1921 nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1922 ARRAY_SIZE(vrf_table));
1923 if (!nn_vrf->ctl_hdr) {
1924 kfree(table);
1925 return -ENOMEM;
1926 }
1927
1928 return 0;
1929 }
1930
vrf_netns_exit_sysctl(struct net * net)1931 static void vrf_netns_exit_sysctl(struct net *net)
1932 {
1933 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1934 const struct ctl_table *table;
1935
1936 table = nn_vrf->ctl_hdr->ctl_table_arg;
1937 unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1938 kfree(table);
1939 }
1940 #else
vrf_netns_init_sysctl(struct net * net,struct netns_vrf * nn_vrf)1941 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1942 {
1943 return 0;
1944 }
1945
vrf_netns_exit_sysctl(struct net * net)1946 static void vrf_netns_exit_sysctl(struct net *net)
1947 {
1948 }
1949 #endif
1950
1951 /* Initialize per network namespace state */
vrf_netns_init(struct net * net)1952 static int __net_init vrf_netns_init(struct net *net)
1953 {
1954 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1955
1956 nn_vrf->add_fib_rules = true;
1957 vrf_map_init(&nn_vrf->vmap);
1958
1959 return vrf_netns_init_sysctl(net, nn_vrf);
1960 }
1961
vrf_netns_exit(struct net * net)1962 static void __net_exit vrf_netns_exit(struct net *net)
1963 {
1964 vrf_netns_exit_sysctl(net);
1965 }
1966
1967 static struct pernet_operations vrf_net_ops __net_initdata = {
1968 .init = vrf_netns_init,
1969 .exit = vrf_netns_exit,
1970 .id = &vrf_net_id,
1971 .size = sizeof(struct netns_vrf),
1972 };
1973
vrf_init_module(void)1974 static int __init vrf_init_module(void)
1975 {
1976 int rc;
1977
1978 register_netdevice_notifier(&vrf_notifier_block);
1979
1980 rc = register_pernet_subsys(&vrf_net_ops);
1981 if (rc < 0)
1982 goto error;
1983
1984 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
1985 vrf_ifindex_lookup_by_table_id);
1986 if (rc < 0)
1987 goto unreg_pernet;
1988
1989 rc = rtnl_link_register(&vrf_link_ops);
1990 if (rc < 0)
1991 goto table_lookup_unreg;
1992
1993 return 0;
1994
1995 table_lookup_unreg:
1996 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
1997 vrf_ifindex_lookup_by_table_id);
1998
1999 unreg_pernet:
2000 unregister_pernet_subsys(&vrf_net_ops);
2001
2002 error:
2003 unregister_netdevice_notifier(&vrf_notifier_block);
2004 return rc;
2005 }
2006
2007 module_init(vrf_init_module);
2008 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2009 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2010 MODULE_LICENSE("GPL");
2011 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2012 MODULE_VERSION(DRV_VERSION);
2013