1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * intel_pstate.c: Native P state management for Intel processors
4 *
5 * (C) Copyright 2012 Intel Corporation
6 * Author: Dirk Brandewie <[email protected]>
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/module.h>
14 #include <linux/ktime.h>
15 #include <linux/hrtimer.h>
16 #include <linux/tick.h>
17 #include <linux/slab.h>
18 #include <linux/sched/cpufreq.h>
19 #include <linux/sched/smt.h>
20 #include <linux/list.h>
21 #include <linux/cpu.h>
22 #include <linux/cpufreq.h>
23 #include <linux/sysfs.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/acpi.h>
27 #include <linux/vmalloc.h>
28 #include <linux/pm_qos.h>
29 #include <linux/bitfield.h>
30 #include <trace/events/power.h>
31 #include <linux/units.h>
32
33 #include <asm/cpu.h>
34 #include <asm/div64.h>
35 #include <asm/msr.h>
36 #include <asm/cpu_device_id.h>
37 #include <asm/cpufeature.h>
38 #include <asm/intel-family.h>
39 #include "../drivers/thermal/intel/thermal_interrupt.h"
40
41 #define INTEL_PSTATE_SAMPLING_INTERVAL (10 * NSEC_PER_MSEC)
42
43 #define INTEL_CPUFREQ_TRANSITION_LATENCY 20000
44 #define INTEL_CPUFREQ_TRANSITION_DELAY_HWP 5000
45 #define INTEL_CPUFREQ_TRANSITION_DELAY 500
46
47 #ifdef CONFIG_ACPI
48 #include <acpi/processor.h>
49 #include <acpi/cppc_acpi.h>
50 #endif
51
52 #define FRAC_BITS 8
53 #define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
54 #define fp_toint(X) ((X) >> FRAC_BITS)
55
56 #define ONE_EIGHTH_FP ((int64_t)1 << (FRAC_BITS - 3))
57
58 #define EXT_BITS 6
59 #define EXT_FRAC_BITS (EXT_BITS + FRAC_BITS)
60 #define fp_ext_toint(X) ((X) >> EXT_FRAC_BITS)
61 #define int_ext_tofp(X) ((int64_t)(X) << EXT_FRAC_BITS)
62
mul_fp(int32_t x,int32_t y)63 static inline int32_t mul_fp(int32_t x, int32_t y)
64 {
65 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
66 }
67
div_fp(s64 x,s64 y)68 static inline int32_t div_fp(s64 x, s64 y)
69 {
70 return div64_s64((int64_t)x << FRAC_BITS, y);
71 }
72
ceiling_fp(int32_t x)73 static inline int ceiling_fp(int32_t x)
74 {
75 int mask, ret;
76
77 ret = fp_toint(x);
78 mask = (1 << FRAC_BITS) - 1;
79 if (x & mask)
80 ret += 1;
81 return ret;
82 }
83
mul_ext_fp(u64 x,u64 y)84 static inline u64 mul_ext_fp(u64 x, u64 y)
85 {
86 return (x * y) >> EXT_FRAC_BITS;
87 }
88
div_ext_fp(u64 x,u64 y)89 static inline u64 div_ext_fp(u64 x, u64 y)
90 {
91 return div64_u64(x << EXT_FRAC_BITS, y);
92 }
93
94 /**
95 * struct sample - Store performance sample
96 * @core_avg_perf: Ratio of APERF/MPERF which is the actual average
97 * performance during last sample period
98 * @busy_scaled: Scaled busy value which is used to calculate next
99 * P state. This can be different than core_avg_perf
100 * to account for cpu idle period
101 * @aperf: Difference of actual performance frequency clock count
102 * read from APERF MSR between last and current sample
103 * @mperf: Difference of maximum performance frequency clock count
104 * read from MPERF MSR between last and current sample
105 * @tsc: Difference of time stamp counter between last and
106 * current sample
107 * @time: Current time from scheduler
108 *
109 * This structure is used in the cpudata structure to store performance sample
110 * data for choosing next P State.
111 */
112 struct sample {
113 int32_t core_avg_perf;
114 int32_t busy_scaled;
115 u64 aperf;
116 u64 mperf;
117 u64 tsc;
118 u64 time;
119 };
120
121 /**
122 * struct pstate_data - Store P state data
123 * @current_pstate: Current requested P state
124 * @min_pstate: Min P state possible for this platform
125 * @max_pstate: Max P state possible for this platform
126 * @max_pstate_physical:This is physical Max P state for a processor
127 * This can be higher than the max_pstate which can
128 * be limited by platform thermal design power limits
129 * @perf_ctl_scaling: PERF_CTL P-state to frequency scaling factor
130 * @scaling: Scaling factor between performance and frequency
131 * @turbo_pstate: Max Turbo P state possible for this platform
132 * @min_freq: @min_pstate frequency in cpufreq units
133 * @max_freq: @max_pstate frequency in cpufreq units
134 * @turbo_freq: @turbo_pstate frequency in cpufreq units
135 *
136 * Stores the per cpu model P state limits and current P state.
137 */
138 struct pstate_data {
139 int current_pstate;
140 int min_pstate;
141 int max_pstate;
142 int max_pstate_physical;
143 int perf_ctl_scaling;
144 int scaling;
145 int turbo_pstate;
146 unsigned int min_freq;
147 unsigned int max_freq;
148 unsigned int turbo_freq;
149 };
150
151 /**
152 * struct vid_data - Stores voltage information data
153 * @min: VID data for this platform corresponding to
154 * the lowest P state
155 * @max: VID data corresponding to the highest P State.
156 * @turbo: VID data for turbo P state
157 * @ratio: Ratio of (vid max - vid min) /
158 * (max P state - Min P State)
159 *
160 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
161 * This data is used in Atom platforms, where in addition to target P state,
162 * the voltage data needs to be specified to select next P State.
163 */
164 struct vid_data {
165 int min;
166 int max;
167 int turbo;
168 int32_t ratio;
169 };
170
171 /**
172 * struct global_params - Global parameters, mostly tunable via sysfs.
173 * @no_turbo: Whether or not to use turbo P-states.
174 * @turbo_disabled: Whether or not turbo P-states are available at all,
175 * based on the MSR_IA32_MISC_ENABLE value and whether or
176 * not the maximum reported turbo P-state is different from
177 * the maximum reported non-turbo one.
178 * @min_perf_pct: Minimum capacity limit in percent of the maximum turbo
179 * P-state capacity.
180 * @max_perf_pct: Maximum capacity limit in percent of the maximum turbo
181 * P-state capacity.
182 */
183 struct global_params {
184 bool no_turbo;
185 bool turbo_disabled;
186 int max_perf_pct;
187 int min_perf_pct;
188 };
189
190 /**
191 * struct cpudata - Per CPU instance data storage
192 * @cpu: CPU number for this instance data
193 * @policy: CPUFreq policy value
194 * @update_util: CPUFreq utility callback information
195 * @update_util_set: CPUFreq utility callback is set
196 * @iowait_boost: iowait-related boost fraction
197 * @last_update: Time of the last update.
198 * @pstate: Stores P state limits for this CPU
199 * @vid: Stores VID limits for this CPU
200 * @last_sample_time: Last Sample time
201 * @aperf_mperf_shift: APERF vs MPERF counting frequency difference
202 * @prev_aperf: Last APERF value read from APERF MSR
203 * @prev_mperf: Last MPERF value read from MPERF MSR
204 * @prev_tsc: Last timestamp counter (TSC) value
205 * @sample: Storage for storing last Sample data
206 * @min_perf_ratio: Minimum capacity in terms of PERF or HWP ratios
207 * @max_perf_ratio: Maximum capacity in terms of PERF or HWP ratios
208 * @acpi_perf_data: Stores ACPI perf information read from _PSS
209 * @valid_pss_table: Set to true for valid ACPI _PSS entries found
210 * @epp_powersave: Last saved HWP energy performance preference
211 * (EPP) or energy performance bias (EPB),
212 * when policy switched to performance
213 * @epp_policy: Last saved policy used to set EPP/EPB
214 * @epp_default: Power on default HWP energy performance
215 * preference/bias
216 * @epp_cached: Cached HWP energy-performance preference value
217 * @hwp_req_cached: Cached value of the last HWP Request MSR
218 * @hwp_cap_cached: Cached value of the last HWP Capabilities MSR
219 * @last_io_update: Last time when IO wake flag was set
220 * @capacity_perf: Highest perf used for scale invariance
221 * @sched_flags: Store scheduler flags for possible cross CPU update
222 * @hwp_boost_min: Last HWP boosted min performance
223 * @suspended: Whether or not the driver has been suspended.
224 * @hwp_notify_work: workqueue for HWP notifications.
225 *
226 * This structure stores per CPU instance data for all CPUs.
227 */
228 struct cpudata {
229 int cpu;
230
231 unsigned int policy;
232 struct update_util_data update_util;
233 bool update_util_set;
234
235 struct pstate_data pstate;
236 struct vid_data vid;
237
238 u64 last_update;
239 u64 last_sample_time;
240 u64 aperf_mperf_shift;
241 u64 prev_aperf;
242 u64 prev_mperf;
243 u64 prev_tsc;
244 struct sample sample;
245 int32_t min_perf_ratio;
246 int32_t max_perf_ratio;
247 #ifdef CONFIG_ACPI
248 struct acpi_processor_performance acpi_perf_data;
249 bool valid_pss_table;
250 #endif
251 unsigned int iowait_boost;
252 s16 epp_powersave;
253 s16 epp_policy;
254 s16 epp_default;
255 s16 epp_cached;
256 u64 hwp_req_cached;
257 u64 hwp_cap_cached;
258 u64 last_io_update;
259 unsigned int capacity_perf;
260 unsigned int sched_flags;
261 u32 hwp_boost_min;
262 bool suspended;
263 struct delayed_work hwp_notify_work;
264 };
265
266 static struct cpudata **all_cpu_data;
267
268 /**
269 * struct pstate_funcs - Per CPU model specific callbacks
270 * @get_max: Callback to get maximum non turbo effective P state
271 * @get_max_physical: Callback to get maximum non turbo physical P state
272 * @get_min: Callback to get minimum P state
273 * @get_turbo: Callback to get turbo P state
274 * @get_scaling: Callback to get frequency scaling factor
275 * @get_cpu_scaling: Get frequency scaling factor for a given cpu
276 * @get_aperf_mperf_shift: Callback to get the APERF vs MPERF frequency difference
277 * @get_val: Callback to convert P state to actual MSR write value
278 * @get_vid: Callback to get VID data for Atom platforms
279 *
280 * Core and Atom CPU models have different way to get P State limits. This
281 * structure is used to store those callbacks.
282 */
283 struct pstate_funcs {
284 int (*get_max)(int cpu);
285 int (*get_max_physical)(int cpu);
286 int (*get_min)(int cpu);
287 int (*get_turbo)(int cpu);
288 int (*get_scaling)(void);
289 int (*get_cpu_scaling)(int cpu);
290 int (*get_aperf_mperf_shift)(void);
291 u64 (*get_val)(struct cpudata*, int pstate);
292 void (*get_vid)(struct cpudata *);
293 };
294
295 static struct pstate_funcs pstate_funcs __read_mostly;
296
297 static bool hwp_active __ro_after_init;
298 static int hwp_mode_bdw __ro_after_init;
299 static bool per_cpu_limits __ro_after_init;
300 static bool hwp_forced __ro_after_init;
301 static bool hwp_boost __read_mostly;
302 static bool hwp_is_hybrid;
303
304 static struct cpufreq_driver *intel_pstate_driver __read_mostly;
305
306 #define HYBRID_SCALING_FACTOR_ADL 78741
307 #define HYBRID_SCALING_FACTOR_MTL 80000
308 #define HYBRID_SCALING_FACTOR_LNL 86957
309
310 static int hybrid_scaling_factor;
311
core_get_scaling(void)312 static inline int core_get_scaling(void)
313 {
314 return 100000;
315 }
316
317 #ifdef CONFIG_ACPI
318 static bool acpi_ppc;
319 #endif
320
321 static struct global_params global;
322
323 static DEFINE_MUTEX(intel_pstate_driver_lock);
324 static DEFINE_MUTEX(intel_pstate_limits_lock);
325
326 #ifdef CONFIG_ACPI
327
intel_pstate_acpi_pm_profile_server(void)328 static bool intel_pstate_acpi_pm_profile_server(void)
329 {
330 if (acpi_gbl_FADT.preferred_profile == PM_ENTERPRISE_SERVER ||
331 acpi_gbl_FADT.preferred_profile == PM_PERFORMANCE_SERVER)
332 return true;
333
334 return false;
335 }
336
intel_pstate_get_ppc_enable_status(void)337 static bool intel_pstate_get_ppc_enable_status(void)
338 {
339 if (intel_pstate_acpi_pm_profile_server())
340 return true;
341
342 return acpi_ppc;
343 }
344
345 #ifdef CONFIG_ACPI_CPPC_LIB
346
347 /* The work item is needed to avoid CPU hotplug locking issues */
intel_pstste_sched_itmt_work_fn(struct work_struct * work)348 static void intel_pstste_sched_itmt_work_fn(struct work_struct *work)
349 {
350 sched_set_itmt_support();
351 }
352
353 static DECLARE_WORK(sched_itmt_work, intel_pstste_sched_itmt_work_fn);
354
355 #define CPPC_MAX_PERF U8_MAX
356
intel_pstate_set_itmt_prio(int cpu)357 static void intel_pstate_set_itmt_prio(int cpu)
358 {
359 struct cppc_perf_caps cppc_perf;
360 static u32 max_highest_perf = 0, min_highest_perf = U32_MAX;
361 int ret;
362
363 ret = cppc_get_perf_caps(cpu, &cppc_perf);
364 /*
365 * If CPPC is not available, fall back to MSR_HWP_CAPABILITIES bits [8:0].
366 *
367 * Also, on some systems with overclocking enabled, CPPC.highest_perf is
368 * hardcoded to 0xff, so CPPC.highest_perf cannot be used to enable ITMT.
369 * Fall back to MSR_HWP_CAPABILITIES then too.
370 */
371 if (ret || cppc_perf.highest_perf == CPPC_MAX_PERF)
372 cppc_perf.highest_perf = HWP_HIGHEST_PERF(READ_ONCE(all_cpu_data[cpu]->hwp_cap_cached));
373
374 /*
375 * The priorities can be set regardless of whether or not
376 * sched_set_itmt_support(true) has been called and it is valid to
377 * update them at any time after it has been called.
378 */
379 sched_set_itmt_core_prio(cppc_perf.highest_perf, cpu);
380
381 if (max_highest_perf <= min_highest_perf) {
382 if (cppc_perf.highest_perf > max_highest_perf)
383 max_highest_perf = cppc_perf.highest_perf;
384
385 if (cppc_perf.highest_perf < min_highest_perf)
386 min_highest_perf = cppc_perf.highest_perf;
387
388 if (max_highest_perf > min_highest_perf) {
389 /*
390 * This code can be run during CPU online under the
391 * CPU hotplug locks, so sched_set_itmt_support()
392 * cannot be called from here. Queue up a work item
393 * to invoke it.
394 */
395 schedule_work(&sched_itmt_work);
396 }
397 }
398 }
399
intel_pstate_get_cppc_guaranteed(int cpu)400 static int intel_pstate_get_cppc_guaranteed(int cpu)
401 {
402 struct cppc_perf_caps cppc_perf;
403 int ret;
404
405 ret = cppc_get_perf_caps(cpu, &cppc_perf);
406 if (ret)
407 return ret;
408
409 if (cppc_perf.guaranteed_perf)
410 return cppc_perf.guaranteed_perf;
411
412 return cppc_perf.nominal_perf;
413 }
414
intel_pstate_cppc_get_scaling(int cpu)415 static int intel_pstate_cppc_get_scaling(int cpu)
416 {
417 struct cppc_perf_caps cppc_perf;
418
419 /*
420 * Compute the perf-to-frequency scaling factor for the given CPU if
421 * possible, unless it would be 0.
422 */
423 if (!cppc_get_perf_caps(cpu, &cppc_perf) &&
424 cppc_perf.nominal_perf && cppc_perf.nominal_freq)
425 return div_u64(cppc_perf.nominal_freq * KHZ_PER_MHZ,
426 cppc_perf.nominal_perf);
427
428 return core_get_scaling();
429 }
430
431 #else /* CONFIG_ACPI_CPPC_LIB */
intel_pstate_set_itmt_prio(int cpu)432 static inline void intel_pstate_set_itmt_prio(int cpu)
433 {
434 }
435 #endif /* CONFIG_ACPI_CPPC_LIB */
436
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)437 static void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
438 {
439 struct cpudata *cpu;
440 int ret;
441 int i;
442
443 if (hwp_active) {
444 intel_pstate_set_itmt_prio(policy->cpu);
445 return;
446 }
447
448 if (!intel_pstate_get_ppc_enable_status())
449 return;
450
451 cpu = all_cpu_data[policy->cpu];
452
453 ret = acpi_processor_register_performance(&cpu->acpi_perf_data,
454 policy->cpu);
455 if (ret)
456 return;
457
458 /*
459 * Check if the control value in _PSS is for PERF_CTL MSR, which should
460 * guarantee that the states returned by it map to the states in our
461 * list directly.
462 */
463 if (cpu->acpi_perf_data.control_register.space_id !=
464 ACPI_ADR_SPACE_FIXED_HARDWARE)
465 goto err;
466
467 /*
468 * If there is only one entry _PSS, simply ignore _PSS and continue as
469 * usual without taking _PSS into account
470 */
471 if (cpu->acpi_perf_data.state_count < 2)
472 goto err;
473
474 pr_debug("CPU%u - ACPI _PSS perf data\n", policy->cpu);
475 for (i = 0; i < cpu->acpi_perf_data.state_count; i++) {
476 pr_debug(" %cP%d: %u MHz, %u mW, 0x%x\n",
477 (i == cpu->acpi_perf_data.state ? '*' : ' '), i,
478 (u32) cpu->acpi_perf_data.states[i].core_frequency,
479 (u32) cpu->acpi_perf_data.states[i].power,
480 (u32) cpu->acpi_perf_data.states[i].control);
481 }
482
483 cpu->valid_pss_table = true;
484 pr_debug("_PPC limits will be enforced\n");
485
486 return;
487
488 err:
489 cpu->valid_pss_table = false;
490 acpi_processor_unregister_performance(policy->cpu);
491 }
492
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)493 static void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
494 {
495 struct cpudata *cpu;
496
497 cpu = all_cpu_data[policy->cpu];
498 if (!cpu->valid_pss_table)
499 return;
500
501 acpi_processor_unregister_performance(policy->cpu);
502 }
503 #else /* CONFIG_ACPI */
intel_pstate_init_acpi_perf_limits(struct cpufreq_policy * policy)504 static inline void intel_pstate_init_acpi_perf_limits(struct cpufreq_policy *policy)
505 {
506 }
507
intel_pstate_exit_perf_limits(struct cpufreq_policy * policy)508 static inline void intel_pstate_exit_perf_limits(struct cpufreq_policy *policy)
509 {
510 }
511
intel_pstate_acpi_pm_profile_server(void)512 static inline bool intel_pstate_acpi_pm_profile_server(void)
513 {
514 return false;
515 }
516 #endif /* CONFIG_ACPI */
517
518 #ifndef CONFIG_ACPI_CPPC_LIB
intel_pstate_get_cppc_guaranteed(int cpu)519 static inline int intel_pstate_get_cppc_guaranteed(int cpu)
520 {
521 return -ENOTSUPP;
522 }
523
intel_pstate_cppc_get_scaling(int cpu)524 static int intel_pstate_cppc_get_scaling(int cpu)
525 {
526 return core_get_scaling();
527 }
528 #endif /* CONFIG_ACPI_CPPC_LIB */
529
intel_pstate_freq_to_hwp_rel(struct cpudata * cpu,int freq,unsigned int relation)530 static int intel_pstate_freq_to_hwp_rel(struct cpudata *cpu, int freq,
531 unsigned int relation)
532 {
533 if (freq == cpu->pstate.turbo_freq)
534 return cpu->pstate.turbo_pstate;
535
536 if (freq == cpu->pstate.max_freq)
537 return cpu->pstate.max_pstate;
538
539 switch (relation) {
540 case CPUFREQ_RELATION_H:
541 return freq / cpu->pstate.scaling;
542 case CPUFREQ_RELATION_C:
543 return DIV_ROUND_CLOSEST(freq, cpu->pstate.scaling);
544 }
545
546 return DIV_ROUND_UP(freq, cpu->pstate.scaling);
547 }
548
intel_pstate_freq_to_hwp(struct cpudata * cpu,int freq)549 static int intel_pstate_freq_to_hwp(struct cpudata *cpu, int freq)
550 {
551 return intel_pstate_freq_to_hwp_rel(cpu, freq, CPUFREQ_RELATION_L);
552 }
553
554 /**
555 * intel_pstate_hybrid_hwp_adjust - Calibrate HWP performance levels.
556 * @cpu: Target CPU.
557 *
558 * On hybrid processors, HWP may expose more performance levels than there are
559 * P-states accessible through the PERF_CTL interface. If that happens, the
560 * scaling factor between HWP performance levels and CPU frequency will be less
561 * than the scaling factor between P-state values and CPU frequency.
562 *
563 * In that case, adjust the CPU parameters used in computations accordingly.
564 */
intel_pstate_hybrid_hwp_adjust(struct cpudata * cpu)565 static void intel_pstate_hybrid_hwp_adjust(struct cpudata *cpu)
566 {
567 int perf_ctl_max_phys = cpu->pstate.max_pstate_physical;
568 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
569 int perf_ctl_turbo = pstate_funcs.get_turbo(cpu->cpu);
570 int scaling = cpu->pstate.scaling;
571 int freq;
572
573 pr_debug("CPU%d: perf_ctl_max_phys = %d\n", cpu->cpu, perf_ctl_max_phys);
574 pr_debug("CPU%d: perf_ctl_turbo = %d\n", cpu->cpu, perf_ctl_turbo);
575 pr_debug("CPU%d: perf_ctl_scaling = %d\n", cpu->cpu, perf_ctl_scaling);
576 pr_debug("CPU%d: HWP_CAP guaranteed = %d\n", cpu->cpu, cpu->pstate.max_pstate);
577 pr_debug("CPU%d: HWP_CAP highest = %d\n", cpu->cpu, cpu->pstate.turbo_pstate);
578 pr_debug("CPU%d: HWP-to-frequency scaling factor: %d\n", cpu->cpu, scaling);
579
580 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_pstate * scaling,
581 perf_ctl_scaling);
582 cpu->pstate.max_freq = rounddown(cpu->pstate.max_pstate * scaling,
583 perf_ctl_scaling);
584
585 freq = perf_ctl_max_phys * perf_ctl_scaling;
586 cpu->pstate.max_pstate_physical = intel_pstate_freq_to_hwp(cpu, freq);
587
588 freq = cpu->pstate.min_pstate * perf_ctl_scaling;
589 cpu->pstate.min_freq = freq;
590 /*
591 * Cast the min P-state value retrieved via pstate_funcs.get_min() to
592 * the effective range of HWP performance levels.
593 */
594 cpu->pstate.min_pstate = intel_pstate_freq_to_hwp(cpu, freq);
595 }
596
turbo_is_disabled(void)597 static bool turbo_is_disabled(void)
598 {
599 u64 misc_en;
600
601 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
602
603 return !!(misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE);
604 }
605
min_perf_pct_min(void)606 static int min_perf_pct_min(void)
607 {
608 struct cpudata *cpu = all_cpu_data[0];
609 int turbo_pstate = cpu->pstate.turbo_pstate;
610
611 return turbo_pstate ?
612 (cpu->pstate.min_pstate * 100 / turbo_pstate) : 0;
613 }
614
intel_pstate_get_epb(struct cpudata * cpu_data)615 static s16 intel_pstate_get_epb(struct cpudata *cpu_data)
616 {
617 u64 epb;
618 int ret;
619
620 if (!boot_cpu_has(X86_FEATURE_EPB))
621 return -ENXIO;
622
623 ret = rdmsrl_on_cpu(cpu_data->cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
624 if (ret)
625 return (s16)ret;
626
627 return (s16)(epb & 0x0f);
628 }
629
intel_pstate_get_epp(struct cpudata * cpu_data,u64 hwp_req_data)630 static s16 intel_pstate_get_epp(struct cpudata *cpu_data, u64 hwp_req_data)
631 {
632 s16 epp;
633
634 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
635 /*
636 * When hwp_req_data is 0, means that caller didn't read
637 * MSR_HWP_REQUEST, so need to read and get EPP.
638 */
639 if (!hwp_req_data) {
640 epp = rdmsrl_on_cpu(cpu_data->cpu, MSR_HWP_REQUEST,
641 &hwp_req_data);
642 if (epp)
643 return epp;
644 }
645 epp = (hwp_req_data >> 24) & 0xff;
646 } else {
647 /* When there is no EPP present, HWP uses EPB settings */
648 epp = intel_pstate_get_epb(cpu_data);
649 }
650
651 return epp;
652 }
653
intel_pstate_set_epb(int cpu,s16 pref)654 static int intel_pstate_set_epb(int cpu, s16 pref)
655 {
656 u64 epb;
657 int ret;
658
659 if (!boot_cpu_has(X86_FEATURE_EPB))
660 return -ENXIO;
661
662 ret = rdmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, &epb);
663 if (ret)
664 return ret;
665
666 epb = (epb & ~0x0f) | pref;
667 wrmsrl_on_cpu(cpu, MSR_IA32_ENERGY_PERF_BIAS, epb);
668
669 return 0;
670 }
671
672 /*
673 * EPP/EPB display strings corresponding to EPP index in the
674 * energy_perf_strings[]
675 * index String
676 *-------------------------------------
677 * 0 default
678 * 1 performance
679 * 2 balance_performance
680 * 3 balance_power
681 * 4 power
682 */
683
684 enum energy_perf_value_index {
685 EPP_INDEX_DEFAULT = 0,
686 EPP_INDEX_PERFORMANCE,
687 EPP_INDEX_BALANCE_PERFORMANCE,
688 EPP_INDEX_BALANCE_POWERSAVE,
689 EPP_INDEX_POWERSAVE,
690 };
691
692 static const char * const energy_perf_strings[] = {
693 [EPP_INDEX_DEFAULT] = "default",
694 [EPP_INDEX_PERFORMANCE] = "performance",
695 [EPP_INDEX_BALANCE_PERFORMANCE] = "balance_performance",
696 [EPP_INDEX_BALANCE_POWERSAVE] = "balance_power",
697 [EPP_INDEX_POWERSAVE] = "power",
698 NULL
699 };
700 static unsigned int epp_values[] = {
701 [EPP_INDEX_DEFAULT] = 0, /* Unused index */
702 [EPP_INDEX_PERFORMANCE] = HWP_EPP_PERFORMANCE,
703 [EPP_INDEX_BALANCE_PERFORMANCE] = HWP_EPP_BALANCE_PERFORMANCE,
704 [EPP_INDEX_BALANCE_POWERSAVE] = HWP_EPP_BALANCE_POWERSAVE,
705 [EPP_INDEX_POWERSAVE] = HWP_EPP_POWERSAVE,
706 };
707
intel_pstate_get_energy_pref_index(struct cpudata * cpu_data,int * raw_epp)708 static int intel_pstate_get_energy_pref_index(struct cpudata *cpu_data, int *raw_epp)
709 {
710 s16 epp;
711 int index = -EINVAL;
712
713 *raw_epp = 0;
714 epp = intel_pstate_get_epp(cpu_data, 0);
715 if (epp < 0)
716 return epp;
717
718 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
719 if (epp == epp_values[EPP_INDEX_PERFORMANCE])
720 return EPP_INDEX_PERFORMANCE;
721 if (epp == epp_values[EPP_INDEX_BALANCE_PERFORMANCE])
722 return EPP_INDEX_BALANCE_PERFORMANCE;
723 if (epp == epp_values[EPP_INDEX_BALANCE_POWERSAVE])
724 return EPP_INDEX_BALANCE_POWERSAVE;
725 if (epp == epp_values[EPP_INDEX_POWERSAVE])
726 return EPP_INDEX_POWERSAVE;
727 *raw_epp = epp;
728 return 0;
729 } else if (boot_cpu_has(X86_FEATURE_EPB)) {
730 /*
731 * Range:
732 * 0x00-0x03 : Performance
733 * 0x04-0x07 : Balance performance
734 * 0x08-0x0B : Balance power
735 * 0x0C-0x0F : Power
736 * The EPB is a 4 bit value, but our ranges restrict the
737 * value which can be set. Here only using top two bits
738 * effectively.
739 */
740 index = (epp >> 2) + 1;
741 }
742
743 return index;
744 }
745
intel_pstate_set_epp(struct cpudata * cpu,u32 epp)746 static int intel_pstate_set_epp(struct cpudata *cpu, u32 epp)
747 {
748 int ret;
749
750 /*
751 * Use the cached HWP Request MSR value, because in the active mode the
752 * register itself may be updated by intel_pstate_hwp_boost_up() or
753 * intel_pstate_hwp_boost_down() at any time.
754 */
755 u64 value = READ_ONCE(cpu->hwp_req_cached);
756
757 value &= ~GENMASK_ULL(31, 24);
758 value |= (u64)epp << 24;
759 /*
760 * The only other updater of hwp_req_cached in the active mode,
761 * intel_pstate_hwp_set(), is called under the same lock as this
762 * function, so it cannot run in parallel with the update below.
763 */
764 WRITE_ONCE(cpu->hwp_req_cached, value);
765 ret = wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
766 if (!ret)
767 cpu->epp_cached = epp;
768
769 return ret;
770 }
771
intel_pstate_set_energy_pref_index(struct cpudata * cpu_data,int pref_index,bool use_raw,u32 raw_epp)772 static int intel_pstate_set_energy_pref_index(struct cpudata *cpu_data,
773 int pref_index, bool use_raw,
774 u32 raw_epp)
775 {
776 int epp = -EINVAL;
777 int ret;
778
779 if (!pref_index)
780 epp = cpu_data->epp_default;
781
782 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
783 if (use_raw)
784 epp = raw_epp;
785 else if (epp == -EINVAL)
786 epp = epp_values[pref_index];
787
788 /*
789 * To avoid confusion, refuse to set EPP to any values different
790 * from 0 (performance) if the current policy is "performance",
791 * because those values would be overridden.
792 */
793 if (epp > 0 && cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
794 return -EBUSY;
795
796 ret = intel_pstate_set_epp(cpu_data, epp);
797 } else {
798 if (epp == -EINVAL)
799 epp = (pref_index - 1) << 2;
800 ret = intel_pstate_set_epb(cpu_data->cpu, epp);
801 }
802
803 return ret;
804 }
805
show_energy_performance_available_preferences(struct cpufreq_policy * policy,char * buf)806 static ssize_t show_energy_performance_available_preferences(
807 struct cpufreq_policy *policy, char *buf)
808 {
809 int i = 0;
810 int ret = 0;
811
812 while (energy_perf_strings[i] != NULL)
813 ret += sprintf(&buf[ret], "%s ", energy_perf_strings[i++]);
814
815 ret += sprintf(&buf[ret], "\n");
816
817 return ret;
818 }
819
820 cpufreq_freq_attr_ro(energy_performance_available_preferences);
821
822 static struct cpufreq_driver intel_pstate;
823
store_energy_performance_preference(struct cpufreq_policy * policy,const char * buf,size_t count)824 static ssize_t store_energy_performance_preference(
825 struct cpufreq_policy *policy, const char *buf, size_t count)
826 {
827 struct cpudata *cpu = all_cpu_data[policy->cpu];
828 char str_preference[21];
829 bool raw = false;
830 ssize_t ret;
831 u32 epp = 0;
832
833 ret = sscanf(buf, "%20s", str_preference);
834 if (ret != 1)
835 return -EINVAL;
836
837 ret = match_string(energy_perf_strings, -1, str_preference);
838 if (ret < 0) {
839 if (!boot_cpu_has(X86_FEATURE_HWP_EPP))
840 return ret;
841
842 ret = kstrtouint(buf, 10, &epp);
843 if (ret)
844 return ret;
845
846 if (epp > 255)
847 return -EINVAL;
848
849 raw = true;
850 }
851
852 /*
853 * This function runs with the policy R/W semaphore held, which
854 * guarantees that the driver pointer will not change while it is
855 * running.
856 */
857 if (!intel_pstate_driver)
858 return -EAGAIN;
859
860 mutex_lock(&intel_pstate_limits_lock);
861
862 if (intel_pstate_driver == &intel_pstate) {
863 ret = intel_pstate_set_energy_pref_index(cpu, ret, raw, epp);
864 } else {
865 /*
866 * In the passive mode the governor needs to be stopped on the
867 * target CPU before the EPP update and restarted after it,
868 * which is super-heavy-weight, so make sure it is worth doing
869 * upfront.
870 */
871 if (!raw)
872 epp = ret ? epp_values[ret] : cpu->epp_default;
873
874 if (cpu->epp_cached != epp) {
875 int err;
876
877 cpufreq_stop_governor(policy);
878 ret = intel_pstate_set_epp(cpu, epp);
879 err = cpufreq_start_governor(policy);
880 if (!ret)
881 ret = err;
882 } else {
883 ret = 0;
884 }
885 }
886
887 mutex_unlock(&intel_pstate_limits_lock);
888
889 return ret ?: count;
890 }
891
show_energy_performance_preference(struct cpufreq_policy * policy,char * buf)892 static ssize_t show_energy_performance_preference(
893 struct cpufreq_policy *policy, char *buf)
894 {
895 struct cpudata *cpu_data = all_cpu_data[policy->cpu];
896 int preference, raw_epp;
897
898 preference = intel_pstate_get_energy_pref_index(cpu_data, &raw_epp);
899 if (preference < 0)
900 return preference;
901
902 if (raw_epp)
903 return sprintf(buf, "%d\n", raw_epp);
904 else
905 return sprintf(buf, "%s\n", energy_perf_strings[preference]);
906 }
907
908 cpufreq_freq_attr_rw(energy_performance_preference);
909
show_base_frequency(struct cpufreq_policy * policy,char * buf)910 static ssize_t show_base_frequency(struct cpufreq_policy *policy, char *buf)
911 {
912 struct cpudata *cpu = all_cpu_data[policy->cpu];
913 int ratio, freq;
914
915 ratio = intel_pstate_get_cppc_guaranteed(policy->cpu);
916 if (ratio <= 0) {
917 u64 cap;
918
919 rdmsrl_on_cpu(policy->cpu, MSR_HWP_CAPABILITIES, &cap);
920 ratio = HWP_GUARANTEED_PERF(cap);
921 }
922
923 freq = ratio * cpu->pstate.scaling;
924 if (cpu->pstate.scaling != cpu->pstate.perf_ctl_scaling)
925 freq = rounddown(freq, cpu->pstate.perf_ctl_scaling);
926
927 return sprintf(buf, "%d\n", freq);
928 }
929
930 cpufreq_freq_attr_ro(base_frequency);
931
932 static struct freq_attr *hwp_cpufreq_attrs[] = {
933 &energy_performance_preference,
934 &energy_performance_available_preferences,
935 &base_frequency,
936 NULL,
937 };
938
939 static struct cpudata *hybrid_max_perf_cpu __read_mostly;
940 /*
941 * Protects hybrid_max_perf_cpu, the capacity_perf fields in struct cpudata,
942 * and the x86 arch scale-invariance information from concurrent updates.
943 */
944 static DEFINE_MUTEX(hybrid_capacity_lock);
945
hybrid_set_cpu_capacity(struct cpudata * cpu)946 static void hybrid_set_cpu_capacity(struct cpudata *cpu)
947 {
948 arch_set_cpu_capacity(cpu->cpu, cpu->capacity_perf,
949 hybrid_max_perf_cpu->capacity_perf,
950 cpu->capacity_perf,
951 cpu->pstate.max_pstate_physical);
952
953 pr_debug("CPU%d: perf = %u, max. perf = %u, base perf = %d\n", cpu->cpu,
954 cpu->capacity_perf, hybrid_max_perf_cpu->capacity_perf,
955 cpu->pstate.max_pstate_physical);
956 }
957
hybrid_clear_cpu_capacity(unsigned int cpunum)958 static void hybrid_clear_cpu_capacity(unsigned int cpunum)
959 {
960 arch_set_cpu_capacity(cpunum, 1, 1, 1, 1);
961 }
962
hybrid_get_capacity_perf(struct cpudata * cpu)963 static void hybrid_get_capacity_perf(struct cpudata *cpu)
964 {
965 if (READ_ONCE(global.no_turbo)) {
966 cpu->capacity_perf = cpu->pstate.max_pstate_physical;
967 return;
968 }
969
970 cpu->capacity_perf = HWP_HIGHEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
971 }
972
hybrid_set_capacity_of_cpus(void)973 static void hybrid_set_capacity_of_cpus(void)
974 {
975 int cpunum;
976
977 for_each_online_cpu(cpunum) {
978 struct cpudata *cpu = all_cpu_data[cpunum];
979
980 if (cpu)
981 hybrid_set_cpu_capacity(cpu);
982 }
983 }
984
hybrid_update_cpu_capacity_scaling(void)985 static void hybrid_update_cpu_capacity_scaling(void)
986 {
987 struct cpudata *max_perf_cpu = NULL;
988 unsigned int max_cap_perf = 0;
989 int cpunum;
990
991 for_each_online_cpu(cpunum) {
992 struct cpudata *cpu = all_cpu_data[cpunum];
993
994 if (!cpu)
995 continue;
996
997 /*
998 * During initialization, CPU performance at full capacity needs
999 * to be determined.
1000 */
1001 if (!hybrid_max_perf_cpu)
1002 hybrid_get_capacity_perf(cpu);
1003
1004 /*
1005 * If hybrid_max_perf_cpu is not NULL at this point, it is
1006 * being replaced, so don't take it into account when looking
1007 * for the new one.
1008 */
1009 if (cpu == hybrid_max_perf_cpu)
1010 continue;
1011
1012 if (cpu->capacity_perf > max_cap_perf) {
1013 max_cap_perf = cpu->capacity_perf;
1014 max_perf_cpu = cpu;
1015 }
1016 }
1017
1018 if (max_perf_cpu) {
1019 hybrid_max_perf_cpu = max_perf_cpu;
1020 hybrid_set_capacity_of_cpus();
1021 } else {
1022 pr_info("Found no CPUs with nonzero maximum performance\n");
1023 /* Revert to the flat CPU capacity structure. */
1024 for_each_online_cpu(cpunum)
1025 hybrid_clear_cpu_capacity(cpunum);
1026 }
1027 }
1028
__hybrid_refresh_cpu_capacity_scaling(void)1029 static void __hybrid_refresh_cpu_capacity_scaling(void)
1030 {
1031 hybrid_max_perf_cpu = NULL;
1032 hybrid_update_cpu_capacity_scaling();
1033 }
1034
hybrid_refresh_cpu_capacity_scaling(void)1035 static void hybrid_refresh_cpu_capacity_scaling(void)
1036 {
1037 guard(mutex)(&hybrid_capacity_lock);
1038
1039 __hybrid_refresh_cpu_capacity_scaling();
1040 }
1041
hybrid_init_cpu_capacity_scaling(bool refresh)1042 static void hybrid_init_cpu_capacity_scaling(bool refresh)
1043 {
1044 /*
1045 * If hybrid_max_perf_cpu is set at this point, the hybrid CPU capacity
1046 * scaling has been enabled already and the driver is just changing the
1047 * operation mode.
1048 */
1049 if (refresh) {
1050 hybrid_refresh_cpu_capacity_scaling();
1051 return;
1052 }
1053
1054 /*
1055 * On hybrid systems, use asym capacity instead of ITMT, but because
1056 * the capacity of SMT threads is not deterministic even approximately,
1057 * do not do that when SMT is in use.
1058 */
1059 if (hwp_is_hybrid && !sched_smt_active() && arch_enable_hybrid_capacity_scale()) {
1060 hybrid_refresh_cpu_capacity_scaling();
1061 /*
1062 * Disabling ITMT causes sched domains to be rebuilt to disable asym
1063 * packing and enable asym capacity.
1064 */
1065 sched_clear_itmt_support();
1066 }
1067 }
1068
hybrid_clear_max_perf_cpu(void)1069 static bool hybrid_clear_max_perf_cpu(void)
1070 {
1071 bool ret;
1072
1073 guard(mutex)(&hybrid_capacity_lock);
1074
1075 ret = !!hybrid_max_perf_cpu;
1076 hybrid_max_perf_cpu = NULL;
1077
1078 return ret;
1079 }
1080
__intel_pstate_get_hwp_cap(struct cpudata * cpu)1081 static void __intel_pstate_get_hwp_cap(struct cpudata *cpu)
1082 {
1083 u64 cap;
1084
1085 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_CAPABILITIES, &cap);
1086 WRITE_ONCE(cpu->hwp_cap_cached, cap);
1087 cpu->pstate.max_pstate = HWP_GUARANTEED_PERF(cap);
1088 cpu->pstate.turbo_pstate = HWP_HIGHEST_PERF(cap);
1089 }
1090
intel_pstate_get_hwp_cap(struct cpudata * cpu)1091 static void intel_pstate_get_hwp_cap(struct cpudata *cpu)
1092 {
1093 int scaling = cpu->pstate.scaling;
1094
1095 __intel_pstate_get_hwp_cap(cpu);
1096
1097 cpu->pstate.max_freq = cpu->pstate.max_pstate * scaling;
1098 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * scaling;
1099 if (scaling != cpu->pstate.perf_ctl_scaling) {
1100 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
1101
1102 cpu->pstate.max_freq = rounddown(cpu->pstate.max_freq,
1103 perf_ctl_scaling);
1104 cpu->pstate.turbo_freq = rounddown(cpu->pstate.turbo_freq,
1105 perf_ctl_scaling);
1106 }
1107 }
1108
hybrid_update_capacity(struct cpudata * cpu)1109 static void hybrid_update_capacity(struct cpudata *cpu)
1110 {
1111 unsigned int max_cap_perf;
1112
1113 mutex_lock(&hybrid_capacity_lock);
1114
1115 if (!hybrid_max_perf_cpu)
1116 goto unlock;
1117
1118 /*
1119 * The maximum performance of the CPU may have changed, but assume
1120 * that the performance of the other CPUs has not changed.
1121 */
1122 max_cap_perf = hybrid_max_perf_cpu->capacity_perf;
1123
1124 intel_pstate_get_hwp_cap(cpu);
1125
1126 hybrid_get_capacity_perf(cpu);
1127 /* Should hybrid_max_perf_cpu be replaced by this CPU? */
1128 if (cpu->capacity_perf > max_cap_perf) {
1129 hybrid_max_perf_cpu = cpu;
1130 hybrid_set_capacity_of_cpus();
1131 goto unlock;
1132 }
1133
1134 /* If this CPU is hybrid_max_perf_cpu, should it be replaced? */
1135 if (cpu == hybrid_max_perf_cpu && cpu->capacity_perf < max_cap_perf) {
1136 hybrid_update_cpu_capacity_scaling();
1137 goto unlock;
1138 }
1139
1140 hybrid_set_cpu_capacity(cpu);
1141
1142 unlock:
1143 mutex_unlock(&hybrid_capacity_lock);
1144 }
1145
intel_pstate_hwp_set(unsigned int cpu)1146 static void intel_pstate_hwp_set(unsigned int cpu)
1147 {
1148 struct cpudata *cpu_data = all_cpu_data[cpu];
1149 int max, min;
1150 u64 value;
1151 s16 epp;
1152
1153 max = cpu_data->max_perf_ratio;
1154 min = cpu_data->min_perf_ratio;
1155
1156 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE)
1157 min = max;
1158
1159 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
1160
1161 value &= ~HWP_MIN_PERF(~0L);
1162 value |= HWP_MIN_PERF(min);
1163
1164 value &= ~HWP_MAX_PERF(~0L);
1165 value |= HWP_MAX_PERF(max);
1166
1167 if (cpu_data->epp_policy == cpu_data->policy)
1168 goto skip_epp;
1169
1170 cpu_data->epp_policy = cpu_data->policy;
1171
1172 if (cpu_data->policy == CPUFREQ_POLICY_PERFORMANCE) {
1173 epp = intel_pstate_get_epp(cpu_data, value);
1174 cpu_data->epp_powersave = epp;
1175 /* If EPP read was failed, then don't try to write */
1176 if (epp < 0)
1177 goto skip_epp;
1178
1179 epp = 0;
1180 } else {
1181 /* skip setting EPP, when saved value is invalid */
1182 if (cpu_data->epp_powersave < 0)
1183 goto skip_epp;
1184
1185 /*
1186 * No need to restore EPP when it is not zero. This
1187 * means:
1188 * - Policy is not changed
1189 * - user has manually changed
1190 * - Error reading EPB
1191 */
1192 epp = intel_pstate_get_epp(cpu_data, value);
1193 if (epp)
1194 goto skip_epp;
1195
1196 epp = cpu_data->epp_powersave;
1197 }
1198 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1199 value &= ~GENMASK_ULL(31, 24);
1200 value |= (u64)epp << 24;
1201 } else {
1202 intel_pstate_set_epb(cpu, epp);
1203 }
1204 skip_epp:
1205 WRITE_ONCE(cpu_data->hwp_req_cached, value);
1206 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
1207 }
1208
1209 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata);
1210
intel_pstate_hwp_offline(struct cpudata * cpu)1211 static void intel_pstate_hwp_offline(struct cpudata *cpu)
1212 {
1213 u64 value = READ_ONCE(cpu->hwp_req_cached);
1214 int min_perf;
1215
1216 intel_pstate_disable_hwp_interrupt(cpu);
1217
1218 if (boot_cpu_has(X86_FEATURE_HWP_EPP)) {
1219 /*
1220 * In case the EPP has been set to "performance" by the
1221 * active mode "performance" scaling algorithm, replace that
1222 * temporary value with the cached EPP one.
1223 */
1224 value &= ~GENMASK_ULL(31, 24);
1225 value |= HWP_ENERGY_PERF_PREFERENCE(cpu->epp_cached);
1226 /*
1227 * However, make sure that EPP will be set to "performance" when
1228 * the CPU is brought back online again and the "performance"
1229 * scaling algorithm is still in effect.
1230 */
1231 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
1232 }
1233
1234 /*
1235 * Clear the desired perf field in the cached HWP request value to
1236 * prevent nonzero desired values from being leaked into the active
1237 * mode.
1238 */
1239 value &= ~HWP_DESIRED_PERF(~0L);
1240 WRITE_ONCE(cpu->hwp_req_cached, value);
1241
1242 value &= ~GENMASK_ULL(31, 0);
1243 min_perf = HWP_LOWEST_PERF(READ_ONCE(cpu->hwp_cap_cached));
1244
1245 /* Set hwp_max = hwp_min */
1246 value |= HWP_MAX_PERF(min_perf);
1247 value |= HWP_MIN_PERF(min_perf);
1248
1249 /* Set EPP to min */
1250 if (boot_cpu_has(X86_FEATURE_HWP_EPP))
1251 value |= HWP_ENERGY_PERF_PREFERENCE(HWP_EPP_POWERSAVE);
1252
1253 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
1254
1255 mutex_lock(&hybrid_capacity_lock);
1256
1257 if (!hybrid_max_perf_cpu) {
1258 mutex_unlock(&hybrid_capacity_lock);
1259
1260 return;
1261 }
1262
1263 if (hybrid_max_perf_cpu == cpu)
1264 hybrid_update_cpu_capacity_scaling();
1265
1266 mutex_unlock(&hybrid_capacity_lock);
1267
1268 /* Reset the capacity of the CPU going offline to the initial value. */
1269 hybrid_clear_cpu_capacity(cpu->cpu);
1270 }
1271
1272 #define POWER_CTL_EE_ENABLE 1
1273 #define POWER_CTL_EE_DISABLE 2
1274
1275 static int power_ctl_ee_state;
1276
set_power_ctl_ee_state(bool input)1277 static void set_power_ctl_ee_state(bool input)
1278 {
1279 u64 power_ctl;
1280
1281 mutex_lock(&intel_pstate_driver_lock);
1282 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1283 if (input) {
1284 power_ctl &= ~BIT(MSR_IA32_POWER_CTL_BIT_EE);
1285 power_ctl_ee_state = POWER_CTL_EE_ENABLE;
1286 } else {
1287 power_ctl |= BIT(MSR_IA32_POWER_CTL_BIT_EE);
1288 power_ctl_ee_state = POWER_CTL_EE_DISABLE;
1289 }
1290 wrmsrl(MSR_IA32_POWER_CTL, power_ctl);
1291 mutex_unlock(&intel_pstate_driver_lock);
1292 }
1293
1294 static void intel_pstate_hwp_enable(struct cpudata *cpudata);
1295
intel_pstate_hwp_reenable(struct cpudata * cpu)1296 static void intel_pstate_hwp_reenable(struct cpudata *cpu)
1297 {
1298 intel_pstate_hwp_enable(cpu);
1299 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, READ_ONCE(cpu->hwp_req_cached));
1300 }
1301
intel_pstate_suspend(struct cpufreq_policy * policy)1302 static int intel_pstate_suspend(struct cpufreq_policy *policy)
1303 {
1304 struct cpudata *cpu = all_cpu_data[policy->cpu];
1305
1306 pr_debug("CPU %d suspending\n", cpu->cpu);
1307
1308 cpu->suspended = true;
1309
1310 /* disable HWP interrupt and cancel any pending work */
1311 intel_pstate_disable_hwp_interrupt(cpu);
1312
1313 return 0;
1314 }
1315
intel_pstate_resume(struct cpufreq_policy * policy)1316 static int intel_pstate_resume(struct cpufreq_policy *policy)
1317 {
1318 struct cpudata *cpu = all_cpu_data[policy->cpu];
1319
1320 pr_debug("CPU %d resuming\n", cpu->cpu);
1321
1322 /* Only restore if the system default is changed */
1323 if (power_ctl_ee_state == POWER_CTL_EE_ENABLE)
1324 set_power_ctl_ee_state(true);
1325 else if (power_ctl_ee_state == POWER_CTL_EE_DISABLE)
1326 set_power_ctl_ee_state(false);
1327
1328 if (cpu->suspended && hwp_active) {
1329 mutex_lock(&intel_pstate_limits_lock);
1330
1331 /* Re-enable HWP, because "online" has not done that. */
1332 intel_pstate_hwp_reenable(cpu);
1333
1334 mutex_unlock(&intel_pstate_limits_lock);
1335 }
1336
1337 cpu->suspended = false;
1338
1339 return 0;
1340 }
1341
intel_pstate_update_policies(void)1342 static void intel_pstate_update_policies(void)
1343 {
1344 int cpu;
1345
1346 for_each_possible_cpu(cpu)
1347 cpufreq_update_policy(cpu);
1348 }
1349
__intel_pstate_update_max_freq(struct cpudata * cpudata,struct cpufreq_policy * policy)1350 static void __intel_pstate_update_max_freq(struct cpudata *cpudata,
1351 struct cpufreq_policy *policy)
1352 {
1353 if (hwp_active)
1354 intel_pstate_get_hwp_cap(cpudata);
1355
1356 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
1357 cpudata->pstate.max_freq : cpudata->pstate.turbo_freq;
1358
1359 refresh_frequency_limits(policy);
1360 }
1361
intel_pstate_update_limits(unsigned int cpu)1362 static void intel_pstate_update_limits(unsigned int cpu)
1363 {
1364 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1365 struct cpudata *cpudata;
1366
1367 if (!policy)
1368 return;
1369
1370 cpudata = all_cpu_data[cpu];
1371
1372 __intel_pstate_update_max_freq(cpudata, policy);
1373
1374 /* Prevent the driver from being unregistered now. */
1375 mutex_lock(&intel_pstate_driver_lock);
1376
1377 cpufreq_cpu_release(policy);
1378
1379 hybrid_update_capacity(cpudata);
1380
1381 mutex_unlock(&intel_pstate_driver_lock);
1382 }
1383
intel_pstate_update_limits_for_all(void)1384 static void intel_pstate_update_limits_for_all(void)
1385 {
1386 int cpu;
1387
1388 for_each_possible_cpu(cpu) {
1389 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpu);
1390
1391 if (!policy)
1392 continue;
1393
1394 __intel_pstate_update_max_freq(all_cpu_data[cpu], policy);
1395
1396 cpufreq_cpu_release(policy);
1397 }
1398
1399 mutex_lock(&hybrid_capacity_lock);
1400
1401 if (hybrid_max_perf_cpu)
1402 __hybrid_refresh_cpu_capacity_scaling();
1403
1404 mutex_unlock(&hybrid_capacity_lock);
1405 }
1406
1407 /************************** sysfs begin ************************/
1408 #define show_one(file_name, object) \
1409 static ssize_t show_##file_name \
1410 (struct kobject *kobj, struct kobj_attribute *attr, char *buf) \
1411 { \
1412 return sprintf(buf, "%u\n", global.object); \
1413 }
1414
1415 static ssize_t intel_pstate_show_status(char *buf);
1416 static int intel_pstate_update_status(const char *buf, size_t size);
1417
show_status(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1418 static ssize_t show_status(struct kobject *kobj,
1419 struct kobj_attribute *attr, char *buf)
1420 {
1421 ssize_t ret;
1422
1423 mutex_lock(&intel_pstate_driver_lock);
1424 ret = intel_pstate_show_status(buf);
1425 mutex_unlock(&intel_pstate_driver_lock);
1426
1427 return ret;
1428 }
1429
store_status(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1430 static ssize_t store_status(struct kobject *a, struct kobj_attribute *b,
1431 const char *buf, size_t count)
1432 {
1433 char *p = memchr(buf, '\n', count);
1434 int ret;
1435
1436 mutex_lock(&intel_pstate_driver_lock);
1437 ret = intel_pstate_update_status(buf, p ? p - buf : count);
1438 mutex_unlock(&intel_pstate_driver_lock);
1439
1440 return ret < 0 ? ret : count;
1441 }
1442
show_turbo_pct(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1443 static ssize_t show_turbo_pct(struct kobject *kobj,
1444 struct kobj_attribute *attr, char *buf)
1445 {
1446 struct cpudata *cpu;
1447 int total, no_turbo, turbo_pct;
1448 uint32_t turbo_fp;
1449
1450 mutex_lock(&intel_pstate_driver_lock);
1451
1452 if (!intel_pstate_driver) {
1453 mutex_unlock(&intel_pstate_driver_lock);
1454 return -EAGAIN;
1455 }
1456
1457 cpu = all_cpu_data[0];
1458
1459 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1460 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
1461 turbo_fp = div_fp(no_turbo, total);
1462 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
1463
1464 mutex_unlock(&intel_pstate_driver_lock);
1465
1466 return sprintf(buf, "%u\n", turbo_pct);
1467 }
1468
show_num_pstates(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1469 static ssize_t show_num_pstates(struct kobject *kobj,
1470 struct kobj_attribute *attr, char *buf)
1471 {
1472 struct cpudata *cpu;
1473 int total;
1474
1475 mutex_lock(&intel_pstate_driver_lock);
1476
1477 if (!intel_pstate_driver) {
1478 mutex_unlock(&intel_pstate_driver_lock);
1479 return -EAGAIN;
1480 }
1481
1482 cpu = all_cpu_data[0];
1483 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
1484
1485 mutex_unlock(&intel_pstate_driver_lock);
1486
1487 return sprintf(buf, "%u\n", total);
1488 }
1489
show_no_turbo(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1490 static ssize_t show_no_turbo(struct kobject *kobj,
1491 struct kobj_attribute *attr, char *buf)
1492 {
1493 ssize_t ret;
1494
1495 mutex_lock(&intel_pstate_driver_lock);
1496
1497 if (!intel_pstate_driver) {
1498 mutex_unlock(&intel_pstate_driver_lock);
1499 return -EAGAIN;
1500 }
1501
1502 ret = sprintf(buf, "%u\n", global.no_turbo);
1503
1504 mutex_unlock(&intel_pstate_driver_lock);
1505
1506 return ret;
1507 }
1508
store_no_turbo(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1509 static ssize_t store_no_turbo(struct kobject *a, struct kobj_attribute *b,
1510 const char *buf, size_t count)
1511 {
1512 unsigned int input;
1513 bool no_turbo;
1514
1515 if (sscanf(buf, "%u", &input) != 1)
1516 return -EINVAL;
1517
1518 mutex_lock(&intel_pstate_driver_lock);
1519
1520 if (!intel_pstate_driver) {
1521 count = -EAGAIN;
1522 goto unlock_driver;
1523 }
1524
1525 no_turbo = !!clamp_t(int, input, 0, 1);
1526
1527 WRITE_ONCE(global.turbo_disabled, turbo_is_disabled());
1528 if (global.turbo_disabled && !no_turbo) {
1529 pr_notice("Turbo disabled by BIOS or unavailable on processor\n");
1530 count = -EPERM;
1531 if (global.no_turbo)
1532 goto unlock_driver;
1533 else
1534 no_turbo = 1;
1535 }
1536
1537 if (no_turbo == global.no_turbo) {
1538 goto unlock_driver;
1539 }
1540
1541 WRITE_ONCE(global.no_turbo, no_turbo);
1542
1543 mutex_lock(&intel_pstate_limits_lock);
1544
1545 if (no_turbo) {
1546 struct cpudata *cpu = all_cpu_data[0];
1547 int pct = cpu->pstate.max_pstate * 100 / cpu->pstate.turbo_pstate;
1548
1549 /* Squash the global minimum into the permitted range. */
1550 if (global.min_perf_pct > pct)
1551 global.min_perf_pct = pct;
1552 }
1553
1554 mutex_unlock(&intel_pstate_limits_lock);
1555
1556 intel_pstate_update_limits_for_all();
1557 arch_set_max_freq_ratio(no_turbo);
1558
1559 unlock_driver:
1560 mutex_unlock(&intel_pstate_driver_lock);
1561
1562 return count;
1563 }
1564
update_qos_request(enum freq_qos_req_type type)1565 static void update_qos_request(enum freq_qos_req_type type)
1566 {
1567 struct freq_qos_request *req;
1568 struct cpufreq_policy *policy;
1569 int i;
1570
1571 for_each_possible_cpu(i) {
1572 struct cpudata *cpu = all_cpu_data[i];
1573 unsigned int freq, perf_pct;
1574
1575 policy = cpufreq_cpu_get(i);
1576 if (!policy)
1577 continue;
1578
1579 req = policy->driver_data;
1580 cpufreq_cpu_put(policy);
1581
1582 if (!req)
1583 continue;
1584
1585 if (hwp_active)
1586 intel_pstate_get_hwp_cap(cpu);
1587
1588 if (type == FREQ_QOS_MIN) {
1589 perf_pct = global.min_perf_pct;
1590 } else {
1591 req++;
1592 perf_pct = global.max_perf_pct;
1593 }
1594
1595 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * perf_pct, 100);
1596
1597 if (freq_qos_update_request(req, freq) < 0)
1598 pr_warn("Failed to update freq constraint: CPU%d\n", i);
1599 }
1600 }
1601
store_max_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1602 static ssize_t store_max_perf_pct(struct kobject *a, struct kobj_attribute *b,
1603 const char *buf, size_t count)
1604 {
1605 unsigned int input;
1606 int ret;
1607
1608 ret = sscanf(buf, "%u", &input);
1609 if (ret != 1)
1610 return -EINVAL;
1611
1612 mutex_lock(&intel_pstate_driver_lock);
1613
1614 if (!intel_pstate_driver) {
1615 mutex_unlock(&intel_pstate_driver_lock);
1616 return -EAGAIN;
1617 }
1618
1619 mutex_lock(&intel_pstate_limits_lock);
1620
1621 global.max_perf_pct = clamp_t(int, input, global.min_perf_pct, 100);
1622
1623 mutex_unlock(&intel_pstate_limits_lock);
1624
1625 if (intel_pstate_driver == &intel_pstate)
1626 intel_pstate_update_policies();
1627 else
1628 update_qos_request(FREQ_QOS_MAX);
1629
1630 mutex_unlock(&intel_pstate_driver_lock);
1631
1632 return count;
1633 }
1634
store_min_perf_pct(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1635 static ssize_t store_min_perf_pct(struct kobject *a, struct kobj_attribute *b,
1636 const char *buf, size_t count)
1637 {
1638 unsigned int input;
1639 int ret;
1640
1641 ret = sscanf(buf, "%u", &input);
1642 if (ret != 1)
1643 return -EINVAL;
1644
1645 mutex_lock(&intel_pstate_driver_lock);
1646
1647 if (!intel_pstate_driver) {
1648 mutex_unlock(&intel_pstate_driver_lock);
1649 return -EAGAIN;
1650 }
1651
1652 mutex_lock(&intel_pstate_limits_lock);
1653
1654 global.min_perf_pct = clamp_t(int, input,
1655 min_perf_pct_min(), global.max_perf_pct);
1656
1657 mutex_unlock(&intel_pstate_limits_lock);
1658
1659 if (intel_pstate_driver == &intel_pstate)
1660 intel_pstate_update_policies();
1661 else
1662 update_qos_request(FREQ_QOS_MIN);
1663
1664 mutex_unlock(&intel_pstate_driver_lock);
1665
1666 return count;
1667 }
1668
show_hwp_dynamic_boost(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1669 static ssize_t show_hwp_dynamic_boost(struct kobject *kobj,
1670 struct kobj_attribute *attr, char *buf)
1671 {
1672 return sprintf(buf, "%u\n", hwp_boost);
1673 }
1674
store_hwp_dynamic_boost(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1675 static ssize_t store_hwp_dynamic_boost(struct kobject *a,
1676 struct kobj_attribute *b,
1677 const char *buf, size_t count)
1678 {
1679 unsigned int input;
1680 int ret;
1681
1682 ret = kstrtouint(buf, 10, &input);
1683 if (ret)
1684 return ret;
1685
1686 mutex_lock(&intel_pstate_driver_lock);
1687 hwp_boost = !!input;
1688 intel_pstate_update_policies();
1689 mutex_unlock(&intel_pstate_driver_lock);
1690
1691 return count;
1692 }
1693
show_energy_efficiency(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1694 static ssize_t show_energy_efficiency(struct kobject *kobj, struct kobj_attribute *attr,
1695 char *buf)
1696 {
1697 u64 power_ctl;
1698 int enable;
1699
1700 rdmsrl(MSR_IA32_POWER_CTL, power_ctl);
1701 enable = !!(power_ctl & BIT(MSR_IA32_POWER_CTL_BIT_EE));
1702 return sprintf(buf, "%d\n", !enable);
1703 }
1704
store_energy_efficiency(struct kobject * a,struct kobj_attribute * b,const char * buf,size_t count)1705 static ssize_t store_energy_efficiency(struct kobject *a, struct kobj_attribute *b,
1706 const char *buf, size_t count)
1707 {
1708 bool input;
1709 int ret;
1710
1711 ret = kstrtobool(buf, &input);
1712 if (ret)
1713 return ret;
1714
1715 set_power_ctl_ee_state(input);
1716
1717 return count;
1718 }
1719
1720 show_one(max_perf_pct, max_perf_pct);
1721 show_one(min_perf_pct, min_perf_pct);
1722
1723 define_one_global_rw(status);
1724 define_one_global_rw(no_turbo);
1725 define_one_global_rw(max_perf_pct);
1726 define_one_global_rw(min_perf_pct);
1727 define_one_global_ro(turbo_pct);
1728 define_one_global_ro(num_pstates);
1729 define_one_global_rw(hwp_dynamic_boost);
1730 define_one_global_rw(energy_efficiency);
1731
1732 static struct attribute *intel_pstate_attributes[] = {
1733 &status.attr,
1734 &no_turbo.attr,
1735 NULL
1736 };
1737
1738 static const struct attribute_group intel_pstate_attr_group = {
1739 .attrs = intel_pstate_attributes,
1740 };
1741
1742 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[];
1743
1744 static struct kobject *intel_pstate_kobject;
1745
intel_pstate_sysfs_expose_params(void)1746 static void __init intel_pstate_sysfs_expose_params(void)
1747 {
1748 struct device *dev_root = bus_get_dev_root(&cpu_subsys);
1749 int rc;
1750
1751 if (dev_root) {
1752 intel_pstate_kobject = kobject_create_and_add("intel_pstate", &dev_root->kobj);
1753 put_device(dev_root);
1754 }
1755 if (WARN_ON(!intel_pstate_kobject))
1756 return;
1757
1758 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
1759 if (WARN_ON(rc))
1760 return;
1761
1762 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1763 rc = sysfs_create_file(intel_pstate_kobject, &turbo_pct.attr);
1764 WARN_ON(rc);
1765
1766 rc = sysfs_create_file(intel_pstate_kobject, &num_pstates.attr);
1767 WARN_ON(rc);
1768 }
1769
1770 /*
1771 * If per cpu limits are enforced there are no global limits, so
1772 * return without creating max/min_perf_pct attributes
1773 */
1774 if (per_cpu_limits)
1775 return;
1776
1777 rc = sysfs_create_file(intel_pstate_kobject, &max_perf_pct.attr);
1778 WARN_ON(rc);
1779
1780 rc = sysfs_create_file(intel_pstate_kobject, &min_perf_pct.attr);
1781 WARN_ON(rc);
1782
1783 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids)) {
1784 rc = sysfs_create_file(intel_pstate_kobject, &energy_efficiency.attr);
1785 WARN_ON(rc);
1786 }
1787 }
1788
intel_pstate_sysfs_remove(void)1789 static void __init intel_pstate_sysfs_remove(void)
1790 {
1791 if (!intel_pstate_kobject)
1792 return;
1793
1794 sysfs_remove_group(intel_pstate_kobject, &intel_pstate_attr_group);
1795
1796 if (!boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
1797 sysfs_remove_file(intel_pstate_kobject, &num_pstates.attr);
1798 sysfs_remove_file(intel_pstate_kobject, &turbo_pct.attr);
1799 }
1800
1801 if (!per_cpu_limits) {
1802 sysfs_remove_file(intel_pstate_kobject, &max_perf_pct.attr);
1803 sysfs_remove_file(intel_pstate_kobject, &min_perf_pct.attr);
1804
1805 if (x86_match_cpu(intel_pstate_cpu_ee_disable_ids))
1806 sysfs_remove_file(intel_pstate_kobject, &energy_efficiency.attr);
1807 }
1808
1809 kobject_put(intel_pstate_kobject);
1810 }
1811
intel_pstate_sysfs_expose_hwp_dynamic_boost(void)1812 static void intel_pstate_sysfs_expose_hwp_dynamic_boost(void)
1813 {
1814 int rc;
1815
1816 if (!hwp_active)
1817 return;
1818
1819 rc = sysfs_create_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1820 WARN_ON_ONCE(rc);
1821 }
1822
intel_pstate_sysfs_hide_hwp_dynamic_boost(void)1823 static void intel_pstate_sysfs_hide_hwp_dynamic_boost(void)
1824 {
1825 if (!hwp_active)
1826 return;
1827
1828 sysfs_remove_file(intel_pstate_kobject, &hwp_dynamic_boost.attr);
1829 }
1830
1831 /************************** sysfs end ************************/
1832
intel_pstate_notify_work(struct work_struct * work)1833 static void intel_pstate_notify_work(struct work_struct *work)
1834 {
1835 struct cpudata *cpudata =
1836 container_of(to_delayed_work(work), struct cpudata, hwp_notify_work);
1837 struct cpufreq_policy *policy = cpufreq_cpu_acquire(cpudata->cpu);
1838
1839 if (policy) {
1840 __intel_pstate_update_max_freq(cpudata, policy);
1841
1842 cpufreq_cpu_release(policy);
1843
1844 /*
1845 * The driver will not be unregistered while this function is
1846 * running, so update the capacity without acquiring the driver
1847 * lock.
1848 */
1849 hybrid_update_capacity(cpudata);
1850 }
1851
1852 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1853 }
1854
1855 static DEFINE_RAW_SPINLOCK(hwp_notify_lock);
1856 static cpumask_t hwp_intr_enable_mask;
1857
1858 #define HWP_GUARANTEED_PERF_CHANGE_STATUS BIT(0)
1859 #define HWP_HIGHEST_PERF_CHANGE_STATUS BIT(3)
1860
notify_hwp_interrupt(void)1861 void notify_hwp_interrupt(void)
1862 {
1863 unsigned int this_cpu = smp_processor_id();
1864 u64 value, status_mask;
1865 unsigned long flags;
1866
1867 if (!hwp_active || !cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1868 return;
1869
1870 status_mask = HWP_GUARANTEED_PERF_CHANGE_STATUS;
1871 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1872 status_mask |= HWP_HIGHEST_PERF_CHANGE_STATUS;
1873
1874 rdmsrl_safe(MSR_HWP_STATUS, &value);
1875 if (!(value & status_mask))
1876 return;
1877
1878 raw_spin_lock_irqsave(&hwp_notify_lock, flags);
1879
1880 if (!cpumask_test_cpu(this_cpu, &hwp_intr_enable_mask))
1881 goto ack_intr;
1882
1883 schedule_delayed_work(&all_cpu_data[this_cpu]->hwp_notify_work,
1884 msecs_to_jiffies(10));
1885
1886 raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1887
1888 return;
1889
1890 ack_intr:
1891 wrmsrl_safe(MSR_HWP_STATUS, 0);
1892 raw_spin_unlock_irqrestore(&hwp_notify_lock, flags);
1893 }
1894
intel_pstate_disable_hwp_interrupt(struct cpudata * cpudata)1895 static void intel_pstate_disable_hwp_interrupt(struct cpudata *cpudata)
1896 {
1897 bool cancel_work;
1898
1899 if (!cpu_feature_enabled(X86_FEATURE_HWP_NOTIFY))
1900 return;
1901
1902 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1903 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1904
1905 raw_spin_lock_irq(&hwp_notify_lock);
1906 cancel_work = cpumask_test_and_clear_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1907 raw_spin_unlock_irq(&hwp_notify_lock);
1908
1909 if (cancel_work)
1910 cancel_delayed_work_sync(&cpudata->hwp_notify_work);
1911 }
1912
1913 #define HWP_GUARANTEED_PERF_CHANGE_REQ BIT(0)
1914 #define HWP_HIGHEST_PERF_CHANGE_REQ BIT(2)
1915
intel_pstate_enable_hwp_interrupt(struct cpudata * cpudata)1916 static void intel_pstate_enable_hwp_interrupt(struct cpudata *cpudata)
1917 {
1918 /* Enable HWP notification interrupt for performance change */
1919 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY)) {
1920 u64 interrupt_mask = HWP_GUARANTEED_PERF_CHANGE_REQ;
1921
1922 raw_spin_lock_irq(&hwp_notify_lock);
1923 INIT_DELAYED_WORK(&cpudata->hwp_notify_work, intel_pstate_notify_work);
1924 cpumask_set_cpu(cpudata->cpu, &hwp_intr_enable_mask);
1925 raw_spin_unlock_irq(&hwp_notify_lock);
1926
1927 if (cpu_feature_enabled(X86_FEATURE_HWP_HIGHEST_PERF_CHANGE))
1928 interrupt_mask |= HWP_HIGHEST_PERF_CHANGE_REQ;
1929
1930 /* wrmsrl_on_cpu has to be outside spinlock as this can result in IPC */
1931 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, interrupt_mask);
1932 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_STATUS, 0);
1933 }
1934 }
1935
intel_pstate_update_epp_defaults(struct cpudata * cpudata)1936 static void intel_pstate_update_epp_defaults(struct cpudata *cpudata)
1937 {
1938 cpudata->epp_default = intel_pstate_get_epp(cpudata, 0);
1939
1940 /*
1941 * If the EPP is set by firmware, which means that firmware enabled HWP
1942 * - Is equal or less than 0x80 (default balance_perf EPP)
1943 * - But less performance oriented than performance EPP
1944 * then use this as new balance_perf EPP.
1945 */
1946 if (hwp_forced && cpudata->epp_default <= HWP_EPP_BALANCE_PERFORMANCE &&
1947 cpudata->epp_default > HWP_EPP_PERFORMANCE) {
1948 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] = cpudata->epp_default;
1949 return;
1950 }
1951
1952 /*
1953 * If this CPU gen doesn't call for change in balance_perf
1954 * EPP return.
1955 */
1956 if (epp_values[EPP_INDEX_BALANCE_PERFORMANCE] == HWP_EPP_BALANCE_PERFORMANCE)
1957 return;
1958
1959 /*
1960 * Use hard coded value per gen to update the balance_perf
1961 * and default EPP.
1962 */
1963 cpudata->epp_default = epp_values[EPP_INDEX_BALANCE_PERFORMANCE];
1964 intel_pstate_set_epp(cpudata, cpudata->epp_default);
1965 }
1966
intel_pstate_hwp_enable(struct cpudata * cpudata)1967 static void intel_pstate_hwp_enable(struct cpudata *cpudata)
1968 {
1969 /* First disable HWP notification interrupt till we activate again */
1970 if (boot_cpu_has(X86_FEATURE_HWP_NOTIFY))
1971 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
1972
1973 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
1974
1975 intel_pstate_enable_hwp_interrupt(cpudata);
1976
1977 if (cpudata->epp_default >= 0)
1978 return;
1979
1980 intel_pstate_update_epp_defaults(cpudata);
1981 }
1982
atom_get_min_pstate(int not_used)1983 static int atom_get_min_pstate(int not_used)
1984 {
1985 u64 value;
1986
1987 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1988 return (value >> 8) & 0x7F;
1989 }
1990
atom_get_max_pstate(int not_used)1991 static int atom_get_max_pstate(int not_used)
1992 {
1993 u64 value;
1994
1995 rdmsrl(MSR_ATOM_CORE_RATIOS, value);
1996 return (value >> 16) & 0x7F;
1997 }
1998
atom_get_turbo_pstate(int not_used)1999 static int atom_get_turbo_pstate(int not_used)
2000 {
2001 u64 value;
2002
2003 rdmsrl(MSR_ATOM_CORE_TURBO_RATIOS, value);
2004 return value & 0x7F;
2005 }
2006
atom_get_val(struct cpudata * cpudata,int pstate)2007 static u64 atom_get_val(struct cpudata *cpudata, int pstate)
2008 {
2009 u64 val;
2010 int32_t vid_fp;
2011 u32 vid;
2012
2013 val = (u64)pstate << 8;
2014 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2015 val |= (u64)1 << 32;
2016
2017 vid_fp = cpudata->vid.min + mul_fp(
2018 int_tofp(pstate - cpudata->pstate.min_pstate),
2019 cpudata->vid.ratio);
2020
2021 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
2022 vid = ceiling_fp(vid_fp);
2023
2024 if (pstate > cpudata->pstate.max_pstate)
2025 vid = cpudata->vid.turbo;
2026
2027 return val | vid;
2028 }
2029
silvermont_get_scaling(void)2030 static int silvermont_get_scaling(void)
2031 {
2032 u64 value;
2033 int i;
2034 /* Defined in Table 35-6 from SDM (Sept 2015) */
2035 static int silvermont_freq_table[] = {
2036 83300, 100000, 133300, 116700, 80000};
2037
2038 rdmsrl(MSR_FSB_FREQ, value);
2039 i = value & 0x7;
2040 WARN_ON(i > 4);
2041
2042 return silvermont_freq_table[i];
2043 }
2044
airmont_get_scaling(void)2045 static int airmont_get_scaling(void)
2046 {
2047 u64 value;
2048 int i;
2049 /* Defined in Table 35-10 from SDM (Sept 2015) */
2050 static int airmont_freq_table[] = {
2051 83300, 100000, 133300, 116700, 80000,
2052 93300, 90000, 88900, 87500};
2053
2054 rdmsrl(MSR_FSB_FREQ, value);
2055 i = value & 0xF;
2056 WARN_ON(i > 8);
2057
2058 return airmont_freq_table[i];
2059 }
2060
atom_get_vid(struct cpudata * cpudata)2061 static void atom_get_vid(struct cpudata *cpudata)
2062 {
2063 u64 value;
2064
2065 rdmsrl(MSR_ATOM_CORE_VIDS, value);
2066 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
2067 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
2068 cpudata->vid.ratio = div_fp(
2069 cpudata->vid.max - cpudata->vid.min,
2070 int_tofp(cpudata->pstate.max_pstate -
2071 cpudata->pstate.min_pstate));
2072
2073 rdmsrl(MSR_ATOM_CORE_TURBO_VIDS, value);
2074 cpudata->vid.turbo = value & 0x7f;
2075 }
2076
core_get_min_pstate(int cpu)2077 static int core_get_min_pstate(int cpu)
2078 {
2079 u64 value;
2080
2081 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2082 return (value >> 40) & 0xFF;
2083 }
2084
core_get_max_pstate_physical(int cpu)2085 static int core_get_max_pstate_physical(int cpu)
2086 {
2087 u64 value;
2088
2089 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &value);
2090 return (value >> 8) & 0xFF;
2091 }
2092
core_get_tdp_ratio(int cpu,u64 plat_info)2093 static int core_get_tdp_ratio(int cpu, u64 plat_info)
2094 {
2095 /* Check how many TDP levels present */
2096 if (plat_info & 0x600000000) {
2097 u64 tdp_ctrl;
2098 u64 tdp_ratio;
2099 int tdp_msr;
2100 int err;
2101
2102 /* Get the TDP level (0, 1, 2) to get ratios */
2103 err = rdmsrl_safe_on_cpu(cpu, MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
2104 if (err)
2105 return err;
2106
2107 /* TDP MSR are continuous starting at 0x648 */
2108 tdp_msr = MSR_CONFIG_TDP_NOMINAL + (tdp_ctrl & 0x03);
2109 err = rdmsrl_safe_on_cpu(cpu, tdp_msr, &tdp_ratio);
2110 if (err)
2111 return err;
2112
2113 /* For level 1 and 2, bits[23:16] contain the ratio */
2114 if (tdp_ctrl & 0x03)
2115 tdp_ratio >>= 16;
2116
2117 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
2118 pr_debug("tdp_ratio %x\n", (int)tdp_ratio);
2119
2120 return (int)tdp_ratio;
2121 }
2122
2123 return -ENXIO;
2124 }
2125
core_get_max_pstate(int cpu)2126 static int core_get_max_pstate(int cpu)
2127 {
2128 u64 tar;
2129 u64 plat_info;
2130 int max_pstate;
2131 int tdp_ratio;
2132 int err;
2133
2134 rdmsrl_on_cpu(cpu, MSR_PLATFORM_INFO, &plat_info);
2135 max_pstate = (plat_info >> 8) & 0xFF;
2136
2137 tdp_ratio = core_get_tdp_ratio(cpu, plat_info);
2138 if (tdp_ratio <= 0)
2139 return max_pstate;
2140
2141 if (hwp_active) {
2142 /* Turbo activation ratio is not used on HWP platforms */
2143 return tdp_ratio;
2144 }
2145
2146 err = rdmsrl_safe_on_cpu(cpu, MSR_TURBO_ACTIVATION_RATIO, &tar);
2147 if (!err) {
2148 int tar_levels;
2149
2150 /* Do some sanity checking for safety */
2151 tar_levels = tar & 0xff;
2152 if (tdp_ratio - 1 == tar_levels) {
2153 max_pstate = tar_levels;
2154 pr_debug("max_pstate=TAC %x\n", max_pstate);
2155 }
2156 }
2157
2158 return max_pstate;
2159 }
2160
core_get_turbo_pstate(int cpu)2161 static int core_get_turbo_pstate(int cpu)
2162 {
2163 u64 value;
2164 int nont, ret;
2165
2166 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2167 nont = core_get_max_pstate(cpu);
2168 ret = (value) & 255;
2169 if (ret <= nont)
2170 ret = nont;
2171 return ret;
2172 }
2173
core_get_val(struct cpudata * cpudata,int pstate)2174 static u64 core_get_val(struct cpudata *cpudata, int pstate)
2175 {
2176 u64 val;
2177
2178 val = (u64)pstate << 8;
2179 if (READ_ONCE(global.no_turbo) && !READ_ONCE(global.turbo_disabled))
2180 val |= (u64)1 << 32;
2181
2182 return val;
2183 }
2184
knl_get_aperf_mperf_shift(void)2185 static int knl_get_aperf_mperf_shift(void)
2186 {
2187 return 10;
2188 }
2189
knl_get_turbo_pstate(int cpu)2190 static int knl_get_turbo_pstate(int cpu)
2191 {
2192 u64 value;
2193 int nont, ret;
2194
2195 rdmsrl_on_cpu(cpu, MSR_TURBO_RATIO_LIMIT, &value);
2196 nont = core_get_max_pstate(cpu);
2197 ret = (((value) >> 8) & 0xFF);
2198 if (ret <= nont)
2199 ret = nont;
2200 return ret;
2201 }
2202
hybrid_get_type(void * data)2203 static void hybrid_get_type(void *data)
2204 {
2205 u8 *cpu_type = data;
2206
2207 *cpu_type = get_this_hybrid_cpu_type();
2208 }
2209
hwp_get_cpu_scaling(int cpu)2210 static int hwp_get_cpu_scaling(int cpu)
2211 {
2212 if (hybrid_scaling_factor) {
2213 u8 cpu_type = 0;
2214
2215 smp_call_function_single(cpu, hybrid_get_type, &cpu_type, 1);
2216
2217 /*
2218 * Return the hybrid scaling factor for P-cores and use the
2219 * default core scaling for E-cores.
2220 */
2221 if (cpu_type == 0x40)
2222 return hybrid_scaling_factor;
2223
2224 if (cpu_type == 0x20)
2225 return core_get_scaling();
2226 }
2227
2228 /* Use core scaling on non-hybrid systems. */
2229 if (!cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
2230 return core_get_scaling();
2231
2232 /*
2233 * The system is hybrid, but the hybrid scaling factor is not known or
2234 * the CPU type is not one of the above, so use CPPC to compute the
2235 * scaling factor for this CPU.
2236 */
2237 return intel_pstate_cppc_get_scaling(cpu);
2238 }
2239
intel_pstate_set_pstate(struct cpudata * cpu,int pstate)2240 static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate)
2241 {
2242 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
2243 cpu->pstate.current_pstate = pstate;
2244 /*
2245 * Generally, there is no guarantee that this code will always run on
2246 * the CPU being updated, so force the register update to run on the
2247 * right CPU.
2248 */
2249 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
2250 pstate_funcs.get_val(cpu, pstate));
2251 }
2252
intel_pstate_set_min_pstate(struct cpudata * cpu)2253 static void intel_pstate_set_min_pstate(struct cpudata *cpu)
2254 {
2255 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate);
2256 }
2257
intel_pstate_get_cpu_pstates(struct cpudata * cpu)2258 static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
2259 {
2260 int perf_ctl_max_phys = pstate_funcs.get_max_physical(cpu->cpu);
2261 int perf_ctl_scaling = pstate_funcs.get_scaling();
2262
2263 cpu->pstate.min_pstate = pstate_funcs.get_min(cpu->cpu);
2264 cpu->pstate.max_pstate_physical = perf_ctl_max_phys;
2265 cpu->pstate.perf_ctl_scaling = perf_ctl_scaling;
2266
2267 if (hwp_active && !hwp_mode_bdw) {
2268 __intel_pstate_get_hwp_cap(cpu);
2269
2270 if (pstate_funcs.get_cpu_scaling) {
2271 cpu->pstate.scaling = pstate_funcs.get_cpu_scaling(cpu->cpu);
2272 if (cpu->pstate.scaling != perf_ctl_scaling) {
2273 intel_pstate_hybrid_hwp_adjust(cpu);
2274 hwp_is_hybrid = true;
2275 }
2276 } else {
2277 cpu->pstate.scaling = perf_ctl_scaling;
2278 }
2279 /*
2280 * If the CPU is going online for the first time and it was
2281 * offline initially, asym capacity scaling needs to be updated.
2282 */
2283 hybrid_update_capacity(cpu);
2284 } else {
2285 cpu->pstate.scaling = perf_ctl_scaling;
2286 cpu->pstate.max_pstate = pstate_funcs.get_max(cpu->cpu);
2287 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo(cpu->cpu);
2288 }
2289
2290 if (cpu->pstate.scaling == perf_ctl_scaling) {
2291 cpu->pstate.min_freq = cpu->pstate.min_pstate * perf_ctl_scaling;
2292 cpu->pstate.max_freq = cpu->pstate.max_pstate * perf_ctl_scaling;
2293 cpu->pstate.turbo_freq = cpu->pstate.turbo_pstate * perf_ctl_scaling;
2294 }
2295
2296 if (pstate_funcs.get_aperf_mperf_shift)
2297 cpu->aperf_mperf_shift = pstate_funcs.get_aperf_mperf_shift();
2298
2299 if (pstate_funcs.get_vid)
2300 pstate_funcs.get_vid(cpu);
2301
2302 intel_pstate_set_min_pstate(cpu);
2303 }
2304
2305 /*
2306 * Long hold time will keep high perf limits for long time,
2307 * which negatively impacts perf/watt for some workloads,
2308 * like specpower. 3ms is based on experiements on some
2309 * workoads.
2310 */
2311 static int hwp_boost_hold_time_ns = 3 * NSEC_PER_MSEC;
2312
intel_pstate_hwp_boost_up(struct cpudata * cpu)2313 static inline void intel_pstate_hwp_boost_up(struct cpudata *cpu)
2314 {
2315 u64 hwp_req = READ_ONCE(cpu->hwp_req_cached);
2316 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
2317 u32 max_limit = (hwp_req & 0xff00) >> 8;
2318 u32 min_limit = (hwp_req & 0xff);
2319 u32 boost_level1;
2320
2321 /*
2322 * Cases to consider (User changes via sysfs or boot time):
2323 * If, P0 (Turbo max) = P1 (Guaranteed max) = min:
2324 * No boost, return.
2325 * If, P0 (Turbo max) > P1 (Guaranteed max) = min:
2326 * Should result in one level boost only for P0.
2327 * If, P0 (Turbo max) = P1 (Guaranteed max) > min:
2328 * Should result in two level boost:
2329 * (min + p1)/2 and P1.
2330 * If, P0 (Turbo max) > P1 (Guaranteed max) > min:
2331 * Should result in three level boost:
2332 * (min + p1)/2, P1 and P0.
2333 */
2334
2335 /* If max and min are equal or already at max, nothing to boost */
2336 if (max_limit == min_limit || cpu->hwp_boost_min >= max_limit)
2337 return;
2338
2339 if (!cpu->hwp_boost_min)
2340 cpu->hwp_boost_min = min_limit;
2341
2342 /* level at half way mark between min and guranteed */
2343 boost_level1 = (HWP_GUARANTEED_PERF(hwp_cap) + min_limit) >> 1;
2344
2345 if (cpu->hwp_boost_min < boost_level1)
2346 cpu->hwp_boost_min = boost_level1;
2347 else if (cpu->hwp_boost_min < HWP_GUARANTEED_PERF(hwp_cap))
2348 cpu->hwp_boost_min = HWP_GUARANTEED_PERF(hwp_cap);
2349 else if (cpu->hwp_boost_min == HWP_GUARANTEED_PERF(hwp_cap) &&
2350 max_limit != HWP_GUARANTEED_PERF(hwp_cap))
2351 cpu->hwp_boost_min = max_limit;
2352 else
2353 return;
2354
2355 hwp_req = (hwp_req & ~GENMASK_ULL(7, 0)) | cpu->hwp_boost_min;
2356 wrmsrl(MSR_HWP_REQUEST, hwp_req);
2357 cpu->last_update = cpu->sample.time;
2358 }
2359
intel_pstate_hwp_boost_down(struct cpudata * cpu)2360 static inline void intel_pstate_hwp_boost_down(struct cpudata *cpu)
2361 {
2362 if (cpu->hwp_boost_min) {
2363 bool expired;
2364
2365 /* Check if we are idle for hold time to boost down */
2366 expired = time_after64(cpu->sample.time, cpu->last_update +
2367 hwp_boost_hold_time_ns);
2368 if (expired) {
2369 wrmsrl(MSR_HWP_REQUEST, cpu->hwp_req_cached);
2370 cpu->hwp_boost_min = 0;
2371 }
2372 }
2373 cpu->last_update = cpu->sample.time;
2374 }
2375
intel_pstate_update_util_hwp_local(struct cpudata * cpu,u64 time)2376 static inline void intel_pstate_update_util_hwp_local(struct cpudata *cpu,
2377 u64 time)
2378 {
2379 cpu->sample.time = time;
2380
2381 if (cpu->sched_flags & SCHED_CPUFREQ_IOWAIT) {
2382 bool do_io = false;
2383
2384 cpu->sched_flags = 0;
2385 /*
2386 * Set iowait_boost flag and update time. Since IO WAIT flag
2387 * is set all the time, we can't just conclude that there is
2388 * some IO bound activity is scheduled on this CPU with just
2389 * one occurrence. If we receive at least two in two
2390 * consecutive ticks, then we treat as boost candidate.
2391 */
2392 if (time_before64(time, cpu->last_io_update + 2 * TICK_NSEC))
2393 do_io = true;
2394
2395 cpu->last_io_update = time;
2396
2397 if (do_io)
2398 intel_pstate_hwp_boost_up(cpu);
2399
2400 } else {
2401 intel_pstate_hwp_boost_down(cpu);
2402 }
2403 }
2404
intel_pstate_update_util_hwp(struct update_util_data * data,u64 time,unsigned int flags)2405 static inline void intel_pstate_update_util_hwp(struct update_util_data *data,
2406 u64 time, unsigned int flags)
2407 {
2408 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2409
2410 cpu->sched_flags |= flags;
2411
2412 if (smp_processor_id() == cpu->cpu)
2413 intel_pstate_update_util_hwp_local(cpu, time);
2414 }
2415
intel_pstate_calc_avg_perf(struct cpudata * cpu)2416 static inline void intel_pstate_calc_avg_perf(struct cpudata *cpu)
2417 {
2418 struct sample *sample = &cpu->sample;
2419
2420 sample->core_avg_perf = div_ext_fp(sample->aperf, sample->mperf);
2421 }
2422
intel_pstate_sample(struct cpudata * cpu,u64 time)2423 static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
2424 {
2425 u64 aperf, mperf;
2426 unsigned long flags;
2427 u64 tsc;
2428
2429 local_irq_save(flags);
2430 rdmsrl(MSR_IA32_APERF, aperf);
2431 rdmsrl(MSR_IA32_MPERF, mperf);
2432 tsc = rdtsc();
2433 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
2434 local_irq_restore(flags);
2435 return false;
2436 }
2437 local_irq_restore(flags);
2438
2439 cpu->last_sample_time = cpu->sample.time;
2440 cpu->sample.time = time;
2441 cpu->sample.aperf = aperf;
2442 cpu->sample.mperf = mperf;
2443 cpu->sample.tsc = tsc;
2444 cpu->sample.aperf -= cpu->prev_aperf;
2445 cpu->sample.mperf -= cpu->prev_mperf;
2446 cpu->sample.tsc -= cpu->prev_tsc;
2447
2448 cpu->prev_aperf = aperf;
2449 cpu->prev_mperf = mperf;
2450 cpu->prev_tsc = tsc;
2451 /*
2452 * First time this function is invoked in a given cycle, all of the
2453 * previous sample data fields are equal to zero or stale and they must
2454 * be populated with meaningful numbers for things to work, so assume
2455 * that sample.time will always be reset before setting the utilization
2456 * update hook and make the caller skip the sample then.
2457 */
2458 if (cpu->last_sample_time) {
2459 intel_pstate_calc_avg_perf(cpu);
2460 return true;
2461 }
2462 return false;
2463 }
2464
get_avg_frequency(struct cpudata * cpu)2465 static inline int32_t get_avg_frequency(struct cpudata *cpu)
2466 {
2467 return mul_ext_fp(cpu->sample.core_avg_perf, cpu_khz);
2468 }
2469
get_avg_pstate(struct cpudata * cpu)2470 static inline int32_t get_avg_pstate(struct cpudata *cpu)
2471 {
2472 return mul_ext_fp(cpu->pstate.max_pstate_physical,
2473 cpu->sample.core_avg_perf);
2474 }
2475
get_target_pstate(struct cpudata * cpu)2476 static inline int32_t get_target_pstate(struct cpudata *cpu)
2477 {
2478 struct sample *sample = &cpu->sample;
2479 int32_t busy_frac;
2480 int target, avg_pstate;
2481
2482 busy_frac = div_fp(sample->mperf << cpu->aperf_mperf_shift,
2483 sample->tsc);
2484
2485 if (busy_frac < cpu->iowait_boost)
2486 busy_frac = cpu->iowait_boost;
2487
2488 sample->busy_scaled = busy_frac * 100;
2489
2490 target = READ_ONCE(global.no_turbo) ?
2491 cpu->pstate.max_pstate : cpu->pstate.turbo_pstate;
2492 target += target >> 2;
2493 target = mul_fp(target, busy_frac);
2494 if (target < cpu->pstate.min_pstate)
2495 target = cpu->pstate.min_pstate;
2496
2497 /*
2498 * If the average P-state during the previous cycle was higher than the
2499 * current target, add 50% of the difference to the target to reduce
2500 * possible performance oscillations and offset possible performance
2501 * loss related to moving the workload from one CPU to another within
2502 * a package/module.
2503 */
2504 avg_pstate = get_avg_pstate(cpu);
2505 if (avg_pstate > target)
2506 target += (avg_pstate - target) >> 1;
2507
2508 return target;
2509 }
2510
intel_pstate_prepare_request(struct cpudata * cpu,int pstate)2511 static int intel_pstate_prepare_request(struct cpudata *cpu, int pstate)
2512 {
2513 int min_pstate = max(cpu->pstate.min_pstate, cpu->min_perf_ratio);
2514 int max_pstate = max(min_pstate, cpu->max_perf_ratio);
2515
2516 return clamp_t(int, pstate, min_pstate, max_pstate);
2517 }
2518
intel_pstate_update_pstate(struct cpudata * cpu,int pstate)2519 static void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
2520 {
2521 if (pstate == cpu->pstate.current_pstate)
2522 return;
2523
2524 cpu->pstate.current_pstate = pstate;
2525 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
2526 }
2527
intel_pstate_adjust_pstate(struct cpudata * cpu)2528 static void intel_pstate_adjust_pstate(struct cpudata *cpu)
2529 {
2530 int from = cpu->pstate.current_pstate;
2531 struct sample *sample;
2532 int target_pstate;
2533
2534 target_pstate = get_target_pstate(cpu);
2535 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
2536 trace_cpu_frequency(target_pstate * cpu->pstate.scaling, cpu->cpu);
2537 intel_pstate_update_pstate(cpu, target_pstate);
2538
2539 sample = &cpu->sample;
2540 trace_pstate_sample(mul_ext_fp(100, sample->core_avg_perf),
2541 fp_toint(sample->busy_scaled),
2542 from,
2543 cpu->pstate.current_pstate,
2544 sample->mperf,
2545 sample->aperf,
2546 sample->tsc,
2547 get_avg_frequency(cpu),
2548 fp_toint(cpu->iowait_boost * 100));
2549 }
2550
intel_pstate_update_util(struct update_util_data * data,u64 time,unsigned int flags)2551 static void intel_pstate_update_util(struct update_util_data *data, u64 time,
2552 unsigned int flags)
2553 {
2554 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
2555 u64 delta_ns;
2556
2557 /* Don't allow remote callbacks */
2558 if (smp_processor_id() != cpu->cpu)
2559 return;
2560
2561 delta_ns = time - cpu->last_update;
2562 if (flags & SCHED_CPUFREQ_IOWAIT) {
2563 /* Start over if the CPU may have been idle. */
2564 if (delta_ns > TICK_NSEC) {
2565 cpu->iowait_boost = ONE_EIGHTH_FP;
2566 } else if (cpu->iowait_boost >= ONE_EIGHTH_FP) {
2567 cpu->iowait_boost <<= 1;
2568 if (cpu->iowait_boost > int_tofp(1))
2569 cpu->iowait_boost = int_tofp(1);
2570 } else {
2571 cpu->iowait_boost = ONE_EIGHTH_FP;
2572 }
2573 } else if (cpu->iowait_boost) {
2574 /* Clear iowait_boost if the CPU may have been idle. */
2575 if (delta_ns > TICK_NSEC)
2576 cpu->iowait_boost = 0;
2577 else
2578 cpu->iowait_boost >>= 1;
2579 }
2580 cpu->last_update = time;
2581 delta_ns = time - cpu->sample.time;
2582 if ((s64)delta_ns < INTEL_PSTATE_SAMPLING_INTERVAL)
2583 return;
2584
2585 if (intel_pstate_sample(cpu, time))
2586 intel_pstate_adjust_pstate(cpu);
2587 }
2588
2589 static struct pstate_funcs core_funcs = {
2590 .get_max = core_get_max_pstate,
2591 .get_max_physical = core_get_max_pstate_physical,
2592 .get_min = core_get_min_pstate,
2593 .get_turbo = core_get_turbo_pstate,
2594 .get_scaling = core_get_scaling,
2595 .get_val = core_get_val,
2596 };
2597
2598 static const struct pstate_funcs silvermont_funcs = {
2599 .get_max = atom_get_max_pstate,
2600 .get_max_physical = atom_get_max_pstate,
2601 .get_min = atom_get_min_pstate,
2602 .get_turbo = atom_get_turbo_pstate,
2603 .get_val = atom_get_val,
2604 .get_scaling = silvermont_get_scaling,
2605 .get_vid = atom_get_vid,
2606 };
2607
2608 static const struct pstate_funcs airmont_funcs = {
2609 .get_max = atom_get_max_pstate,
2610 .get_max_physical = atom_get_max_pstate,
2611 .get_min = atom_get_min_pstate,
2612 .get_turbo = atom_get_turbo_pstate,
2613 .get_val = atom_get_val,
2614 .get_scaling = airmont_get_scaling,
2615 .get_vid = atom_get_vid,
2616 };
2617
2618 static const struct pstate_funcs knl_funcs = {
2619 .get_max = core_get_max_pstate,
2620 .get_max_physical = core_get_max_pstate_physical,
2621 .get_min = core_get_min_pstate,
2622 .get_turbo = knl_get_turbo_pstate,
2623 .get_aperf_mperf_shift = knl_get_aperf_mperf_shift,
2624 .get_scaling = core_get_scaling,
2625 .get_val = core_get_val,
2626 };
2627
2628 #define X86_MATCH(vfm, policy) \
2629 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_APERFMPERF, &policy)
2630
2631 static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
2632 X86_MATCH(INTEL_SANDYBRIDGE, core_funcs),
2633 X86_MATCH(INTEL_SANDYBRIDGE_X, core_funcs),
2634 X86_MATCH(INTEL_ATOM_SILVERMONT, silvermont_funcs),
2635 X86_MATCH(INTEL_IVYBRIDGE, core_funcs),
2636 X86_MATCH(INTEL_HASWELL, core_funcs),
2637 X86_MATCH(INTEL_BROADWELL, core_funcs),
2638 X86_MATCH(INTEL_IVYBRIDGE_X, core_funcs),
2639 X86_MATCH(INTEL_HASWELL_X, core_funcs),
2640 X86_MATCH(INTEL_HASWELL_L, core_funcs),
2641 X86_MATCH(INTEL_HASWELL_G, core_funcs),
2642 X86_MATCH(INTEL_BROADWELL_G, core_funcs),
2643 X86_MATCH(INTEL_ATOM_AIRMONT, airmont_funcs),
2644 X86_MATCH(INTEL_SKYLAKE_L, core_funcs),
2645 X86_MATCH(INTEL_BROADWELL_X, core_funcs),
2646 X86_MATCH(INTEL_SKYLAKE, core_funcs),
2647 X86_MATCH(INTEL_BROADWELL_D, core_funcs),
2648 X86_MATCH(INTEL_XEON_PHI_KNL, knl_funcs),
2649 X86_MATCH(INTEL_XEON_PHI_KNM, knl_funcs),
2650 X86_MATCH(INTEL_ATOM_GOLDMONT, core_funcs),
2651 X86_MATCH(INTEL_ATOM_GOLDMONT_PLUS, core_funcs),
2652 X86_MATCH(INTEL_SKYLAKE_X, core_funcs),
2653 X86_MATCH(INTEL_COMETLAKE, core_funcs),
2654 X86_MATCH(INTEL_ICELAKE_X, core_funcs),
2655 X86_MATCH(INTEL_TIGERLAKE, core_funcs),
2656 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs),
2657 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs),
2658 {}
2659 };
2660 MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
2661
2662 #ifdef CONFIG_ACPI
2663 static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] __initconst = {
2664 X86_MATCH(INTEL_BROADWELL_D, core_funcs),
2665 X86_MATCH(INTEL_BROADWELL_X, core_funcs),
2666 X86_MATCH(INTEL_SKYLAKE_X, core_funcs),
2667 X86_MATCH(INTEL_ICELAKE_X, core_funcs),
2668 X86_MATCH(INTEL_SAPPHIRERAPIDS_X, core_funcs),
2669 X86_MATCH(INTEL_EMERALDRAPIDS_X, core_funcs),
2670 X86_MATCH(INTEL_GRANITERAPIDS_D, core_funcs),
2671 X86_MATCH(INTEL_GRANITERAPIDS_X, core_funcs),
2672 X86_MATCH(INTEL_ATOM_CRESTMONT, core_funcs),
2673 X86_MATCH(INTEL_ATOM_CRESTMONT_X, core_funcs),
2674 {}
2675 };
2676 #endif
2677
2678 static const struct x86_cpu_id intel_pstate_cpu_ee_disable_ids[] = {
2679 X86_MATCH(INTEL_KABYLAKE, core_funcs),
2680 {}
2681 };
2682
intel_pstate_init_cpu(unsigned int cpunum)2683 static int intel_pstate_init_cpu(unsigned int cpunum)
2684 {
2685 struct cpudata *cpu;
2686
2687 cpu = all_cpu_data[cpunum];
2688
2689 if (!cpu) {
2690 cpu = kzalloc(sizeof(*cpu), GFP_KERNEL);
2691 if (!cpu)
2692 return -ENOMEM;
2693
2694 WRITE_ONCE(all_cpu_data[cpunum], cpu);
2695
2696 cpu->cpu = cpunum;
2697
2698 cpu->epp_default = -EINVAL;
2699
2700 if (hwp_active) {
2701 intel_pstate_hwp_enable(cpu);
2702
2703 if (intel_pstate_acpi_pm_profile_server())
2704 hwp_boost = true;
2705 }
2706 } else if (hwp_active) {
2707 /*
2708 * Re-enable HWP in case this happens after a resume from ACPI
2709 * S3 if the CPU was offline during the whole system/resume
2710 * cycle.
2711 */
2712 intel_pstate_hwp_reenable(cpu);
2713 }
2714
2715 cpu->epp_powersave = -EINVAL;
2716 cpu->epp_policy = CPUFREQ_POLICY_UNKNOWN;
2717
2718 intel_pstate_get_cpu_pstates(cpu);
2719
2720 pr_debug("controlling: cpu %d\n", cpunum);
2721
2722 return 0;
2723 }
2724
intel_pstate_set_update_util_hook(unsigned int cpu_num)2725 static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
2726 {
2727 struct cpudata *cpu = all_cpu_data[cpu_num];
2728
2729 if (hwp_active && !hwp_boost)
2730 return;
2731
2732 if (cpu->update_util_set)
2733 return;
2734
2735 /* Prevent intel_pstate_update_util() from using stale data. */
2736 cpu->sample.time = 0;
2737 cpufreq_add_update_util_hook(cpu_num, &cpu->update_util,
2738 (hwp_active ?
2739 intel_pstate_update_util_hwp :
2740 intel_pstate_update_util));
2741 cpu->update_util_set = true;
2742 }
2743
intel_pstate_clear_update_util_hook(unsigned int cpu)2744 static void intel_pstate_clear_update_util_hook(unsigned int cpu)
2745 {
2746 struct cpudata *cpu_data = all_cpu_data[cpu];
2747
2748 if (!cpu_data->update_util_set)
2749 return;
2750
2751 cpufreq_remove_update_util_hook(cpu);
2752 cpu_data->update_util_set = false;
2753 synchronize_rcu();
2754 }
2755
intel_pstate_get_max_freq(struct cpudata * cpu)2756 static int intel_pstate_get_max_freq(struct cpudata *cpu)
2757 {
2758 return READ_ONCE(global.no_turbo) ?
2759 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2760 }
2761
intel_pstate_update_perf_limits(struct cpudata * cpu,unsigned int policy_min,unsigned int policy_max)2762 static void intel_pstate_update_perf_limits(struct cpudata *cpu,
2763 unsigned int policy_min,
2764 unsigned int policy_max)
2765 {
2766 int perf_ctl_scaling = cpu->pstate.perf_ctl_scaling;
2767 int32_t max_policy_perf, min_policy_perf;
2768
2769 max_policy_perf = policy_max / perf_ctl_scaling;
2770 if (policy_max == policy_min) {
2771 min_policy_perf = max_policy_perf;
2772 } else {
2773 min_policy_perf = policy_min / perf_ctl_scaling;
2774 min_policy_perf = clamp_t(int32_t, min_policy_perf,
2775 0, max_policy_perf);
2776 }
2777
2778 /*
2779 * HWP needs some special consideration, because HWP_REQUEST uses
2780 * abstract values to represent performance rather than pure ratios.
2781 */
2782 if (hwp_active && cpu->pstate.scaling != perf_ctl_scaling) {
2783 int freq;
2784
2785 freq = max_policy_perf * perf_ctl_scaling;
2786 max_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2787 freq = min_policy_perf * perf_ctl_scaling;
2788 min_policy_perf = intel_pstate_freq_to_hwp(cpu, freq);
2789 }
2790
2791 pr_debug("cpu:%d min_policy_perf:%d max_policy_perf:%d\n",
2792 cpu->cpu, min_policy_perf, max_policy_perf);
2793
2794 /* Normalize user input to [min_perf, max_perf] */
2795 if (per_cpu_limits) {
2796 cpu->min_perf_ratio = min_policy_perf;
2797 cpu->max_perf_ratio = max_policy_perf;
2798 } else {
2799 int turbo_max = cpu->pstate.turbo_pstate;
2800 int32_t global_min, global_max;
2801
2802 /* Global limits are in percent of the maximum turbo P-state. */
2803 global_max = DIV_ROUND_UP(turbo_max * global.max_perf_pct, 100);
2804 global_min = DIV_ROUND_UP(turbo_max * global.min_perf_pct, 100);
2805 global_min = clamp_t(int32_t, global_min, 0, global_max);
2806
2807 pr_debug("cpu:%d global_min:%d global_max:%d\n", cpu->cpu,
2808 global_min, global_max);
2809
2810 cpu->min_perf_ratio = max(min_policy_perf, global_min);
2811 cpu->min_perf_ratio = min(cpu->min_perf_ratio, max_policy_perf);
2812 cpu->max_perf_ratio = min(max_policy_perf, global_max);
2813 cpu->max_perf_ratio = max(min_policy_perf, cpu->max_perf_ratio);
2814
2815 /* Make sure min_perf <= max_perf */
2816 cpu->min_perf_ratio = min(cpu->min_perf_ratio,
2817 cpu->max_perf_ratio);
2818
2819 }
2820 pr_debug("cpu:%d max_perf_ratio:%d min_perf_ratio:%d\n", cpu->cpu,
2821 cpu->max_perf_ratio,
2822 cpu->min_perf_ratio);
2823 }
2824
intel_pstate_set_policy(struct cpufreq_policy * policy)2825 static int intel_pstate_set_policy(struct cpufreq_policy *policy)
2826 {
2827 struct cpudata *cpu;
2828
2829 if (!policy->cpuinfo.max_freq)
2830 return -ENODEV;
2831
2832 pr_debug("set_policy cpuinfo.max %u policy->max %u\n",
2833 policy->cpuinfo.max_freq, policy->max);
2834
2835 cpu = all_cpu_data[policy->cpu];
2836 cpu->policy = policy->policy;
2837
2838 mutex_lock(&intel_pstate_limits_lock);
2839
2840 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
2841
2842 if (cpu->policy == CPUFREQ_POLICY_PERFORMANCE) {
2843 int pstate = max(cpu->pstate.min_pstate, cpu->max_perf_ratio);
2844
2845 /*
2846 * NOHZ_FULL CPUs need this as the governor callback may not
2847 * be invoked on them.
2848 */
2849 intel_pstate_clear_update_util_hook(policy->cpu);
2850 intel_pstate_set_pstate(cpu, pstate);
2851 } else {
2852 intel_pstate_set_update_util_hook(policy->cpu);
2853 }
2854
2855 if (hwp_active) {
2856 /*
2857 * When hwp_boost was active before and dynamically it
2858 * was turned off, in that case we need to clear the
2859 * update util hook.
2860 */
2861 if (!hwp_boost)
2862 intel_pstate_clear_update_util_hook(policy->cpu);
2863 intel_pstate_hwp_set(policy->cpu);
2864 }
2865 /*
2866 * policy->cur is never updated with the intel_pstate driver, but it
2867 * is used as a stale frequency value. So, keep it within limits.
2868 */
2869 policy->cur = policy->min;
2870
2871 mutex_unlock(&intel_pstate_limits_lock);
2872
2873 return 0;
2874 }
2875
intel_pstate_adjust_policy_max(struct cpudata * cpu,struct cpufreq_policy_data * policy)2876 static void intel_pstate_adjust_policy_max(struct cpudata *cpu,
2877 struct cpufreq_policy_data *policy)
2878 {
2879 if (!hwp_active &&
2880 cpu->pstate.max_pstate_physical > cpu->pstate.max_pstate &&
2881 policy->max < policy->cpuinfo.max_freq &&
2882 policy->max > cpu->pstate.max_freq) {
2883 pr_debug("policy->max > max non turbo frequency\n");
2884 policy->max = policy->cpuinfo.max_freq;
2885 }
2886 }
2887
intel_pstate_verify_cpu_policy(struct cpudata * cpu,struct cpufreq_policy_data * policy)2888 static void intel_pstate_verify_cpu_policy(struct cpudata *cpu,
2889 struct cpufreq_policy_data *policy)
2890 {
2891 int max_freq;
2892
2893 if (hwp_active) {
2894 intel_pstate_get_hwp_cap(cpu);
2895 max_freq = READ_ONCE(global.no_turbo) ?
2896 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2897 } else {
2898 max_freq = intel_pstate_get_max_freq(cpu);
2899 }
2900 cpufreq_verify_within_limits(policy, policy->cpuinfo.min_freq, max_freq);
2901
2902 intel_pstate_adjust_policy_max(cpu, policy);
2903 }
2904
intel_pstate_verify_policy(struct cpufreq_policy_data * policy)2905 static int intel_pstate_verify_policy(struct cpufreq_policy_data *policy)
2906 {
2907 intel_pstate_verify_cpu_policy(all_cpu_data[policy->cpu], policy);
2908
2909 return 0;
2910 }
2911
intel_cpufreq_cpu_offline(struct cpufreq_policy * policy)2912 static int intel_cpufreq_cpu_offline(struct cpufreq_policy *policy)
2913 {
2914 struct cpudata *cpu = all_cpu_data[policy->cpu];
2915
2916 pr_debug("CPU %d going offline\n", cpu->cpu);
2917
2918 if (cpu->suspended)
2919 return 0;
2920
2921 /*
2922 * If the CPU is an SMT thread and it goes offline with the performance
2923 * settings different from the minimum, it will prevent its sibling
2924 * from getting to lower performance levels, so force the minimum
2925 * performance on CPU offline to prevent that from happening.
2926 */
2927 if (hwp_active)
2928 intel_pstate_hwp_offline(cpu);
2929 else
2930 intel_pstate_set_min_pstate(cpu);
2931
2932 intel_pstate_exit_perf_limits(policy);
2933
2934 return 0;
2935 }
2936
intel_pstate_cpu_online(struct cpufreq_policy * policy)2937 static int intel_pstate_cpu_online(struct cpufreq_policy *policy)
2938 {
2939 struct cpudata *cpu = all_cpu_data[policy->cpu];
2940
2941 pr_debug("CPU %d going online\n", cpu->cpu);
2942
2943 intel_pstate_init_acpi_perf_limits(policy);
2944
2945 if (hwp_active) {
2946 /*
2947 * Re-enable HWP and clear the "suspended" flag to let "resume"
2948 * know that it need not do that.
2949 */
2950 intel_pstate_hwp_reenable(cpu);
2951 cpu->suspended = false;
2952
2953 hybrid_update_capacity(cpu);
2954 }
2955
2956 return 0;
2957 }
2958
intel_pstate_cpu_offline(struct cpufreq_policy * policy)2959 static int intel_pstate_cpu_offline(struct cpufreq_policy *policy)
2960 {
2961 intel_pstate_clear_update_util_hook(policy->cpu);
2962
2963 return intel_cpufreq_cpu_offline(policy);
2964 }
2965
intel_pstate_cpu_exit(struct cpufreq_policy * policy)2966 static void intel_pstate_cpu_exit(struct cpufreq_policy *policy)
2967 {
2968 pr_debug("CPU %d exiting\n", policy->cpu);
2969
2970 policy->fast_switch_possible = false;
2971 }
2972
__intel_pstate_cpu_init(struct cpufreq_policy * policy)2973 static int __intel_pstate_cpu_init(struct cpufreq_policy *policy)
2974 {
2975 struct cpudata *cpu;
2976 int rc;
2977
2978 rc = intel_pstate_init_cpu(policy->cpu);
2979 if (rc)
2980 return rc;
2981
2982 cpu = all_cpu_data[policy->cpu];
2983
2984 cpu->max_perf_ratio = 0xFF;
2985 cpu->min_perf_ratio = 0;
2986
2987 /* cpuinfo and default policy values */
2988 policy->cpuinfo.min_freq = cpu->pstate.min_freq;
2989 policy->cpuinfo.max_freq = READ_ONCE(global.no_turbo) ?
2990 cpu->pstate.max_freq : cpu->pstate.turbo_freq;
2991
2992 policy->min = policy->cpuinfo.min_freq;
2993 policy->max = policy->cpuinfo.max_freq;
2994
2995 intel_pstate_init_acpi_perf_limits(policy);
2996
2997 policy->fast_switch_possible = true;
2998
2999 return 0;
3000 }
3001
intel_pstate_cpu_init(struct cpufreq_policy * policy)3002 static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
3003 {
3004 int ret = __intel_pstate_cpu_init(policy);
3005
3006 if (ret)
3007 return ret;
3008
3009 /*
3010 * Set the policy to powersave to provide a valid fallback value in case
3011 * the default cpufreq governor is neither powersave nor performance.
3012 */
3013 policy->policy = CPUFREQ_POLICY_POWERSAVE;
3014
3015 if (hwp_active) {
3016 struct cpudata *cpu = all_cpu_data[policy->cpu];
3017
3018 cpu->epp_cached = intel_pstate_get_epp(cpu, 0);
3019 }
3020
3021 return 0;
3022 }
3023
3024 static struct cpufreq_driver intel_pstate = {
3025 .flags = CPUFREQ_CONST_LOOPS,
3026 .verify = intel_pstate_verify_policy,
3027 .setpolicy = intel_pstate_set_policy,
3028 .suspend = intel_pstate_suspend,
3029 .resume = intel_pstate_resume,
3030 .init = intel_pstate_cpu_init,
3031 .exit = intel_pstate_cpu_exit,
3032 .offline = intel_pstate_cpu_offline,
3033 .online = intel_pstate_cpu_online,
3034 .update_limits = intel_pstate_update_limits,
3035 .name = "intel_pstate",
3036 };
3037
intel_cpufreq_verify_policy(struct cpufreq_policy_data * policy)3038 static int intel_cpufreq_verify_policy(struct cpufreq_policy_data *policy)
3039 {
3040 struct cpudata *cpu = all_cpu_data[policy->cpu];
3041
3042 intel_pstate_verify_cpu_policy(cpu, policy);
3043 intel_pstate_update_perf_limits(cpu, policy->min, policy->max);
3044
3045 return 0;
3046 }
3047
3048 /* Use of trace in passive mode:
3049 *
3050 * In passive mode the trace core_busy field (also known as the
3051 * performance field, and lablelled as such on the graphs; also known as
3052 * core_avg_perf) is not needed and so is re-assigned to indicate if the
3053 * driver call was via the normal or fast switch path. Various graphs
3054 * output from the intel_pstate_tracer.py utility that include core_busy
3055 * (or performance or core_avg_perf) have a fixed y-axis from 0 to 100%,
3056 * so we use 10 to indicate the normal path through the driver, and
3057 * 90 to indicate the fast switch path through the driver.
3058 * The scaled_busy field is not used, and is set to 0.
3059 */
3060
3061 #define INTEL_PSTATE_TRACE_TARGET 10
3062 #define INTEL_PSTATE_TRACE_FAST_SWITCH 90
3063
intel_cpufreq_trace(struct cpudata * cpu,unsigned int trace_type,int old_pstate)3064 static void intel_cpufreq_trace(struct cpudata *cpu, unsigned int trace_type, int old_pstate)
3065 {
3066 struct sample *sample;
3067
3068 if (!trace_pstate_sample_enabled())
3069 return;
3070
3071 if (!intel_pstate_sample(cpu, ktime_get()))
3072 return;
3073
3074 sample = &cpu->sample;
3075 trace_pstate_sample(trace_type,
3076 0,
3077 old_pstate,
3078 cpu->pstate.current_pstate,
3079 sample->mperf,
3080 sample->aperf,
3081 sample->tsc,
3082 get_avg_frequency(cpu),
3083 fp_toint(cpu->iowait_boost * 100));
3084 }
3085
intel_cpufreq_hwp_update(struct cpudata * cpu,u32 min,u32 max,u32 desired,bool fast_switch)3086 static void intel_cpufreq_hwp_update(struct cpudata *cpu, u32 min, u32 max,
3087 u32 desired, bool fast_switch)
3088 {
3089 u64 prev = READ_ONCE(cpu->hwp_req_cached), value = prev;
3090
3091 value &= ~HWP_MIN_PERF(~0L);
3092 value |= HWP_MIN_PERF(min);
3093
3094 value &= ~HWP_MAX_PERF(~0L);
3095 value |= HWP_MAX_PERF(max);
3096
3097 value &= ~HWP_DESIRED_PERF(~0L);
3098 value |= HWP_DESIRED_PERF(desired);
3099
3100 if (value == prev)
3101 return;
3102
3103 WRITE_ONCE(cpu->hwp_req_cached, value);
3104 if (fast_switch)
3105 wrmsrl(MSR_HWP_REQUEST, value);
3106 else
3107 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3108 }
3109
intel_cpufreq_perf_ctl_update(struct cpudata * cpu,u32 target_pstate,bool fast_switch)3110 static void intel_cpufreq_perf_ctl_update(struct cpudata *cpu,
3111 u32 target_pstate, bool fast_switch)
3112 {
3113 if (fast_switch)
3114 wrmsrl(MSR_IA32_PERF_CTL,
3115 pstate_funcs.get_val(cpu, target_pstate));
3116 else
3117 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
3118 pstate_funcs.get_val(cpu, target_pstate));
3119 }
3120
intel_cpufreq_update_pstate(struct cpufreq_policy * policy,int target_pstate,bool fast_switch)3121 static int intel_cpufreq_update_pstate(struct cpufreq_policy *policy,
3122 int target_pstate, bool fast_switch)
3123 {
3124 struct cpudata *cpu = all_cpu_data[policy->cpu];
3125 int old_pstate = cpu->pstate.current_pstate;
3126
3127 target_pstate = intel_pstate_prepare_request(cpu, target_pstate);
3128 if (hwp_active) {
3129 int max_pstate = policy->strict_target ?
3130 target_pstate : cpu->max_perf_ratio;
3131
3132 intel_cpufreq_hwp_update(cpu, target_pstate, max_pstate, 0,
3133 fast_switch);
3134 } else if (target_pstate != old_pstate) {
3135 intel_cpufreq_perf_ctl_update(cpu, target_pstate, fast_switch);
3136 }
3137
3138 cpu->pstate.current_pstate = target_pstate;
3139
3140 intel_cpufreq_trace(cpu, fast_switch ? INTEL_PSTATE_TRACE_FAST_SWITCH :
3141 INTEL_PSTATE_TRACE_TARGET, old_pstate);
3142
3143 return target_pstate;
3144 }
3145
intel_cpufreq_target(struct cpufreq_policy * policy,unsigned int target_freq,unsigned int relation)3146 static int intel_cpufreq_target(struct cpufreq_policy *policy,
3147 unsigned int target_freq,
3148 unsigned int relation)
3149 {
3150 struct cpudata *cpu = all_cpu_data[policy->cpu];
3151 struct cpufreq_freqs freqs;
3152 int target_pstate;
3153
3154 freqs.old = policy->cur;
3155 freqs.new = target_freq;
3156
3157 cpufreq_freq_transition_begin(policy, &freqs);
3158
3159 target_pstate = intel_pstate_freq_to_hwp_rel(cpu, freqs.new, relation);
3160 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, false);
3161
3162 freqs.new = target_pstate * cpu->pstate.scaling;
3163
3164 cpufreq_freq_transition_end(policy, &freqs, false);
3165
3166 return 0;
3167 }
3168
intel_cpufreq_fast_switch(struct cpufreq_policy * policy,unsigned int target_freq)3169 static unsigned int intel_cpufreq_fast_switch(struct cpufreq_policy *policy,
3170 unsigned int target_freq)
3171 {
3172 struct cpudata *cpu = all_cpu_data[policy->cpu];
3173 int target_pstate;
3174
3175 target_pstate = intel_pstate_freq_to_hwp(cpu, target_freq);
3176
3177 target_pstate = intel_cpufreq_update_pstate(policy, target_pstate, true);
3178
3179 return target_pstate * cpu->pstate.scaling;
3180 }
3181
intel_cpufreq_adjust_perf(unsigned int cpunum,unsigned long min_perf,unsigned long target_perf,unsigned long capacity)3182 static void intel_cpufreq_adjust_perf(unsigned int cpunum,
3183 unsigned long min_perf,
3184 unsigned long target_perf,
3185 unsigned long capacity)
3186 {
3187 struct cpudata *cpu = all_cpu_data[cpunum];
3188 u64 hwp_cap = READ_ONCE(cpu->hwp_cap_cached);
3189 int old_pstate = cpu->pstate.current_pstate;
3190 int cap_pstate, min_pstate, max_pstate, target_pstate;
3191
3192 cap_pstate = READ_ONCE(global.no_turbo) ?
3193 HWP_GUARANTEED_PERF(hwp_cap) :
3194 HWP_HIGHEST_PERF(hwp_cap);
3195
3196 /* Optimization: Avoid unnecessary divisions. */
3197
3198 target_pstate = cap_pstate;
3199 if (target_perf < capacity)
3200 target_pstate = DIV_ROUND_UP(cap_pstate * target_perf, capacity);
3201
3202 min_pstate = cap_pstate;
3203 if (min_perf < capacity)
3204 min_pstate = DIV_ROUND_UP(cap_pstate * min_perf, capacity);
3205
3206 if (min_pstate < cpu->pstate.min_pstate)
3207 min_pstate = cpu->pstate.min_pstate;
3208
3209 if (min_pstate < cpu->min_perf_ratio)
3210 min_pstate = cpu->min_perf_ratio;
3211
3212 if (min_pstate > cpu->max_perf_ratio)
3213 min_pstate = cpu->max_perf_ratio;
3214
3215 max_pstate = min(cap_pstate, cpu->max_perf_ratio);
3216 if (max_pstate < min_pstate)
3217 max_pstate = min_pstate;
3218
3219 target_pstate = clamp_t(int, target_pstate, min_pstate, max_pstate);
3220
3221 intel_cpufreq_hwp_update(cpu, min_pstate, max_pstate, target_pstate, true);
3222
3223 cpu->pstate.current_pstate = target_pstate;
3224 intel_cpufreq_trace(cpu, INTEL_PSTATE_TRACE_FAST_SWITCH, old_pstate);
3225 }
3226
intel_cpufreq_cpu_init(struct cpufreq_policy * policy)3227 static int intel_cpufreq_cpu_init(struct cpufreq_policy *policy)
3228 {
3229 struct freq_qos_request *req;
3230 struct cpudata *cpu;
3231 struct device *dev;
3232 int ret, freq;
3233
3234 dev = get_cpu_device(policy->cpu);
3235 if (!dev)
3236 return -ENODEV;
3237
3238 ret = __intel_pstate_cpu_init(policy);
3239 if (ret)
3240 return ret;
3241
3242 policy->cpuinfo.transition_latency = INTEL_CPUFREQ_TRANSITION_LATENCY;
3243 /* This reflects the intel_pstate_get_cpu_pstates() setting. */
3244 policy->cur = policy->cpuinfo.min_freq;
3245
3246 req = kcalloc(2, sizeof(*req), GFP_KERNEL);
3247 if (!req) {
3248 ret = -ENOMEM;
3249 goto pstate_exit;
3250 }
3251
3252 cpu = all_cpu_data[policy->cpu];
3253
3254 if (hwp_active) {
3255 u64 value;
3256
3257 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY_HWP;
3258
3259 intel_pstate_get_hwp_cap(cpu);
3260
3261 rdmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, &value);
3262 WRITE_ONCE(cpu->hwp_req_cached, value);
3263
3264 cpu->epp_cached = intel_pstate_get_epp(cpu, value);
3265 } else {
3266 policy->transition_delay_us = INTEL_CPUFREQ_TRANSITION_DELAY;
3267 }
3268
3269 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.min_perf_pct, 100);
3270
3271 ret = freq_qos_add_request(&policy->constraints, req, FREQ_QOS_MIN,
3272 freq);
3273 if (ret < 0) {
3274 dev_err(dev, "Failed to add min-freq constraint (%d)\n", ret);
3275 goto free_req;
3276 }
3277
3278 freq = DIV_ROUND_UP(cpu->pstate.turbo_freq * global.max_perf_pct, 100);
3279
3280 ret = freq_qos_add_request(&policy->constraints, req + 1, FREQ_QOS_MAX,
3281 freq);
3282 if (ret < 0) {
3283 dev_err(dev, "Failed to add max-freq constraint (%d)\n", ret);
3284 goto remove_min_req;
3285 }
3286
3287 policy->driver_data = req;
3288
3289 return 0;
3290
3291 remove_min_req:
3292 freq_qos_remove_request(req);
3293 free_req:
3294 kfree(req);
3295 pstate_exit:
3296 intel_pstate_exit_perf_limits(policy);
3297
3298 return ret;
3299 }
3300
intel_cpufreq_cpu_exit(struct cpufreq_policy * policy)3301 static void intel_cpufreq_cpu_exit(struct cpufreq_policy *policy)
3302 {
3303 struct freq_qos_request *req;
3304
3305 req = policy->driver_data;
3306
3307 freq_qos_remove_request(req + 1);
3308 freq_qos_remove_request(req);
3309 kfree(req);
3310
3311 intel_pstate_cpu_exit(policy);
3312 }
3313
intel_cpufreq_suspend(struct cpufreq_policy * policy)3314 static int intel_cpufreq_suspend(struct cpufreq_policy *policy)
3315 {
3316 intel_pstate_suspend(policy);
3317
3318 if (hwp_active) {
3319 struct cpudata *cpu = all_cpu_data[policy->cpu];
3320 u64 value = READ_ONCE(cpu->hwp_req_cached);
3321
3322 /*
3323 * Clear the desired perf field in MSR_HWP_REQUEST in case
3324 * intel_cpufreq_adjust_perf() is in use and the last value
3325 * written by it may not be suitable.
3326 */
3327 value &= ~HWP_DESIRED_PERF(~0L);
3328 wrmsrl_on_cpu(cpu->cpu, MSR_HWP_REQUEST, value);
3329 WRITE_ONCE(cpu->hwp_req_cached, value);
3330 }
3331
3332 return 0;
3333 }
3334
3335 static struct cpufreq_driver intel_cpufreq = {
3336 .flags = CPUFREQ_CONST_LOOPS,
3337 .verify = intel_cpufreq_verify_policy,
3338 .target = intel_cpufreq_target,
3339 .fast_switch = intel_cpufreq_fast_switch,
3340 .init = intel_cpufreq_cpu_init,
3341 .exit = intel_cpufreq_cpu_exit,
3342 .offline = intel_cpufreq_cpu_offline,
3343 .online = intel_pstate_cpu_online,
3344 .suspend = intel_cpufreq_suspend,
3345 .resume = intel_pstate_resume,
3346 .update_limits = intel_pstate_update_limits,
3347 .name = "intel_cpufreq",
3348 };
3349
3350 static struct cpufreq_driver *default_driver;
3351
intel_pstate_driver_cleanup(void)3352 static void intel_pstate_driver_cleanup(void)
3353 {
3354 unsigned int cpu;
3355
3356 cpus_read_lock();
3357 for_each_online_cpu(cpu) {
3358 if (all_cpu_data[cpu]) {
3359 if (intel_pstate_driver == &intel_pstate)
3360 intel_pstate_clear_update_util_hook(cpu);
3361
3362 kfree(all_cpu_data[cpu]);
3363 WRITE_ONCE(all_cpu_data[cpu], NULL);
3364 }
3365 }
3366 cpus_read_unlock();
3367
3368 intel_pstate_driver = NULL;
3369 }
3370
intel_pstate_register_driver(struct cpufreq_driver * driver)3371 static int intel_pstate_register_driver(struct cpufreq_driver *driver)
3372 {
3373 bool refresh_cpu_cap_scaling;
3374 int ret;
3375
3376 if (driver == &intel_pstate)
3377 intel_pstate_sysfs_expose_hwp_dynamic_boost();
3378
3379 memset(&global, 0, sizeof(global));
3380 global.max_perf_pct = 100;
3381 global.turbo_disabled = turbo_is_disabled();
3382 global.no_turbo = global.turbo_disabled;
3383
3384 arch_set_max_freq_ratio(global.turbo_disabled);
3385
3386 refresh_cpu_cap_scaling = hybrid_clear_max_perf_cpu();
3387
3388 intel_pstate_driver = driver;
3389 ret = cpufreq_register_driver(intel_pstate_driver);
3390 if (ret) {
3391 intel_pstate_driver_cleanup();
3392 return ret;
3393 }
3394
3395 global.min_perf_pct = min_perf_pct_min();
3396
3397 hybrid_init_cpu_capacity_scaling(refresh_cpu_cap_scaling);
3398
3399 return 0;
3400 }
3401
intel_pstate_show_status(char * buf)3402 static ssize_t intel_pstate_show_status(char *buf)
3403 {
3404 if (!intel_pstate_driver)
3405 return sprintf(buf, "off\n");
3406
3407 return sprintf(buf, "%s\n", intel_pstate_driver == &intel_pstate ?
3408 "active" : "passive");
3409 }
3410
intel_pstate_update_status(const char * buf,size_t size)3411 static int intel_pstate_update_status(const char *buf, size_t size)
3412 {
3413 if (size == 3 && !strncmp(buf, "off", size)) {
3414 if (!intel_pstate_driver)
3415 return -EINVAL;
3416
3417 if (hwp_active)
3418 return -EBUSY;
3419
3420 cpufreq_unregister_driver(intel_pstate_driver);
3421 intel_pstate_driver_cleanup();
3422 return 0;
3423 }
3424
3425 if (size == 6 && !strncmp(buf, "active", size)) {
3426 if (intel_pstate_driver) {
3427 if (intel_pstate_driver == &intel_pstate)
3428 return 0;
3429
3430 cpufreq_unregister_driver(intel_pstate_driver);
3431 }
3432
3433 return intel_pstate_register_driver(&intel_pstate);
3434 }
3435
3436 if (size == 7 && !strncmp(buf, "passive", size)) {
3437 if (intel_pstate_driver) {
3438 if (intel_pstate_driver == &intel_cpufreq)
3439 return 0;
3440
3441 cpufreq_unregister_driver(intel_pstate_driver);
3442 intel_pstate_sysfs_hide_hwp_dynamic_boost();
3443 }
3444
3445 return intel_pstate_register_driver(&intel_cpufreq);
3446 }
3447
3448 return -EINVAL;
3449 }
3450
3451 static int no_load __initdata;
3452 static int no_hwp __initdata;
3453 static int hwp_only __initdata;
3454 static unsigned int force_load __initdata;
3455
intel_pstate_msrs_not_valid(void)3456 static int __init intel_pstate_msrs_not_valid(void)
3457 {
3458 if (!pstate_funcs.get_max(0) ||
3459 !pstate_funcs.get_min(0) ||
3460 !pstate_funcs.get_turbo(0))
3461 return -ENODEV;
3462
3463 return 0;
3464 }
3465
copy_cpu_funcs(struct pstate_funcs * funcs)3466 static void __init copy_cpu_funcs(struct pstate_funcs *funcs)
3467 {
3468 pstate_funcs.get_max = funcs->get_max;
3469 pstate_funcs.get_max_physical = funcs->get_max_physical;
3470 pstate_funcs.get_min = funcs->get_min;
3471 pstate_funcs.get_turbo = funcs->get_turbo;
3472 pstate_funcs.get_scaling = funcs->get_scaling;
3473 pstate_funcs.get_val = funcs->get_val;
3474 pstate_funcs.get_vid = funcs->get_vid;
3475 pstate_funcs.get_aperf_mperf_shift = funcs->get_aperf_mperf_shift;
3476 }
3477
3478 #ifdef CONFIG_ACPI
3479
intel_pstate_no_acpi_pss(void)3480 static bool __init intel_pstate_no_acpi_pss(void)
3481 {
3482 int i;
3483
3484 for_each_possible_cpu(i) {
3485 acpi_status status;
3486 union acpi_object *pss;
3487 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
3488 struct acpi_processor *pr = per_cpu(processors, i);
3489
3490 if (!pr)
3491 continue;
3492
3493 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
3494 if (ACPI_FAILURE(status))
3495 continue;
3496
3497 pss = buffer.pointer;
3498 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
3499 kfree(pss);
3500 return false;
3501 }
3502
3503 kfree(pss);
3504 }
3505
3506 pr_debug("ACPI _PSS not found\n");
3507 return true;
3508 }
3509
intel_pstate_no_acpi_pcch(void)3510 static bool __init intel_pstate_no_acpi_pcch(void)
3511 {
3512 acpi_status status;
3513 acpi_handle handle;
3514
3515 status = acpi_get_handle(NULL, "\\_SB", &handle);
3516 if (ACPI_FAILURE(status))
3517 goto not_found;
3518
3519 if (acpi_has_method(handle, "PCCH"))
3520 return false;
3521
3522 not_found:
3523 pr_debug("ACPI PCCH not found\n");
3524 return true;
3525 }
3526
intel_pstate_has_acpi_ppc(void)3527 static bool __init intel_pstate_has_acpi_ppc(void)
3528 {
3529 int i;
3530
3531 for_each_possible_cpu(i) {
3532 struct acpi_processor *pr = per_cpu(processors, i);
3533
3534 if (!pr)
3535 continue;
3536 if (acpi_has_method(pr->handle, "_PPC"))
3537 return true;
3538 }
3539 pr_debug("ACPI _PPC not found\n");
3540 return false;
3541 }
3542
3543 enum {
3544 PSS,
3545 PPC,
3546 };
3547
3548 /* Hardware vendor-specific info that has its own power management modes */
3549 static struct acpi_platform_list plat_info[] __initdata = {
3550 {"HP ", "ProLiant", 0, ACPI_SIG_FADT, all_versions, NULL, PSS},
3551 {"ORACLE", "X4-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3552 {"ORACLE", "X4-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3553 {"ORACLE", "X4-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3554 {"ORACLE", "X3-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3555 {"ORACLE", "X3-2L ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3556 {"ORACLE", "X3-2B ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3557 {"ORACLE", "X4470M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3558 {"ORACLE", "X4270M3 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3559 {"ORACLE", "X4270M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3560 {"ORACLE", "X4170M2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3561 {"ORACLE", "X4170 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3562 {"ORACLE", "X4275 M3", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3563 {"ORACLE", "X6-2 ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3564 {"ORACLE", "Sudbury ", 0, ACPI_SIG_FADT, all_versions, NULL, PPC},
3565 { } /* End */
3566 };
3567
3568 #define BITMASK_OOB (BIT(8) | BIT(18))
3569
intel_pstate_platform_pwr_mgmt_exists(void)3570 static bool __init intel_pstate_platform_pwr_mgmt_exists(void)
3571 {
3572 const struct x86_cpu_id *id;
3573 u64 misc_pwr;
3574 int idx;
3575
3576 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
3577 if (id) {
3578 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
3579 if (misc_pwr & BITMASK_OOB) {
3580 pr_debug("Bit 8 or 18 in the MISC_PWR_MGMT MSR set\n");
3581 pr_debug("P states are controlled in Out of Band mode by the firmware/hardware\n");
3582 return true;
3583 }
3584 }
3585
3586 idx = acpi_match_platform_list(plat_info);
3587 if (idx < 0)
3588 return false;
3589
3590 switch (plat_info[idx].data) {
3591 case PSS:
3592 if (!intel_pstate_no_acpi_pss())
3593 return false;
3594
3595 return intel_pstate_no_acpi_pcch();
3596 case PPC:
3597 return intel_pstate_has_acpi_ppc() && !force_load;
3598 }
3599
3600 return false;
3601 }
3602
intel_pstate_request_control_from_smm(void)3603 static void intel_pstate_request_control_from_smm(void)
3604 {
3605 /*
3606 * It may be unsafe to request P-states control from SMM if _PPC support
3607 * has not been enabled.
3608 */
3609 if (acpi_ppc)
3610 acpi_processor_pstate_control();
3611 }
3612 #else /* CONFIG_ACPI not enabled */
intel_pstate_platform_pwr_mgmt_exists(void)3613 static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
intel_pstate_has_acpi_ppc(void)3614 static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
intel_pstate_request_control_from_smm(void)3615 static inline void intel_pstate_request_control_from_smm(void) {}
3616 #endif /* CONFIG_ACPI */
3617
3618 #define INTEL_PSTATE_HWP_BROADWELL 0x01
3619
3620 #define X86_MATCH_HWP(vfm, hwp_mode) \
3621 X86_MATCH_VFM_FEATURE(vfm, X86_FEATURE_HWP, hwp_mode)
3622
3623 static const struct x86_cpu_id hwp_support_ids[] __initconst = {
3624 X86_MATCH_HWP(INTEL_BROADWELL_X, INTEL_PSTATE_HWP_BROADWELL),
3625 X86_MATCH_HWP(INTEL_BROADWELL_D, INTEL_PSTATE_HWP_BROADWELL),
3626 X86_MATCH_HWP(INTEL_ANY, 0),
3627 {}
3628 };
3629
intel_pstate_hwp_is_enabled(void)3630 static bool intel_pstate_hwp_is_enabled(void)
3631 {
3632 u64 value;
3633
3634 rdmsrl(MSR_PM_ENABLE, value);
3635 return !!(value & 0x1);
3636 }
3637
3638 #define POWERSAVE_MASK GENMASK(7, 0)
3639 #define BALANCE_POWER_MASK GENMASK(15, 8)
3640 #define BALANCE_PERFORMANCE_MASK GENMASK(23, 16)
3641 #define PERFORMANCE_MASK GENMASK(31, 24)
3642
3643 #define HWP_SET_EPP_VALUES(powersave, balance_power, balance_perf, performance) \
3644 (FIELD_PREP_CONST(POWERSAVE_MASK, powersave) |\
3645 FIELD_PREP_CONST(BALANCE_POWER_MASK, balance_power) |\
3646 FIELD_PREP_CONST(BALANCE_PERFORMANCE_MASK, balance_perf) |\
3647 FIELD_PREP_CONST(PERFORMANCE_MASK, performance))
3648
3649 #define HWP_SET_DEF_BALANCE_PERF_EPP(balance_perf) \
3650 (HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE, HWP_EPP_BALANCE_POWERSAVE,\
3651 balance_perf, HWP_EPP_PERFORMANCE))
3652
3653 static const struct x86_cpu_id intel_epp_default[] = {
3654 /*
3655 * Set EPP value as 102, this is the max suggested EPP
3656 * which can result in one core turbo frequency for
3657 * AlderLake Mobile CPUs.
3658 */
3659 X86_MATCH_VFM(INTEL_ALDERLAKE_L, HWP_SET_DEF_BALANCE_PERF_EPP(102)),
3660 X86_MATCH_VFM(INTEL_SAPPHIRERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3661 X86_MATCH_VFM(INTEL_EMERALDRAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3662 X86_MATCH_VFM(INTEL_GRANITERAPIDS_X, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3663 X86_MATCH_VFM(INTEL_GRANITERAPIDS_D, HWP_SET_DEF_BALANCE_PERF_EPP(32)),
3664 X86_MATCH_VFM(INTEL_METEORLAKE_L, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3665 179, 64, 16)),
3666 X86_MATCH_VFM(INTEL_ARROWLAKE, HWP_SET_EPP_VALUES(HWP_EPP_POWERSAVE,
3667 179, 64, 16)),
3668 {}
3669 };
3670
3671 static const struct x86_cpu_id intel_hybrid_scaling_factor[] = {
3672 X86_MATCH_VFM(INTEL_ALDERLAKE, HYBRID_SCALING_FACTOR_ADL),
3673 X86_MATCH_VFM(INTEL_ALDERLAKE_L, HYBRID_SCALING_FACTOR_ADL),
3674 X86_MATCH_VFM(INTEL_RAPTORLAKE, HYBRID_SCALING_FACTOR_ADL),
3675 X86_MATCH_VFM(INTEL_RAPTORLAKE_P, HYBRID_SCALING_FACTOR_ADL),
3676 X86_MATCH_VFM(INTEL_RAPTORLAKE_S, HYBRID_SCALING_FACTOR_ADL),
3677 X86_MATCH_VFM(INTEL_METEORLAKE_L, HYBRID_SCALING_FACTOR_MTL),
3678 X86_MATCH_VFM(INTEL_LUNARLAKE_M, HYBRID_SCALING_FACTOR_LNL),
3679 {}
3680 };
3681
intel_pstate_init(void)3682 static int __init intel_pstate_init(void)
3683 {
3684 static struct cpudata **_all_cpu_data;
3685 const struct x86_cpu_id *id;
3686 int rc;
3687
3688 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
3689 return -ENODEV;
3690
3691 id = x86_match_cpu(hwp_support_ids);
3692 if (id) {
3693 hwp_forced = intel_pstate_hwp_is_enabled();
3694
3695 if (hwp_forced)
3696 pr_info("HWP enabled by BIOS\n");
3697 else if (no_load)
3698 return -ENODEV;
3699
3700 copy_cpu_funcs(&core_funcs);
3701 /*
3702 * Avoid enabling HWP for processors without EPP support,
3703 * because that means incomplete HWP implementation which is a
3704 * corner case and supporting it is generally problematic.
3705 *
3706 * If HWP is enabled already, though, there is no choice but to
3707 * deal with it.
3708 */
3709 if ((!no_hwp && boot_cpu_has(X86_FEATURE_HWP_EPP)) || hwp_forced) {
3710 hwp_active = true;
3711 hwp_mode_bdw = id->driver_data;
3712 intel_pstate.attr = hwp_cpufreq_attrs;
3713 intel_cpufreq.attr = hwp_cpufreq_attrs;
3714 intel_cpufreq.flags |= CPUFREQ_NEED_UPDATE_LIMITS;
3715 intel_cpufreq.adjust_perf = intel_cpufreq_adjust_perf;
3716 if (!default_driver)
3717 default_driver = &intel_pstate;
3718
3719 pstate_funcs.get_cpu_scaling = hwp_get_cpu_scaling;
3720
3721 goto hwp_cpu_matched;
3722 }
3723 pr_info("HWP not enabled\n");
3724 } else {
3725 if (no_load)
3726 return -ENODEV;
3727
3728 id = x86_match_cpu(intel_pstate_cpu_ids);
3729 if (!id) {
3730 pr_info("CPU model not supported\n");
3731 return -ENODEV;
3732 }
3733
3734 copy_cpu_funcs((struct pstate_funcs *)id->driver_data);
3735 }
3736
3737 if (intel_pstate_msrs_not_valid()) {
3738 pr_info("Invalid MSRs\n");
3739 return -ENODEV;
3740 }
3741 /* Without HWP start in the passive mode. */
3742 if (!default_driver)
3743 default_driver = &intel_cpufreq;
3744
3745 hwp_cpu_matched:
3746 /*
3747 * The Intel pstate driver will be ignored if the platform
3748 * firmware has its own power management modes.
3749 */
3750 if (intel_pstate_platform_pwr_mgmt_exists()) {
3751 pr_info("P-states controlled by the platform\n");
3752 return -ENODEV;
3753 }
3754
3755 if (!hwp_active && hwp_only)
3756 return -ENOTSUPP;
3757
3758 pr_info("Intel P-state driver initializing\n");
3759
3760 _all_cpu_data = vzalloc(array_size(sizeof(void *), num_possible_cpus()));
3761 if (!_all_cpu_data)
3762 return -ENOMEM;
3763
3764 WRITE_ONCE(all_cpu_data, _all_cpu_data);
3765
3766 intel_pstate_request_control_from_smm();
3767
3768 intel_pstate_sysfs_expose_params();
3769
3770 if (hwp_active) {
3771 const struct x86_cpu_id *id = x86_match_cpu(intel_epp_default);
3772 const struct x86_cpu_id *hybrid_id = x86_match_cpu(intel_hybrid_scaling_factor);
3773
3774 if (id) {
3775 epp_values[EPP_INDEX_POWERSAVE] =
3776 FIELD_GET(POWERSAVE_MASK, id->driver_data);
3777 epp_values[EPP_INDEX_BALANCE_POWERSAVE] =
3778 FIELD_GET(BALANCE_POWER_MASK, id->driver_data);
3779 epp_values[EPP_INDEX_BALANCE_PERFORMANCE] =
3780 FIELD_GET(BALANCE_PERFORMANCE_MASK, id->driver_data);
3781 epp_values[EPP_INDEX_PERFORMANCE] =
3782 FIELD_GET(PERFORMANCE_MASK, id->driver_data);
3783 pr_debug("Updated EPPs powersave:%x balanced power:%x balanced perf:%x performance:%x\n",
3784 epp_values[EPP_INDEX_POWERSAVE],
3785 epp_values[EPP_INDEX_BALANCE_POWERSAVE],
3786 epp_values[EPP_INDEX_BALANCE_PERFORMANCE],
3787 epp_values[EPP_INDEX_PERFORMANCE]);
3788 }
3789
3790 if (hybrid_id) {
3791 hybrid_scaling_factor = hybrid_id->driver_data;
3792 pr_debug("hybrid scaling factor: %d\n", hybrid_scaling_factor);
3793 }
3794
3795 }
3796
3797 mutex_lock(&intel_pstate_driver_lock);
3798 rc = intel_pstate_register_driver(default_driver);
3799 mutex_unlock(&intel_pstate_driver_lock);
3800 if (rc) {
3801 intel_pstate_sysfs_remove();
3802 return rc;
3803 }
3804
3805 if (hwp_active) {
3806 const struct x86_cpu_id *id;
3807
3808 id = x86_match_cpu(intel_pstate_cpu_ee_disable_ids);
3809 if (id) {
3810 set_power_ctl_ee_state(false);
3811 pr_info("Disabling energy efficiency optimization\n");
3812 }
3813
3814 pr_info("HWP enabled\n");
3815 } else if (boot_cpu_has(X86_FEATURE_HYBRID_CPU)) {
3816 pr_warn("Problematic setup: Hybrid processor with disabled HWP\n");
3817 }
3818
3819 return 0;
3820 }
3821 device_initcall(intel_pstate_init);
3822
intel_pstate_setup(char * str)3823 static int __init intel_pstate_setup(char *str)
3824 {
3825 if (!str)
3826 return -EINVAL;
3827
3828 if (!strcmp(str, "disable"))
3829 no_load = 1;
3830 else if (!strcmp(str, "active"))
3831 default_driver = &intel_pstate;
3832 else if (!strcmp(str, "passive"))
3833 default_driver = &intel_cpufreq;
3834
3835 if (!strcmp(str, "no_hwp"))
3836 no_hwp = 1;
3837
3838 if (!strcmp(str, "force"))
3839 force_load = 1;
3840 if (!strcmp(str, "hwp_only"))
3841 hwp_only = 1;
3842 if (!strcmp(str, "per_cpu_perf_limits"))
3843 per_cpu_limits = true;
3844
3845 #ifdef CONFIG_ACPI
3846 if (!strcmp(str, "support_acpi_ppc"))
3847 acpi_ppc = true;
3848 #endif
3849
3850 return 0;
3851 }
3852 early_param("intel_pstate", intel_pstate_setup);
3853
3854 MODULE_AUTHOR("Dirk Brandewie <[email protected]>");
3855 MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
3856