1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * V4L2 fwnode binding parsing library
4 *
5 * The origins of the V4L2 fwnode library are in V4L2 OF library that
6 * formerly was located in v4l2-of.c.
7 *
8 * Copyright (c) 2016 Intel Corporation.
9 * Author: Sakari Ailus <[email protected]>
10 *
11 * Copyright (C) 2012 - 2013 Samsung Electronics Co., Ltd.
12 * Author: Sylwester Nawrocki <[email protected]>
13 *
14 * Copyright (C) 2012 Renesas Electronics Corp.
15 * Author: Guennadi Liakhovetski <[email protected]>
16 */
17 #include <linux/acpi.h>
18 #include <linux/kernel.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/of.h>
22 #include <linux/property.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26
27 #include <media/v4l2-async.h>
28 #include <media/v4l2-fwnode.h>
29 #include <media/v4l2-subdev.h>
30
31 #include "v4l2-subdev-priv.h"
32
33 static const struct v4l2_fwnode_bus_conv {
34 enum v4l2_fwnode_bus_type fwnode_bus_type;
35 enum v4l2_mbus_type mbus_type;
36 const char *name;
37 } buses[] = {
38 {
39 V4L2_FWNODE_BUS_TYPE_GUESS,
40 V4L2_MBUS_UNKNOWN,
41 "not specified",
42 }, {
43 V4L2_FWNODE_BUS_TYPE_CSI2_CPHY,
44 V4L2_MBUS_CSI2_CPHY,
45 "MIPI CSI-2 C-PHY",
46 }, {
47 V4L2_FWNODE_BUS_TYPE_CSI1,
48 V4L2_MBUS_CSI1,
49 "MIPI CSI-1",
50 }, {
51 V4L2_FWNODE_BUS_TYPE_CCP2,
52 V4L2_MBUS_CCP2,
53 "compact camera port 2",
54 }, {
55 V4L2_FWNODE_BUS_TYPE_CSI2_DPHY,
56 V4L2_MBUS_CSI2_DPHY,
57 "MIPI CSI-2 D-PHY",
58 }, {
59 V4L2_FWNODE_BUS_TYPE_PARALLEL,
60 V4L2_MBUS_PARALLEL,
61 "parallel",
62 }, {
63 V4L2_FWNODE_BUS_TYPE_BT656,
64 V4L2_MBUS_BT656,
65 "Bt.656",
66 }, {
67 V4L2_FWNODE_BUS_TYPE_DPI,
68 V4L2_MBUS_DPI,
69 "DPI",
70 }
71 };
72
73 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)74 get_v4l2_fwnode_bus_conv_by_fwnode_bus(enum v4l2_fwnode_bus_type type)
75 {
76 unsigned int i;
77
78 for (i = 0; i < ARRAY_SIZE(buses); i++)
79 if (buses[i].fwnode_bus_type == type)
80 return &buses[i];
81
82 return NULL;
83 }
84
85 static enum v4l2_mbus_type
v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)86 v4l2_fwnode_bus_type_to_mbus(enum v4l2_fwnode_bus_type type)
87 {
88 const struct v4l2_fwnode_bus_conv *conv =
89 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
90
91 return conv ? conv->mbus_type : V4L2_MBUS_INVALID;
92 }
93
94 static const char *
v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)95 v4l2_fwnode_bus_type_to_string(enum v4l2_fwnode_bus_type type)
96 {
97 const struct v4l2_fwnode_bus_conv *conv =
98 get_v4l2_fwnode_bus_conv_by_fwnode_bus(type);
99
100 return conv ? conv->name : "not found";
101 }
102
103 static const struct v4l2_fwnode_bus_conv *
get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)104 get_v4l2_fwnode_bus_conv_by_mbus(enum v4l2_mbus_type type)
105 {
106 unsigned int i;
107
108 for (i = 0; i < ARRAY_SIZE(buses); i++)
109 if (buses[i].mbus_type == type)
110 return &buses[i];
111
112 return NULL;
113 }
114
115 static const char *
v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)116 v4l2_fwnode_mbus_type_to_string(enum v4l2_mbus_type type)
117 {
118 const struct v4l2_fwnode_bus_conv *conv =
119 get_v4l2_fwnode_bus_conv_by_mbus(type);
120
121 return conv ? conv->name : "not found";
122 }
123
v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)124 static int v4l2_fwnode_endpoint_parse_csi2_bus(struct fwnode_handle *fwnode,
125 struct v4l2_fwnode_endpoint *vep,
126 enum v4l2_mbus_type bus_type)
127 {
128 struct v4l2_mbus_config_mipi_csi2 *bus = &vep->bus.mipi_csi2;
129 bool have_clk_lane = false, have_data_lanes = false,
130 have_lane_polarities = false, have_line_orders = false;
131 unsigned int flags = 0, lanes_used = 0;
132 u32 array[1 + V4L2_MBUS_CSI2_MAX_DATA_LANES];
133 u32 clock_lane = 0;
134 unsigned int num_data_lanes = 0;
135 bool use_default_lane_mapping = false;
136 unsigned int i;
137 u32 v;
138 int rval;
139
140 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
141 bus_type == V4L2_MBUS_CSI2_CPHY) {
142 use_default_lane_mapping = true;
143
144 num_data_lanes = min_t(u32, bus->num_data_lanes,
145 V4L2_MBUS_CSI2_MAX_DATA_LANES);
146
147 clock_lane = bus->clock_lane;
148 if (clock_lane)
149 use_default_lane_mapping = false;
150
151 for (i = 0; i < num_data_lanes; i++) {
152 array[i] = bus->data_lanes[i];
153 if (array[i])
154 use_default_lane_mapping = false;
155 }
156
157 if (use_default_lane_mapping)
158 pr_debug("no lane mapping given, using defaults\n");
159 }
160
161 rval = fwnode_property_count_u32(fwnode, "data-lanes");
162 if (rval > 0) {
163 num_data_lanes =
164 min_t(int, V4L2_MBUS_CSI2_MAX_DATA_LANES, rval);
165
166 fwnode_property_read_u32_array(fwnode, "data-lanes", array,
167 num_data_lanes);
168
169 have_data_lanes = true;
170 if (use_default_lane_mapping) {
171 pr_debug("data-lanes property exists; disabling default mapping\n");
172 use_default_lane_mapping = false;
173 }
174 }
175
176 for (i = 0; i < num_data_lanes; i++) {
177 if (lanes_used & BIT(array[i])) {
178 if (have_data_lanes || !use_default_lane_mapping)
179 pr_warn("duplicated lane %u in data-lanes, using defaults\n",
180 array[i]);
181 use_default_lane_mapping = true;
182 }
183 lanes_used |= BIT(array[i]);
184
185 if (have_data_lanes)
186 pr_debug("lane %u position %u\n", i, array[i]);
187 }
188
189 rval = fwnode_property_count_u32(fwnode, "lane-polarities");
190 if (rval > 0) {
191 if (rval != 1 + num_data_lanes /* clock+data */) {
192 pr_warn("invalid number of lane-polarities entries (need %u, got %u)\n",
193 1 + num_data_lanes, rval);
194 return -EINVAL;
195 }
196
197 have_lane_polarities = true;
198 }
199
200 rval = fwnode_property_count_u32(fwnode, "line-orders");
201 if (rval > 0) {
202 if (rval != num_data_lanes) {
203 pr_warn("invalid number of line-orders entries (need %u, got %u)\n",
204 num_data_lanes, rval);
205 return -EINVAL;
206 }
207
208 have_line_orders = true;
209 }
210
211 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
212 clock_lane = v;
213 pr_debug("clock lane position %u\n", v);
214 have_clk_lane = true;
215 }
216
217 if (have_clk_lane && lanes_used & BIT(clock_lane) &&
218 !use_default_lane_mapping) {
219 pr_warn("duplicated lane %u in clock-lanes, using defaults\n",
220 v);
221 use_default_lane_mapping = true;
222 }
223
224 if (fwnode_property_present(fwnode, "clock-noncontinuous")) {
225 flags |= V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK;
226 pr_debug("non-continuous clock\n");
227 }
228
229 if (bus_type == V4L2_MBUS_CSI2_DPHY ||
230 bus_type == V4L2_MBUS_CSI2_CPHY ||
231 lanes_used || have_clk_lane || flags) {
232 /* Only D-PHY has a clock lane. */
233 unsigned int dfl_data_lane_index =
234 bus_type == V4L2_MBUS_CSI2_DPHY;
235
236 bus->flags = flags;
237 if (bus_type == V4L2_MBUS_UNKNOWN)
238 vep->bus_type = V4L2_MBUS_CSI2_DPHY;
239 bus->num_data_lanes = num_data_lanes;
240
241 if (use_default_lane_mapping) {
242 bus->clock_lane = 0;
243 for (i = 0; i < num_data_lanes; i++)
244 bus->data_lanes[i] = dfl_data_lane_index + i;
245 } else {
246 bus->clock_lane = clock_lane;
247 for (i = 0; i < num_data_lanes; i++)
248 bus->data_lanes[i] = array[i];
249 }
250
251 if (have_lane_polarities) {
252 fwnode_property_read_u32_array(fwnode,
253 "lane-polarities", array,
254 1 + num_data_lanes);
255
256 for (i = 0; i < 1 + num_data_lanes; i++) {
257 bus->lane_polarities[i] = array[i];
258 pr_debug("lane %u polarity %sinverted",
259 i, array[i] ? "" : "not ");
260 }
261 } else {
262 pr_debug("no lane polarities defined, assuming not inverted\n");
263 }
264
265 if (have_line_orders) {
266 fwnode_property_read_u32_array(fwnode,
267 "line-orders", array,
268 num_data_lanes);
269
270 for (i = 0; i < num_data_lanes; i++) {
271 static const char * const orders[] = {
272 "ABC", "ACB", "BAC", "BCA", "CAB", "CBA"
273 };
274
275 if (array[i] >= ARRAY_SIZE(orders)) {
276 pr_warn("lane %u invalid line-order assuming ABC (got %u)\n",
277 i, array[i]);
278 bus->line_orders[i] =
279 V4L2_MBUS_CSI2_CPHY_LINE_ORDER_ABC;
280 continue;
281 }
282
283 bus->line_orders[i] = array[i];
284 pr_debug("lane %u line order %s", i,
285 orders[array[i]]);
286 }
287 } else {
288 for (i = 0; i < num_data_lanes; i++)
289 bus->line_orders[i] =
290 V4L2_MBUS_CSI2_CPHY_LINE_ORDER_ABC;
291
292 pr_debug("no line orders defined, assuming ABC\n");
293 }
294 }
295
296 return 0;
297 }
298
299 #define PARALLEL_MBUS_FLAGS (V4L2_MBUS_HSYNC_ACTIVE_HIGH | \
300 V4L2_MBUS_HSYNC_ACTIVE_LOW | \
301 V4L2_MBUS_VSYNC_ACTIVE_HIGH | \
302 V4L2_MBUS_VSYNC_ACTIVE_LOW | \
303 V4L2_MBUS_FIELD_EVEN_HIGH | \
304 V4L2_MBUS_FIELD_EVEN_LOW)
305
306 static void
v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)307 v4l2_fwnode_endpoint_parse_parallel_bus(struct fwnode_handle *fwnode,
308 struct v4l2_fwnode_endpoint *vep,
309 enum v4l2_mbus_type bus_type)
310 {
311 struct v4l2_mbus_config_parallel *bus = &vep->bus.parallel;
312 unsigned int flags = 0;
313 u32 v;
314
315 if (bus_type == V4L2_MBUS_PARALLEL || bus_type == V4L2_MBUS_BT656)
316 flags = bus->flags;
317
318 if (!fwnode_property_read_u32(fwnode, "hsync-active", &v)) {
319 flags &= ~(V4L2_MBUS_HSYNC_ACTIVE_HIGH |
320 V4L2_MBUS_HSYNC_ACTIVE_LOW);
321 flags |= v ? V4L2_MBUS_HSYNC_ACTIVE_HIGH :
322 V4L2_MBUS_HSYNC_ACTIVE_LOW;
323 pr_debug("hsync-active %s\n", v ? "high" : "low");
324 }
325
326 if (!fwnode_property_read_u32(fwnode, "vsync-active", &v)) {
327 flags &= ~(V4L2_MBUS_VSYNC_ACTIVE_HIGH |
328 V4L2_MBUS_VSYNC_ACTIVE_LOW);
329 flags |= v ? V4L2_MBUS_VSYNC_ACTIVE_HIGH :
330 V4L2_MBUS_VSYNC_ACTIVE_LOW;
331 pr_debug("vsync-active %s\n", v ? "high" : "low");
332 }
333
334 if (!fwnode_property_read_u32(fwnode, "field-even-active", &v)) {
335 flags &= ~(V4L2_MBUS_FIELD_EVEN_HIGH |
336 V4L2_MBUS_FIELD_EVEN_LOW);
337 flags |= v ? V4L2_MBUS_FIELD_EVEN_HIGH :
338 V4L2_MBUS_FIELD_EVEN_LOW;
339 pr_debug("field-even-active %s\n", v ? "high" : "low");
340 }
341
342 if (!fwnode_property_read_u32(fwnode, "pclk-sample", &v)) {
343 flags &= ~(V4L2_MBUS_PCLK_SAMPLE_RISING |
344 V4L2_MBUS_PCLK_SAMPLE_FALLING |
345 V4L2_MBUS_PCLK_SAMPLE_DUALEDGE);
346 switch (v) {
347 case 0:
348 flags |= V4L2_MBUS_PCLK_SAMPLE_FALLING;
349 pr_debug("pclk-sample low\n");
350 break;
351 case 1:
352 flags |= V4L2_MBUS_PCLK_SAMPLE_RISING;
353 pr_debug("pclk-sample high\n");
354 break;
355 case 2:
356 flags |= V4L2_MBUS_PCLK_SAMPLE_DUALEDGE;
357 pr_debug("pclk-sample dual edge\n");
358 break;
359 default:
360 pr_warn("invalid argument for pclk-sample");
361 break;
362 }
363 }
364
365 if (!fwnode_property_read_u32(fwnode, "data-active", &v)) {
366 flags &= ~(V4L2_MBUS_DATA_ACTIVE_HIGH |
367 V4L2_MBUS_DATA_ACTIVE_LOW);
368 flags |= v ? V4L2_MBUS_DATA_ACTIVE_HIGH :
369 V4L2_MBUS_DATA_ACTIVE_LOW;
370 pr_debug("data-active %s\n", v ? "high" : "low");
371 }
372
373 if (fwnode_property_present(fwnode, "slave-mode")) {
374 pr_debug("slave mode\n");
375 flags &= ~V4L2_MBUS_MASTER;
376 flags |= V4L2_MBUS_SLAVE;
377 } else {
378 flags &= ~V4L2_MBUS_SLAVE;
379 flags |= V4L2_MBUS_MASTER;
380 }
381
382 if (!fwnode_property_read_u32(fwnode, "bus-width", &v)) {
383 bus->bus_width = v;
384 pr_debug("bus-width %u\n", v);
385 }
386
387 if (!fwnode_property_read_u32(fwnode, "data-shift", &v)) {
388 bus->data_shift = v;
389 pr_debug("data-shift %u\n", v);
390 }
391
392 if (!fwnode_property_read_u32(fwnode, "sync-on-green-active", &v)) {
393 flags &= ~(V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH |
394 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW);
395 flags |= v ? V4L2_MBUS_VIDEO_SOG_ACTIVE_HIGH :
396 V4L2_MBUS_VIDEO_SOG_ACTIVE_LOW;
397 pr_debug("sync-on-green-active %s\n", v ? "high" : "low");
398 }
399
400 if (!fwnode_property_read_u32(fwnode, "data-enable-active", &v)) {
401 flags &= ~(V4L2_MBUS_DATA_ENABLE_HIGH |
402 V4L2_MBUS_DATA_ENABLE_LOW);
403 flags |= v ? V4L2_MBUS_DATA_ENABLE_HIGH :
404 V4L2_MBUS_DATA_ENABLE_LOW;
405 pr_debug("data-enable-active %s\n", v ? "high" : "low");
406 }
407
408 switch (bus_type) {
409 default:
410 bus->flags = flags;
411 if (flags & PARALLEL_MBUS_FLAGS)
412 vep->bus_type = V4L2_MBUS_PARALLEL;
413 else
414 vep->bus_type = V4L2_MBUS_BT656;
415 break;
416 case V4L2_MBUS_PARALLEL:
417 vep->bus_type = V4L2_MBUS_PARALLEL;
418 bus->flags = flags;
419 break;
420 case V4L2_MBUS_BT656:
421 vep->bus_type = V4L2_MBUS_BT656;
422 bus->flags = flags & ~PARALLEL_MBUS_FLAGS;
423 break;
424 }
425 }
426
427 static void
v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep,enum v4l2_mbus_type bus_type)428 v4l2_fwnode_endpoint_parse_csi1_bus(struct fwnode_handle *fwnode,
429 struct v4l2_fwnode_endpoint *vep,
430 enum v4l2_mbus_type bus_type)
431 {
432 struct v4l2_mbus_config_mipi_csi1 *bus = &vep->bus.mipi_csi1;
433 u32 v;
434
435 if (!fwnode_property_read_u32(fwnode, "clock-inv", &v)) {
436 bus->clock_inv = v;
437 pr_debug("clock-inv %u\n", v);
438 }
439
440 if (!fwnode_property_read_u32(fwnode, "strobe", &v)) {
441 bus->strobe = v;
442 pr_debug("strobe %u\n", v);
443 }
444
445 if (!fwnode_property_read_u32(fwnode, "data-lanes", &v)) {
446 bus->data_lane = v;
447 pr_debug("data-lanes %u\n", v);
448 }
449
450 if (!fwnode_property_read_u32(fwnode, "clock-lanes", &v)) {
451 bus->clock_lane = v;
452 pr_debug("clock-lanes %u\n", v);
453 }
454
455 if (bus_type == V4L2_MBUS_CCP2)
456 vep->bus_type = V4L2_MBUS_CCP2;
457 else
458 vep->bus_type = V4L2_MBUS_CSI1;
459 }
460
__v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)461 static int __v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
462 struct v4l2_fwnode_endpoint *vep)
463 {
464 u32 bus_type = V4L2_FWNODE_BUS_TYPE_GUESS;
465 enum v4l2_mbus_type mbus_type;
466 int rval;
467
468 pr_debug("===== begin parsing endpoint %pfw\n", fwnode);
469
470 fwnode_property_read_u32(fwnode, "bus-type", &bus_type);
471 pr_debug("fwnode video bus type %s (%u), mbus type %s (%u)\n",
472 v4l2_fwnode_bus_type_to_string(bus_type), bus_type,
473 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
474 vep->bus_type);
475 mbus_type = v4l2_fwnode_bus_type_to_mbus(bus_type);
476 if (mbus_type == V4L2_MBUS_INVALID) {
477 pr_debug("unsupported bus type %u\n", bus_type);
478 return -EINVAL;
479 }
480
481 if (vep->bus_type != V4L2_MBUS_UNKNOWN) {
482 if (mbus_type != V4L2_MBUS_UNKNOWN &&
483 vep->bus_type != mbus_type) {
484 pr_debug("expecting bus type %s\n",
485 v4l2_fwnode_mbus_type_to_string(vep->bus_type));
486 return -ENXIO;
487 }
488 } else {
489 vep->bus_type = mbus_type;
490 }
491
492 switch (vep->bus_type) {
493 case V4L2_MBUS_UNKNOWN:
494 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
495 V4L2_MBUS_UNKNOWN);
496 if (rval)
497 return rval;
498
499 if (vep->bus_type == V4L2_MBUS_UNKNOWN)
500 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
501 V4L2_MBUS_UNKNOWN);
502
503 pr_debug("assuming media bus type %s (%u)\n",
504 v4l2_fwnode_mbus_type_to_string(vep->bus_type),
505 vep->bus_type);
506
507 break;
508 case V4L2_MBUS_CCP2:
509 case V4L2_MBUS_CSI1:
510 v4l2_fwnode_endpoint_parse_csi1_bus(fwnode, vep, vep->bus_type);
511
512 break;
513 case V4L2_MBUS_CSI2_DPHY:
514 case V4L2_MBUS_CSI2_CPHY:
515 rval = v4l2_fwnode_endpoint_parse_csi2_bus(fwnode, vep,
516 vep->bus_type);
517 if (rval)
518 return rval;
519
520 break;
521 case V4L2_MBUS_PARALLEL:
522 case V4L2_MBUS_BT656:
523 v4l2_fwnode_endpoint_parse_parallel_bus(fwnode, vep,
524 vep->bus_type);
525
526 break;
527 default:
528 pr_warn("unsupported bus type %u\n", mbus_type);
529 return -EINVAL;
530 }
531
532 fwnode_graph_parse_endpoint(fwnode, &vep->base);
533
534 return 0;
535 }
536
v4l2_fwnode_endpoint_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)537 int v4l2_fwnode_endpoint_parse(struct fwnode_handle *fwnode,
538 struct v4l2_fwnode_endpoint *vep)
539 {
540 int ret;
541
542 ret = __v4l2_fwnode_endpoint_parse(fwnode, vep);
543
544 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
545
546 return ret;
547 }
548 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_parse);
549
v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint * vep)550 void v4l2_fwnode_endpoint_free(struct v4l2_fwnode_endpoint *vep)
551 {
552 if (IS_ERR_OR_NULL(vep))
553 return;
554
555 kfree(vep->link_frequencies);
556 vep->link_frequencies = NULL;
557 }
558 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_free);
559
v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_endpoint * vep)560 int v4l2_fwnode_endpoint_alloc_parse(struct fwnode_handle *fwnode,
561 struct v4l2_fwnode_endpoint *vep)
562 {
563 int rval;
564
565 rval = __v4l2_fwnode_endpoint_parse(fwnode, vep);
566 if (rval < 0)
567 return rval;
568
569 rval = fwnode_property_count_u64(fwnode, "link-frequencies");
570 if (rval > 0) {
571 unsigned int i;
572
573 vep->link_frequencies =
574 kmalloc_array(rval, sizeof(*vep->link_frequencies),
575 GFP_KERNEL);
576 if (!vep->link_frequencies)
577 return -ENOMEM;
578
579 vep->nr_of_link_frequencies = rval;
580
581 rval = fwnode_property_read_u64_array(fwnode,
582 "link-frequencies",
583 vep->link_frequencies,
584 vep->nr_of_link_frequencies);
585 if (rval < 0) {
586 v4l2_fwnode_endpoint_free(vep);
587 return rval;
588 }
589
590 for (i = 0; i < vep->nr_of_link_frequencies; i++)
591 pr_debug("link-frequencies %u value %llu\n", i,
592 vep->link_frequencies[i]);
593 }
594
595 pr_debug("===== end parsing endpoint %pfw\n", fwnode);
596
597 return 0;
598 }
599 EXPORT_SYMBOL_GPL(v4l2_fwnode_endpoint_alloc_parse);
600
v4l2_fwnode_parse_link(struct fwnode_handle * fwnode,struct v4l2_fwnode_link * link)601 int v4l2_fwnode_parse_link(struct fwnode_handle *fwnode,
602 struct v4l2_fwnode_link *link)
603 {
604 struct fwnode_endpoint fwep;
605
606 memset(link, 0, sizeof(*link));
607
608 fwnode_graph_parse_endpoint(fwnode, &fwep);
609 link->local_id = fwep.id;
610 link->local_port = fwep.port;
611 link->local_node = fwnode_graph_get_port_parent(fwnode);
612 if (!link->local_node)
613 return -ENOLINK;
614
615 fwnode = fwnode_graph_get_remote_endpoint(fwnode);
616 if (!fwnode)
617 goto err_put_local_node;
618
619 fwnode_graph_parse_endpoint(fwnode, &fwep);
620 link->remote_id = fwep.id;
621 link->remote_port = fwep.port;
622 link->remote_node = fwnode_graph_get_port_parent(fwnode);
623 if (!link->remote_node)
624 goto err_put_remote_endpoint;
625
626 return 0;
627
628 err_put_remote_endpoint:
629 fwnode_handle_put(fwnode);
630
631 err_put_local_node:
632 fwnode_handle_put(link->local_node);
633
634 return -ENOLINK;
635 }
636 EXPORT_SYMBOL_GPL(v4l2_fwnode_parse_link);
637
v4l2_fwnode_put_link(struct v4l2_fwnode_link * link)638 void v4l2_fwnode_put_link(struct v4l2_fwnode_link *link)
639 {
640 fwnode_handle_put(link->local_node);
641 fwnode_handle_put(link->remote_node);
642 }
643 EXPORT_SYMBOL_GPL(v4l2_fwnode_put_link);
644
645 static const struct v4l2_fwnode_connector_conv {
646 enum v4l2_connector_type type;
647 const char *compatible;
648 } connectors[] = {
649 {
650 .type = V4L2_CONN_COMPOSITE,
651 .compatible = "composite-video-connector",
652 }, {
653 .type = V4L2_CONN_SVIDEO,
654 .compatible = "svideo-connector",
655 },
656 };
657
658 static enum v4l2_connector_type
v4l2_fwnode_string_to_connector_type(const char * con_str)659 v4l2_fwnode_string_to_connector_type(const char *con_str)
660 {
661 unsigned int i;
662
663 for (i = 0; i < ARRAY_SIZE(connectors); i++)
664 if (!strcmp(con_str, connectors[i].compatible))
665 return connectors[i].type;
666
667 return V4L2_CONN_UNKNOWN;
668 }
669
670 static void
v4l2_fwnode_connector_parse_analog(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * vc)671 v4l2_fwnode_connector_parse_analog(struct fwnode_handle *fwnode,
672 struct v4l2_fwnode_connector *vc)
673 {
674 u32 stds;
675 int ret;
676
677 ret = fwnode_property_read_u32(fwnode, "sdtv-standards", &stds);
678
679 /* The property is optional. */
680 vc->connector.analog.sdtv_stds = ret ? V4L2_STD_ALL : stds;
681 }
682
v4l2_fwnode_connector_free(struct v4l2_fwnode_connector * connector)683 void v4l2_fwnode_connector_free(struct v4l2_fwnode_connector *connector)
684 {
685 struct v4l2_connector_link *link, *tmp;
686
687 if (IS_ERR_OR_NULL(connector) || connector->type == V4L2_CONN_UNKNOWN)
688 return;
689
690 list_for_each_entry_safe(link, tmp, &connector->links, head) {
691 v4l2_fwnode_put_link(&link->fwnode_link);
692 list_del(&link->head);
693 kfree(link);
694 }
695
696 kfree(connector->label);
697 connector->label = NULL;
698 connector->type = V4L2_CONN_UNKNOWN;
699 }
700 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_free);
701
702 static enum v4l2_connector_type
v4l2_fwnode_get_connector_type(struct fwnode_handle * fwnode)703 v4l2_fwnode_get_connector_type(struct fwnode_handle *fwnode)
704 {
705 const char *type_name;
706 int err;
707
708 if (!fwnode)
709 return V4L2_CONN_UNKNOWN;
710
711 /* The connector-type is stored within the compatible string. */
712 err = fwnode_property_read_string(fwnode, "compatible", &type_name);
713 if (err)
714 return V4L2_CONN_UNKNOWN;
715
716 return v4l2_fwnode_string_to_connector_type(type_name);
717 }
718
v4l2_fwnode_connector_parse(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * connector)719 int v4l2_fwnode_connector_parse(struct fwnode_handle *fwnode,
720 struct v4l2_fwnode_connector *connector)
721 {
722 struct fwnode_handle *connector_node;
723 enum v4l2_connector_type connector_type;
724 const char *label;
725 int err;
726
727 if (!fwnode)
728 return -EINVAL;
729
730 memset(connector, 0, sizeof(*connector));
731
732 INIT_LIST_HEAD(&connector->links);
733
734 connector_node = fwnode_graph_get_port_parent(fwnode);
735 connector_type = v4l2_fwnode_get_connector_type(connector_node);
736 if (connector_type == V4L2_CONN_UNKNOWN) {
737 fwnode_handle_put(connector_node);
738 connector_node = fwnode_graph_get_remote_port_parent(fwnode);
739 connector_type = v4l2_fwnode_get_connector_type(connector_node);
740 }
741
742 if (connector_type == V4L2_CONN_UNKNOWN) {
743 pr_err("Unknown connector type\n");
744 err = -ENOTCONN;
745 goto out;
746 }
747
748 connector->type = connector_type;
749 connector->name = fwnode_get_name(connector_node);
750 err = fwnode_property_read_string(connector_node, "label", &label);
751 connector->label = err ? NULL : kstrdup_const(label, GFP_KERNEL);
752
753 /* Parse the connector specific properties. */
754 switch (connector->type) {
755 case V4L2_CONN_COMPOSITE:
756 case V4L2_CONN_SVIDEO:
757 v4l2_fwnode_connector_parse_analog(connector_node, connector);
758 break;
759 /* Avoid compiler warnings */
760 case V4L2_CONN_UNKNOWN:
761 break;
762 }
763
764 out:
765 fwnode_handle_put(connector_node);
766
767 return err;
768 }
769 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_parse);
770
v4l2_fwnode_connector_add_link(struct fwnode_handle * fwnode,struct v4l2_fwnode_connector * connector)771 int v4l2_fwnode_connector_add_link(struct fwnode_handle *fwnode,
772 struct v4l2_fwnode_connector *connector)
773 {
774 struct fwnode_handle *connector_ep;
775 struct v4l2_connector_link *link;
776 int err;
777
778 if (!fwnode || !connector || connector->type == V4L2_CONN_UNKNOWN)
779 return -EINVAL;
780
781 connector_ep = fwnode_graph_get_remote_endpoint(fwnode);
782 if (!connector_ep)
783 return -ENOTCONN;
784
785 link = kzalloc(sizeof(*link), GFP_KERNEL);
786 if (!link) {
787 err = -ENOMEM;
788 goto err;
789 }
790
791 err = v4l2_fwnode_parse_link(connector_ep, &link->fwnode_link);
792 if (err)
793 goto err;
794
795 fwnode_handle_put(connector_ep);
796
797 list_add(&link->head, &connector->links);
798 connector->nr_of_links++;
799
800 return 0;
801
802 err:
803 kfree(link);
804 fwnode_handle_put(connector_ep);
805
806 return err;
807 }
808 EXPORT_SYMBOL_GPL(v4l2_fwnode_connector_add_link);
809
v4l2_fwnode_device_parse(struct device * dev,struct v4l2_fwnode_device_properties * props)810 int v4l2_fwnode_device_parse(struct device *dev,
811 struct v4l2_fwnode_device_properties *props)
812 {
813 struct fwnode_handle *fwnode = dev_fwnode(dev);
814 u32 val;
815 int ret;
816
817 memset(props, 0, sizeof(*props));
818
819 props->orientation = V4L2_FWNODE_PROPERTY_UNSET;
820 ret = fwnode_property_read_u32(fwnode, "orientation", &val);
821 if (!ret) {
822 switch (val) {
823 case V4L2_FWNODE_ORIENTATION_FRONT:
824 case V4L2_FWNODE_ORIENTATION_BACK:
825 case V4L2_FWNODE_ORIENTATION_EXTERNAL:
826 break;
827 default:
828 dev_warn(dev, "Unsupported device orientation: %u\n", val);
829 return -EINVAL;
830 }
831
832 props->orientation = val;
833 dev_dbg(dev, "device orientation: %u\n", val);
834 }
835
836 props->rotation = V4L2_FWNODE_PROPERTY_UNSET;
837 ret = fwnode_property_read_u32(fwnode, "rotation", &val);
838 if (!ret) {
839 if (val >= 360) {
840 dev_warn(dev, "Unsupported device rotation: %u\n", val);
841 return -EINVAL;
842 }
843
844 props->rotation = val;
845 dev_dbg(dev, "device rotation: %u\n", val);
846 }
847
848 return 0;
849 }
850 EXPORT_SYMBOL_GPL(v4l2_fwnode_device_parse);
851
852 /*
853 * v4l2_fwnode_reference_parse - parse references for async sub-devices
854 * @dev: the device node the properties of which are parsed for references
855 * @notifier: the async notifier where the async subdevs will be added
856 * @prop: the name of the property
857 *
858 * Return: 0 on success
859 * -ENOENT if no entries were found
860 * -ENOMEM if memory allocation failed
861 * -EINVAL if property parsing failed
862 */
v4l2_fwnode_reference_parse(struct device * dev,struct v4l2_async_notifier * notifier,const char * prop)863 static int v4l2_fwnode_reference_parse(struct device *dev,
864 struct v4l2_async_notifier *notifier,
865 const char *prop)
866 {
867 struct fwnode_reference_args args;
868 unsigned int index;
869 int ret;
870
871 for (index = 0;
872 !(ret = fwnode_property_get_reference_args(dev_fwnode(dev), prop,
873 NULL, 0, index, &args));
874 index++) {
875 struct v4l2_async_connection *asd;
876
877 asd = v4l2_async_nf_add_fwnode(notifier, args.fwnode,
878 struct v4l2_async_connection);
879 fwnode_handle_put(args.fwnode);
880 if (IS_ERR(asd)) {
881 /* not an error if asd already exists */
882 if (PTR_ERR(asd) == -EEXIST)
883 continue;
884
885 return PTR_ERR(asd);
886 }
887 }
888
889 /* -ENOENT here means successful parsing */
890 if (ret != -ENOENT)
891 return ret;
892
893 /* Return -ENOENT if no references were found */
894 return index ? 0 : -ENOENT;
895 }
896
897 /*
898 * v4l2_fwnode_reference_get_int_prop - parse a reference with integer
899 * arguments
900 * @fwnode: fwnode to read @prop from
901 * @notifier: notifier for @dev
902 * @prop: the name of the property
903 * @index: the index of the reference to get
904 * @props: the array of integer property names
905 * @nprops: the number of integer property names in @nprops
906 *
907 * First find an fwnode referred to by the reference at @index in @prop.
908 *
909 * Then under that fwnode, @nprops times, for each property in @props,
910 * iteratively follow child nodes starting from fwnode such that they have the
911 * property in @props array at the index of the child node distance from the
912 * root node and the value of that property matching with the integer argument
913 * of the reference, at the same index.
914 *
915 * The child fwnode reached at the end of the iteration is then returned to the
916 * caller.
917 *
918 * The core reason for this is that you cannot refer to just any node in ACPI.
919 * So to refer to an endpoint (easy in DT) you need to refer to a device, then
920 * provide a list of (property name, property value) tuples where each tuple
921 * uniquely identifies a child node. The first tuple identifies a child directly
922 * underneath the device fwnode, the next tuple identifies a child node
923 * underneath the fwnode identified by the previous tuple, etc. until you
924 * reached the fwnode you need.
925 *
926 * THIS EXAMPLE EXISTS MERELY TO DOCUMENT THIS FUNCTION. DO NOT USE IT AS A
927 * REFERENCE IN HOW ACPI TABLES SHOULD BE WRITTEN!! See documentation under
928 * Documentation/firmware-guide/acpi/dsd/ instead and especially graph.txt,
929 * data-node-references.txt and leds.txt .
930 *
931 * Scope (\_SB.PCI0.I2C2)
932 * {
933 * Device (CAM0)
934 * {
935 * Name (_DSD, Package () {
936 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
937 * Package () {
938 * Package () {
939 * "compatible",
940 * Package () { "nokia,smia" }
941 * },
942 * },
943 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
944 * Package () {
945 * Package () { "port0", "PRT0" },
946 * }
947 * })
948 * Name (PRT0, Package() {
949 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
950 * Package () {
951 * Package () { "port", 0 },
952 * },
953 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
954 * Package () {
955 * Package () { "endpoint0", "EP00" },
956 * }
957 * })
958 * Name (EP00, Package() {
959 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
960 * Package () {
961 * Package () { "endpoint", 0 },
962 * Package () {
963 * "remote-endpoint",
964 * Package() {
965 * \_SB.PCI0.ISP, 4, 0
966 * }
967 * },
968 * }
969 * })
970 * }
971 * }
972 *
973 * Scope (\_SB.PCI0)
974 * {
975 * Device (ISP)
976 * {
977 * Name (_DSD, Package () {
978 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
979 * Package () {
980 * Package () { "port4", "PRT4" },
981 * }
982 * })
983 *
984 * Name (PRT4, Package() {
985 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
986 * Package () {
987 * Package () { "port", 4 },
988 * },
989 * ToUUID("dbb8e3e6-5886-4ba6-8795-1319f52a966b"),
990 * Package () {
991 * Package () { "endpoint0", "EP40" },
992 * }
993 * })
994 *
995 * Name (EP40, Package() {
996 * ToUUID("daffd814-6eba-4d8c-8a91-bc9bbf4aa301"),
997 * Package () {
998 * Package () { "endpoint", 0 },
999 * Package () {
1000 * "remote-endpoint",
1001 * Package () {
1002 * \_SB.PCI0.I2C2.CAM0,
1003 * 0, 0
1004 * }
1005 * },
1006 * }
1007 * })
1008 * }
1009 * }
1010 *
1011 * From the EP40 node under ISP device, you could parse the graph remote
1012 * endpoint using v4l2_fwnode_reference_get_int_prop with these arguments:
1013 *
1014 * @fwnode: fwnode referring to EP40 under ISP.
1015 * @prop: "remote-endpoint"
1016 * @index: 0
1017 * @props: "port", "endpoint"
1018 * @nprops: 2
1019 *
1020 * And you'd get back fwnode referring to EP00 under CAM0.
1021 *
1022 * The same works the other way around: if you use EP00 under CAM0 as the
1023 * fwnode, you'll get fwnode referring to EP40 under ISP.
1024 *
1025 * The same example in DT syntax would look like this:
1026 *
1027 * cam: cam0 {
1028 * compatible = "nokia,smia";
1029 *
1030 * port {
1031 * port = <0>;
1032 * endpoint {
1033 * endpoint = <0>;
1034 * remote-endpoint = <&isp 4 0>;
1035 * };
1036 * };
1037 * };
1038 *
1039 * isp: isp {
1040 * ports {
1041 * port@4 {
1042 * port = <4>;
1043 * endpoint {
1044 * endpoint = <0>;
1045 * remote-endpoint = <&cam 0 0>;
1046 * };
1047 * };
1048 * };
1049 * };
1050 *
1051 * Return: 0 on success
1052 * -ENOENT if no entries (or the property itself) were found
1053 * -EINVAL if property parsing otherwise failed
1054 * -ENOMEM if memory allocation failed
1055 */
1056 static struct fwnode_handle *
v4l2_fwnode_reference_get_int_prop(struct fwnode_handle * fwnode,const char * prop,unsigned int index,const char * const * props,unsigned int nprops)1057 v4l2_fwnode_reference_get_int_prop(struct fwnode_handle *fwnode,
1058 const char *prop,
1059 unsigned int index,
1060 const char * const *props,
1061 unsigned int nprops)
1062 {
1063 struct fwnode_reference_args fwnode_args;
1064 u64 *args = fwnode_args.args;
1065 struct fwnode_handle *child;
1066 int ret;
1067
1068 /*
1069 * Obtain remote fwnode as well as the integer arguments.
1070 *
1071 * Note that right now both -ENODATA and -ENOENT may signal
1072 * out-of-bounds access. Return -ENOENT in that case.
1073 */
1074 ret = fwnode_property_get_reference_args(fwnode, prop, NULL, nprops,
1075 index, &fwnode_args);
1076 if (ret)
1077 return ERR_PTR(ret == -ENODATA ? -ENOENT : ret);
1078
1079 /*
1080 * Find a node in the tree under the referred fwnode corresponding to
1081 * the integer arguments.
1082 */
1083 fwnode = fwnode_args.fwnode;
1084 while (nprops--) {
1085 u32 val;
1086
1087 /* Loop over all child nodes under fwnode. */
1088 fwnode_for_each_child_node(fwnode, child) {
1089 if (fwnode_property_read_u32(child, *props, &val))
1090 continue;
1091
1092 /* Found property, see if its value matches. */
1093 if (val == *args)
1094 break;
1095 }
1096
1097 fwnode_handle_put(fwnode);
1098
1099 /* No property found; return an error here. */
1100 if (!child) {
1101 fwnode = ERR_PTR(-ENOENT);
1102 break;
1103 }
1104
1105 props++;
1106 args++;
1107 fwnode = child;
1108 }
1109
1110 return fwnode;
1111 }
1112
1113 struct v4l2_fwnode_int_props {
1114 const char *name;
1115 const char * const *props;
1116 unsigned int nprops;
1117 };
1118
1119 /*
1120 * v4l2_fwnode_reference_parse_int_props - parse references for async
1121 * sub-devices
1122 * @dev: struct device pointer
1123 * @notifier: notifier for @dev
1124 * @prop: the name of the property
1125 * @props: the array of integer property names
1126 * @nprops: the number of integer properties
1127 *
1128 * Use v4l2_fwnode_reference_get_int_prop to find fwnodes through reference in
1129 * property @prop with integer arguments with child nodes matching in properties
1130 * @props. Then, set up V4L2 async sub-devices for those fwnodes in the notifier
1131 * accordingly.
1132 *
1133 * While it is technically possible to use this function on DT, it is only
1134 * meaningful on ACPI. On Device tree you can refer to any node in the tree but
1135 * on ACPI the references are limited to devices.
1136 *
1137 * Return: 0 on success
1138 * -ENOENT if no entries (or the property itself) were found
1139 * -EINVAL if property parsing otherwisefailed
1140 * -ENOMEM if memory allocation failed
1141 */
1142 static int
v4l2_fwnode_reference_parse_int_props(struct device * dev,struct v4l2_async_notifier * notifier,const struct v4l2_fwnode_int_props * p)1143 v4l2_fwnode_reference_parse_int_props(struct device *dev,
1144 struct v4l2_async_notifier *notifier,
1145 const struct v4l2_fwnode_int_props *p)
1146 {
1147 struct fwnode_handle *fwnode;
1148 unsigned int index;
1149 int ret;
1150 const char *prop = p->name;
1151 const char * const *props = p->props;
1152 unsigned int nprops = p->nprops;
1153
1154 index = 0;
1155 do {
1156 fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1157 prop, index,
1158 props, nprops);
1159 if (IS_ERR(fwnode)) {
1160 /*
1161 * Note that right now both -ENODATA and -ENOENT may
1162 * signal out-of-bounds access. Return the error in
1163 * cases other than that.
1164 */
1165 if (PTR_ERR(fwnode) != -ENOENT &&
1166 PTR_ERR(fwnode) != -ENODATA)
1167 return PTR_ERR(fwnode);
1168 break;
1169 }
1170 fwnode_handle_put(fwnode);
1171 index++;
1172 } while (1);
1173
1174 for (index = 0;
1175 !IS_ERR((fwnode = v4l2_fwnode_reference_get_int_prop(dev_fwnode(dev),
1176 prop, index,
1177 props,
1178 nprops)));
1179 index++) {
1180 struct v4l2_async_connection *asd;
1181
1182 asd = v4l2_async_nf_add_fwnode(notifier, fwnode,
1183 struct v4l2_async_connection);
1184 fwnode_handle_put(fwnode);
1185 if (IS_ERR(asd)) {
1186 ret = PTR_ERR(asd);
1187 /* not an error if asd already exists */
1188 if (ret == -EEXIST)
1189 continue;
1190
1191 return PTR_ERR(asd);
1192 }
1193 }
1194
1195 return !fwnode || PTR_ERR(fwnode) == -ENOENT ? 0 : PTR_ERR(fwnode);
1196 }
1197
1198 /**
1199 * v4l2_async_nf_parse_fwnode_sensor - parse common references on
1200 * sensors for async sub-devices
1201 * @dev: the device node the properties of which are parsed for references
1202 * @notifier: the async notifier where the async subdevs will be added
1203 *
1204 * Parse common sensor properties for remote devices related to the
1205 * sensor and set up async sub-devices for them.
1206 *
1207 * Any notifier populated using this function must be released with a call to
1208 * v4l2_async_nf_release() after it has been unregistered and the async
1209 * sub-devices are no longer in use, even in the case the function returned an
1210 * error.
1211 *
1212 * Return: 0 on success
1213 * -ENOMEM if memory allocation failed
1214 * -EINVAL if property parsing failed
1215 */
1216 static int
v4l2_async_nf_parse_fwnode_sensor(struct device * dev,struct v4l2_async_notifier * notifier)1217 v4l2_async_nf_parse_fwnode_sensor(struct device *dev,
1218 struct v4l2_async_notifier *notifier)
1219 {
1220 static const char * const led_props[] = { "led" };
1221 static const struct v4l2_fwnode_int_props props[] = {
1222 { "flash-leds", led_props, ARRAY_SIZE(led_props) },
1223 { "mipi-img-flash-leds", },
1224 { "lens-focus", },
1225 { "mipi-img-lens-focus", },
1226 };
1227 unsigned int i;
1228
1229 for (i = 0; i < ARRAY_SIZE(props); i++) {
1230 int ret;
1231
1232 if (props[i].props && is_acpi_node(dev_fwnode(dev)))
1233 ret = v4l2_fwnode_reference_parse_int_props(dev,
1234 notifier,
1235 &props[i]);
1236 else
1237 ret = v4l2_fwnode_reference_parse(dev, notifier,
1238 props[i].name);
1239 if (ret && ret != -ENOENT) {
1240 dev_warn(dev, "parsing property \"%s\" failed (%d)\n",
1241 props[i].name, ret);
1242 return ret;
1243 }
1244 }
1245
1246 return 0;
1247 }
1248
v4l2_async_register_subdev_sensor(struct v4l2_subdev * sd)1249 int v4l2_async_register_subdev_sensor(struct v4l2_subdev *sd)
1250 {
1251 struct v4l2_async_notifier *notifier;
1252 int ret;
1253
1254 if (WARN_ON(!sd->dev))
1255 return -ENODEV;
1256
1257 notifier = kzalloc(sizeof(*notifier), GFP_KERNEL);
1258 if (!notifier)
1259 return -ENOMEM;
1260
1261 v4l2_async_subdev_nf_init(notifier, sd);
1262
1263 ret = v4l2_subdev_get_privacy_led(sd);
1264 if (ret < 0)
1265 goto out_cleanup;
1266
1267 ret = v4l2_async_nf_parse_fwnode_sensor(sd->dev, notifier);
1268 if (ret < 0)
1269 goto out_cleanup;
1270
1271 ret = v4l2_async_nf_register(notifier);
1272 if (ret < 0)
1273 goto out_cleanup;
1274
1275 ret = v4l2_async_register_subdev(sd);
1276 if (ret < 0)
1277 goto out_unregister;
1278
1279 sd->subdev_notifier = notifier;
1280
1281 return 0;
1282
1283 out_unregister:
1284 v4l2_async_nf_unregister(notifier);
1285
1286 out_cleanup:
1287 v4l2_subdev_put_privacy_led(sd);
1288 v4l2_async_nf_cleanup(notifier);
1289 kfree(notifier);
1290
1291 return ret;
1292 }
1293 EXPORT_SYMBOL_GPL(v4l2_async_register_subdev_sensor);
1294
1295 MODULE_DESCRIPTION("V4L2 fwnode binding parsing library");
1296 MODULE_LICENSE("GPL");
1297 MODULE_AUTHOR("Sakari Ailus <[email protected]>");
1298 MODULE_AUTHOR("Sylwester Nawrocki <[email protected]>");
1299 MODULE_AUTHOR("Guennadi Liakhovetski <[email protected]>");
1300